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Abstract

This research attempts to determine the behaviour of fraudsters in a continuous
audit system where the fraudsters have multiple options for committing fraud. The system
is modelled as a Continuous Time Markov Chain where the state changes are caused by the
fraudster’s actions. The model uses a dynamic game with probabilistic transitions to determine
the expected behaviour of the fraudster.
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Introduction

After a string of high profile business failures (most notably
the Enron scandal) caused by non-transparent financial
statements and outright fraud by senior management,
which were not detected by auditors, the US Congress
passed the Sarbanes—Oxley Act in 2002. This Act mandated
a set of internal controls and required management and
external auditors to report on the adequacy of internal
controls. This required the management and external
auditors to document and test manual and automated
controls. The Act specifically required the management to
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perform a fraud risk assessment and evaluate controls
designed to prevent or detect fraud. As part of risk
assessment, an organisation would like to find out which
components of its system are more susceptible to certain
threats than others. In this research, we attempt to find the
components of a transaction system that are susceptible to
fraud by analysing the behaviour of a potential fraudster.
This will assist a security administrator in taking steps to
mitigate fraud risks and fine tune the parameters of
a continuous audit system. It will also assist the auditor in
focussing on risk prone areas during an audit.

One of the key problems when applying traditional
external audit techniques to large transaction systems is
that audit data is gathered long after the economic events
are recorded and it is often too late to prevent corrective
action (Vasarhelyi & Halper, 1991). To mitigate this
problem, large transaction systems use continuous audit
systems. Continuous audit is defined as ‘a comprehensive
electronic audit process that allows auditors to provide
some degree of assurance on continuous information
simultaneous with, or shortly after, the disclosure of the
information’ (Rezaee, Sharbatoghlie, Elam, & McMickle,
2002). However, internal auditors and more recently
system auditors have increasingly been required to examine
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organisational data more frequently in order to detect
errors and/or malicious activity. This also implies analysing
the controls in these systems. In an online transaction
system, even when a detailed audit trail exists, examining
the data after the fact does not prevent losses from
occurring. This necessitates the evaluation of controls and
data in real time (Vasarhelyi & Halper, 1991) or as close to
real time as possible. In a continuous audit system the data
stream is monitored and analysed at relatively short
intervals (hourly, daily, etc.) using a set of auditor-defined
rules (Vasarhelyi & Halper, 1991). When the system detects
an exception to these rules, it triggers an alarm notifying
the auditor about the occurrence of the exception.

In this paper we examine how the stochastic game
theory can be used to model the behaviour of a malicious
person or a potential fraudster. The output of the model
will be used to determine the time taken by a potential
fraudster to complete a fraudulent action. We assume that
the fraudster is rational and will factor in the consequences
of his actions before committing fraud.

Literature review

Previous studies in the area of audit timing (Boritz & Broca,
1986; Hughes, 1977; Morey & Dittman, 1986; Rossi, Tarim,
Hnich, Prestwich, & Karacaer, 2010; Wilson & Ranson,
1971) have been concerned with fixing the time interval
for internal audits. All these papers assume that in the
absence of audit, errors in the accounting system will occur
and that the number of such errors will accumulate with
time until the audit detects and corrects them. The errors
are modelled as increasing linearly with time (Hughes,
1977; Wilson & Ranson, 1971) or based on the auditor’s
subjective judgment (Boritz & Broca, 1986) or occurring
randomly (Morey & Dittman, 1986). Some researchers
(Dodin & Elimam, 1997; Dodin, Elimam, & Rolland, 1998) do
not consider errors at all. In cases where the researchers do
not consider errors, the authors assume that the auditors
have to complete certain audits within a certain time,
subject to certain constraints, irrespective of whether the
transaction system has errors or not. In the previous
research it is generally assumed that the errors are non-
malicious in nature. In this paper, we focus only on mali-
cious threats. (In a later work, we develop a model that
combines both malicious and non-malicious threats.)

