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Abstract: The performance of any model-based controller depends on the quality of the model
and hence on the model-plant mismatch (MPM). Model maintenance and correction is necessary
to achieve desired performance. However, a complete re-identification of the model is usually
a costly exercise. Therefore, it would be highly desirable to detect the precise location of the
mismatch and update only those parts. The recently introduced plant-model ratio (PMR) was
found to be effective in detecting and diagnosing MPM from closed loop operation data for
SISO systems. The PMR facilitates a unique identification of the source of mismatch - namely
gain, dynamics and delay mismatches. However, direct application of PMR to MIMO systems
is a challenge due to the presence of interactions between the various input-output channels.
In this paper, the PMR approach is extended to MIMO control systems. It is assumed that
the control loop is driven through broadband excitation in the set-points. The key step in the
proposed methodology involves decoupling interactions using partial cross-spectral density. The
proposed methodology is able to detect the input-output channels with significant mismatch as
well as identify the source of mismatch within these channels. The efficacy of this method is
demonstrated through two simulation case studies.
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1. INTRODUCTION

Process models play an important role in any control
system design. Classical control schemes use models offline
in combination with well-defined tuning guidelines. On the
other hand, model-based controllers (Maciejowski, 2002)
use the model on-line to generate output predictions and
take corrective action accordingly. Therefore, the quality of
the model significantly affects the closed loop performance.
It is widely accepted that uncertainties always exist in the
model. Moreover, the models identified are generally linear
while the processes themselves are non-linear. Therefore,
the models are valid only over limited operating condi-
tions. Over time, several changes can occur in the process,
which may widen the mismatch with the model. This
model-plant mismatch (MPM) can cause degradation in
controller performance, as the predictions are no longer
accurate. It is therefore necessary to periodically detect
MPM and perform re-identification of the model. However,
this exercise is usually costly, particularly for systems with
large number of inputs, as it would require intrusive plant
tests. Therefore, it would be desirable to locate the source
of mismatch and re-identify only the concerned subsys-
tems.

The diagnosis of poor control loop performance that oc-
curs due to model-plant mismatch is an evolving field.
Patwardhan and Shah (2002) presented a benchmark spe-
cific to model predictive controllers, which compares the
achieved and designed objective functions. Badwe et al.

(2010) studied the impact of MPM on the achieved con-
troller performance by analyzing certain key closed loop
sensitivities. The above methods indicate the presence
of MPM but do not attempt to specify which subset of
models need re-identification. In Jiang et al. (2004), the
MPM problem is formulated in the state-space domain.
The specific issue addressed here was to find elements in
the state-space matrices with significant mismatch. Three
MPM detection indices (MDIs) were proposed to solve this
problem. Webber and Gupta (2