The use of game theory to model information security
issues is fairly recent. Hamilton, Miller, and Saydjari (2002)
pointed out that it is possible to formulate attack and
defence scenarios as a game of moves and counter moves.
Game theory already has algorithms to predict the likeli-
hood of an action being selected in such scenarios. Alpcan
and Basar (2003) pointed out that game theory provides
a rich set of tools for modelling and analysing information
security issues. These game theoretic tools can also be used
to develop practical and cost effective solutions that can
be implemented in the real world. Alpcan and Basar (2003)
modelled an Intrusion Detection System (IDS) as a network
of sensors. They modelled the behaviour of an attacker and
the IDS as a two-person, nonzero-sum, non-cooperative
game and developed a formal decision and control frame-
work for a platform-independent IDS.

Lye and Wing (2005) constructed a two-player stochastic
game to represent the interaction between a system
administrator and an attacker. They computed the Nash
equilibria or best response strategies for the attacker and
the administrator. Working with the two-player game
model, they pointed out that a team of attackers or team of
administrators can be modelled as a single omnipresent
attacker or defender. Thus, a two-player game is sufficient
for the modelling problems of information security.

Liu, Zang, and Yu (2005) used a game-theoretic approach
to inferring attacker intent, objectives, and strategies
(AIOS) and captured the inherent interdependence
between AIOS and defender objectives. The authors were
primarily interested in examining the characteristics of
attackers rather than the attacks and the attacker’s intent
was modelled using game theoretic models. They make the
case that the attacker’s intent can be inferred from the
nature of the attack and this in turn influences the nature
of the defence strategy to be adopted.

Sallhammar and Knapskog (2004) built upon the work of
Alpcan and Basar (2003), Liu et al. (2005), Lye and Wing
(2005) and modelled an intrusion as a series of state
changes from an initially secure state to a compromised
state. They were primarily interested in devising a metric
for an information system’s ‘trustworthiness’ in terms of its
dependability in resisting intrusions. In a later paper,
Sallhammar, Knapskog, and Helvik (2005) expanded their
model to include attacker intent, objectives, and strate-
gies. In this paper, we use the approach of Sallhammar and
Knapskog (2004) and demonstrate how their model can be
used to determine the timing of audit in a continuous audit
system. Prior research (Cavusoglu, Mishra, & Raghunathan,
2005; Cavusoglu, Raghunathan, & Yue, 2008) has demon-
strated that firms incur lower costs when they use the game
theory as opposed to the decision theory. According to
them, the firm’s payoff is maximised when the firm credibly
commits and communicates its strategy to the attacker.
Even if the communication of strategy is not credible, the
firm enjoys a higher payoff if the firm and attacker play
a sequential game. Their research focused on the overall
economics of investment in information security.

In this paper we are explicitly concerned with the
behaviour of malicious agents or fraudsters who attempt to
circumvent the controls in a financial system in order to
perpetuate a fraud.

Fraudster’s expected behaviour

The integrity of a transaction system is modelled as
a continuous time Markov chain (CTMC), where the first
state is the initial secure state. An attempt at fraud causes
an intentional state change from one state to another. Each
state, except the first, represents a situation where the
integrity of the information system is breached. However,
this model ignores the effects of unintentional errors.
Systems, in general, have weaknesses and a potential
fraudster can take recourse to several courses of action to
exploit them. In order to commit a successful fraud,
a fraudster has to perform several atomic actions and in
order for the fraud to succeed, all atomic actions must be
successfully completed. The fraudster also has the option
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of either not initiating the fraud or not continuing with it
after initiating it. Also, at each possible stage, a fraudster
may have multiple actions available to her to compromise
the system. For example, a person who intends to defraud
a payroll system may create a fake attendance record, or
fake an unauthorised perk or bonus. In either case, the
fraudster could end up earning more than what she would
be entitled to.

In each state s:s = 1,...,z, a fraudster can take m
actions, which can broadly be categorised as follows:

1. Continue the fraud by choosing an action f7, where
i =1,..., ms — 1. In case the action is unsuccessful,
there is no reward and if the action is successful, she
obtains a reward. There is also a possibility that the
fraud is detected at this stage, in which case she has to
pay a penalty (cost).

2. Cease and desist from the fraud action, f7 . In this
case, the fraudster has to bear a cost depending on how
far the fraud has progressed.

The probability that the fraudster will choose action i in
state s is denoted by prraud(f;). Hence, for each state s in
the state transition model, the fraudster’s expected choice
of action can be represented by a stochastic vector,

ﬁfraud (f)= (pfraud (ff)7 -3 Pfraud (f,;S))

where ZizL...mSPfraud (f,s) =1
The complete set of such stochastic vectors is given by

Pfraud={3fraud(fs)|s=17"'7z} (1)

To continue the fraud from state s, the fraudster must
also succeed in the action chosen by her [psyccess(f7)]- In
order to find the stationary probability distribution, we
consider the embedded discrete time Markov chain (DTMC)
within the CTMC. An embedded DTMC is obtained by looking
at only the transition instances. In this case, since the
fraudster’s reward and cost come only from the transition,
we can ignore the time spent in any given state and only
consider the probabilities of making a transition from one
state to another. This embedded DTMC must be specified in
terms of transition probabilities rather than transition
rates. Thus, the probability that the fraudster causes
a transition from state s (at time ;) to state t (at time x ) is
given by:

P(Xk+1 = t|Xk :S) = Pfraud (f’s) * Psuccess (f;s) (2)

If the fraudster’s chosen action fails or she chooses f7,
the state of the system is unchanged. To model the state
transition model the following information is necessary:

1. Enumerate all the possible choices that a potential
fraudster has at each state.

2. Estimate the success probabilities to those choices.
These could be based on subjective assessments.

3. Compute the probabilities of the actions. This paper
deals with the manner of computing these
probabilities.

This state of affairs can be represented as a dynamic
game with probabilistic transitions. The audit system and
the fraudster can be modelled as playing the game in
stages. The players select actions and receive payoffs that
depend on the current state and the chosen action. This
results in a new state whose distribution depends on the
previous state and the actions chosen by them. The game
then moves to a new state and the play is repeated at the
new state. Thus, there are z states or game elements
I's:s = 1,...,z. Thus, the complete stochastic game model
can be defined as:

Players :N={fraudster, audit system}

Game elements :Ts:5=1,...,z
Fraudsters actions Fs= {ff, ...,ffns}
Actions of the audit system :As={d*, ¢°} ={detect, miss}

For each possible combination of actions Fs and A, there
is @ payoff, v}, =Psuccess(ff) (v(f}, ¢°) + v(I')). This implies
that in state s, if the fraudster succeeds with his ith
strategy he get a payoff of v(f}, ¢°) and the expected payoff
from playing the next game v(T'¢). These payoffs [y(f;, ¢°) +
v(I't)] are contingent upon success of the action. Thus, the
payoffs are multiplied by the probability of success
[Psuccess(f7)]. In case the fraudster chooses action i but is
detected by the audit system the payoff is «/;’_dz«/(f,?,ds).

The game ends when the fraud is detected or if the
fraudster opts not to continue. The fraudster assumes that
the audit system is a rational player who seeks to minimise
the fraudster’s expected payoff. This enables the Nash
Equilibrium of the complete stochastic game to be calcu-
lated and results in a set of minimax solution vectors. These
solution vectors represent a complete attack strategy,
which maximises the expected payoff of the fraudster and
ensures that she has no ex-post regrets.

Nash Equilibrium of a stochastic game

A two player zero sum stochastic game (Owen, 1995; page
96) is a set of z game elements or states I':s = 1, ...,z.
Each game element is represented by a my x n, matrix
(where the fraudster has my actions and the system has ny
actions), whose entries are of the form

W=y 3 i
l=i,...z
with gff >0and > qf <1.
=i,....Zz

This implies that in state k, if player | chooses his ith
pure strategy and player Il chooses his jth pure strategy,
player | will receive a payoff of ufj plus a possibility of
future payoff, gf/, from playing the (th game. The condition

> qffj’ < 1 ensures that probability of infinite play is zero

l=i,....Zz
and that all expected payoffs are finite.

A strategy set for player | is the set x*¢ of my vectors for
k = 1,...,z of my vectors satisfying
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Here x,f‘t is the probability that player | will choose action
i, assuming that she is playing the game element I’y at the
tth stage of the game. Strategy for player Il is a similar set
of ny vectors y*t.

Given a pair of strategies, an expected payoff can be
calculated for any k = 1,...,z on the assumption that the
first stage of the game is I'y. Thus, the expected payoff for
a pair of strategies is a z-vector (since there are z states,
and for each state we have a probability vector). The
lowest expected payoffs are the optimal strategies and the
value of the game is the expected value of the game if the
players play their optimal strategies. This expected value is
a z-vector, v = (v, V,...,V,). In order for the value vector
to exist, the game element I'; must be replaced by the
value component v,. A sequence of vectors which converges
to the desired vector can be constructed as follows.

v?=(0,0,...,0),
X =yy+ > aivi, r=12..

vt =value (x,’jr>

The sequence of vectors will converge and the limit of
the converged value vector is the optimal stationary
strategy (Owen, 1995; pages 97—99) for the stochastic
game. This vector provides us with a means to compute the
probable behaviour of a fraudster at each state of the
game.

Illustration

Consider a financial system that processes payroll, receiv-
ables and inventory. The notation used is the following,

Xs={(x.y,2)Ix,y,2e {0, 1}}, 3)

where for example, (1,0,1) means that payroll (x) and
inventory (z) are compromised but the receivables (y) are
not. The fraudster’s payoff for compromising the inventory
system is assumed to be 30, for compromising the receiv-
ables, 20 and payroll, 10. These payoffs also determine the
priorities of the fraudster, and once he has compromised
any one system, he will target a system with a higher

payoff.

The game’s action set can be defined as follows:
F(O,O,O):{f17f27f37f4}7 (4)
Fao0={f2.f3.fa}, (5)
Fo.0)=Fu.10=1{f3,f}, (6)
Ao0)=An00 =A010=Aw,10=1{a1,0a}, (7)

Where, the actions f4, f2, f3 and f4 represent ‘defraud
payroll’, ‘defraud receivables’, ‘defraud inventory’ and ‘do
nothing’ respectively, and the actions, ay, a, represent
‘detect’ and ‘miss’ respectively for the audit system. The
transition probabilities (shown in Table 1) are chosen
arbitrarily and have no particular significance. The only
assumption here is that the payroll system is the easiest to

defraud, and the inventory system is the hardest. The
payoffs are intended to reflect this assumption. Violating
this particular assumption does not in any way invalidate
the model. In the next section, we show the effects of
varying the transition probabilities.

The game elements are as

-20 04-(20+T1
T(0>0,0): ~30 ( T 019

0.1-30
0 -5
~20 0.5-(20+I'110))
TI'100=1 —30 0.2-30 , (8)
0 -10
—-30 0.3-30 —-30 0.4-30
F(o‘m):( 0 ~10 )7 T(m‘,o):( 0 15 ) 9)
Ffraud (f“'“))) :(0267074) (10)
Prraua (f*%) =(0.20,0.80) (1)
Ffraud (f“'O.O)) :(02801072) (12)
P trand (f<°'°"°>) =(0.29,0,0,0.71) (13)

The vector Praug(f"""?)=(0.26,0.74), implies that if
the fraudster has compromised the payroll and inventory
systems (F""9), he will attempt to compromise the
inventory system with a probability of 0.26 and cease to
commit the fraud with a probability of 0.74. Plugging the
resulting value of the game into equation (8) above, we
work backwards and arrive at the probability that the
fraudster will initiate the fraud on an uncompromised
system Praud(F©%9). The results show that a rational
fraudster will defraud the payroll system with a probability
of 0.29.

Sensitivity analysis

In order to examine the behavioural validity (Bossel, 1994)
of the model, we vary the transition probabilities from 10%
to 90% and examine the result (Fig. 1). The transition
probabilities represent the probability of succeeding in the
fraud attempt at each stage.

As can be seen from the figure, transition probabilities
(which serve as a proxy to indicate the strength of the
internal control system) increase from 10% to 100%, but the
probability of committing fraud decreases from about 33%
to 8%. The lower the state transition probabilities, the
better the internal control system and vice-versa. The
above result implies that the weaker the internal control
system, the lower will be the probability of committing
fraud. This rather counterintuitive result is due to the
adoption of minmax strategy. As the transition probabilities
increase, the fraudster maximises her worst-case payoff by
reducing the probability of committing fraud. However, by
examining the changes in the payoff matrix, we come to
more interesting results as shown in the following
paragraphs.
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(1,1,0 (1,0,1) 0,1,1) (1,1,1)

0.5 0.2 — —
— - 0.3 —
— — — 0.4

Table 1  Transition probabilities.
(1,0,0) (0,1,0) (0,0,1)
(0,0,0) 0.6 0.4 0.1
(1,0,0) - - -
(0,1,0) - - -
(1,1,0) - — —
Probability of committing fraud
035
0.3
2025
3
E 0.2
s
>
E 0.15
E 0.1
0.05
0 T T T T T T T T T 1
0 0.1 0.2 03 0.4 0.5 0.6 0.7 038 0.9 1
Transition probabilites
Figure 1  Probability of committing fraud.

We carried out another simulation to check whether the
payoffs chosen have influenced the results. In each case,
the inequality (‘payoff of inventory’ > ‘payoff of
receivables’ > ‘payoff of payroll’) was maintained since
that is a basic feature of the model. Altering the inequality
will only alter the order in which the systems are compro-
mised and will have no effect on the mathematical model.
When the payoffs were scaled uniformly there was no
significant change in the final result. We then changed the
payoffs arbitrarily while maintaining the inequality
between the payoffs. In such a case the final result (prob-
ability of committing fraud) changed by about + or — 3%.
That is, the final probability of committing fraud varied
from 67% to 72%.

There are three significant results that emerge from the
sensitivity analysis. Firstly, the stochastic model dominates
the game mode. In mathematical terms, it implies that the
transition matrix determines the probability of committing
fraud. Secondly the structure of the payoff matrix deter-
mines the priorities of the fraudster. Thirdly, the model is
fairly robust and consistent across a range of payoff values.
In other words, more than the payoffs it the ease with
which a fraudster can commit fraud that determines
whether fraud occurs or not. This has implications for
security administrators and auditors. The transition matrix
represents the internal control system and the payoff
matrix, the incentive for committing fraud. The research
indicates that the weakness in the internal control system is
more likely to induce a fraud rather than the potential
reward from committing fraud. Generally the tendency of
an organisation is to place tight controls on high value
transactions and be relatively lax with low value

transactions. This research suggests that this might not be
the correct approach as fraudsters are influenced more by
ease of carrying out the fraud rather than the potential
monetary reward from fraud.

Conclusion

To the best of our knowledge this paper represents one of
the first attempts at using probability vectors to model
state transitions resulting from fraud. The probability
vectors allow the modelling of multiple actions by the
fraudster and intentional state changes caused by fraud are
computed by employing these probability vectors. This
allows us to compute the expected behaviour of a fraudster
in a transaction system and can be used to decide the
timing and frequency of a continuous audit system that
maximises the probability of detecting the fraud.

There are three key limitations of this model. Firstly, the
game model uses a zero-sum game. The benefit of this
approach is that a fraudster is required to know only the
payoffs to herself and need not know the payoff to the
audit system. The payoff to the audit system is simply the
inverse of the payoff to the fraudster. This simplifies the
evaluation of the model considerably. In reality, the game
between the audit system and a putative fraudster is
unlikely to be a zero-sum game. Secondly, we assume that
the payoffs are known and certain. This assumption may
not always be true. While it is relatively easy for a fraudster
to estimate the potential reward for committing fraud, she
may not be in a position to estimate the cost of being
detected. Similarly, for an audit system the cost of fraud
loss may not be easily measurable, as it involves intangible
costs like loss of reputation, loss of brand image, investor
disaffection, etc. Thirdly, this research assumes that the
audit system’s choices are either detect the fraud or fail to
detect the fraud. In many circumstances, it may be more
appropriate to give a probabilistic value that accounts for
the uncertainty inherent in deciding whether a set of
transactions constitutes a fraud or not.

The model presented here can be used in an embedded
module within a continuous audit system. Instead of having
the audit parameters set manually and subjectively, the
embedded module automatically determines the audit
parameter and timing of the continuous audit system.
There are several benefits that accrue from this. Firstly, the
audit system is likely to operate more effectively by
increasing the probability of detecting frauds. Secondly,
the organisation can minimise losses from frauds by
detecting them early. Thirdly, since the audit parameters
are set objectively, they provide greater legal protection in
the event of a fraud being uncovered. For example, if
a fraud occurs and the auditor/manager is being sued for
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professional negligence, then the fact that audit parame-
ters are set objectively would offer greater protection and
provide defence against accusations of bias.

References

Alpcan, T., & Basar, T. (2003). A game theoretic approach to
decision and analysis in network intrusion detection. In.
Proceedings. 42nd IEEE conference on decision and control, Vol.
3 (pp- 2595—2600).

Boritz, E., & Broca, D. S. (1986). Scheduling internal audit activi-
ties. Auditing: A Journal of Practice & Theory, 6(1), 1—19.
Bossel, H. (1994). Modeling and simulation. Wellesley, MA: A K

Peters.

Cavusoglu, H., Mishra, B., & Raghunathan, S. (2005). The value
of intrusion detection systems in information technology secu-
rity architecture. Information Systems Research, 16(1), 28—46.

Cavusoglu, H., Raghunathan, S., & Yue, W. (2008). Decision-theo-
retic and game-theoretic approaches to IT security investment.
Journal of Management Information Systems, 25(2), 281—-304.

Dodin, B., & Elimam, A. A. (1997). Audit scheduling with over-
lapping activities and sequence-dependent setup costs. Euro-
pean Journal of Operational Research, 97(1), 22—33.

Dodin, B., Elimam, A. A., & Rolland, E. (1998). Tabu search in audit
scheduling. European Journal of Operational Research,
106(2—3), 373—392.

Hamilton, S. N., Miller, W. L., & Saydjari, A. O. 0. S. (2002). The
role of game theory in information warfare. In 4th information
survivability workshop, Vancouver, BC, Canada.

Hughes, J. S. (1977). Optimal internal audit timing. The Accounting
Review, 52(1), 56—68.

Liu, P., Zang, W., & Yu, M. (2005). Incentive-based modeling and
inference of attacker intent, objectives, and strategies. ACM
Transactions on Information and System Security, 8(1),
78—118.

Lye, K., & Wing, J. M. (2005). Game strategies in network security.
International Journal of Information Security, 4(1), 71—86.
Morey, R. C., & Dittman, D. A. (1986). Optimal timing of account
audits in internal control. Management Science, 32(3),

272-282.

Owen, G. (1995). Game theory (3rd ed.). New York: Academic
Press.

Rezaee, Z., Sharbatoghlie, A., Elam, R., & McMickle, P. L. (2002).
Continuous auditing: building automated auditing capability.
Auditing, 21(1), 147—164.

Rossi, R., Tarim, A., Hnich, B., Prestwich, S., & Karacaer, S. (2010).
Scheduling internal audit activities: a stochastic combinatorial
optimization problem. Journal of Combinatorial Optimization,
19(3), 325—346.

Sallhammar, K., & Knapskog, S. J. (November 4—5, 2004). Using
game theory. In Stochastic models for quantifying security.
Proceedings of the 9th Nordic Workshop on secure IT-systems,
Espoo, Finland, .

Sallhammar, K., Knapskog, S., & Helvik, B. (2005). Using stochastic
game theory to compute the expected behavior of attackers. In
Presented at the 2005 symposium on applications and the
Internet workshops, 2005. Trento, Italy (pp. 102—105).

Vasarhelyi, M., & Halper, F. (1991). The continuous audit of online
systems. Auditing: A Journal of Practice and Theory, 10(1),
110—125.

Wilson, D., & Ranson, R. (July—August 1971). Internal audit
scheduling—a mathematical model. The Internal Auditor,
42-50.



	Determining expected behaviour of fraudsters for a continuous audit system
	Introduction
	Literature review
	Fraudster's expected behaviour
	Nash Equilibrium of a stochastic game
	Illustration
	Sensitivity analysis
	Conclusion
	References


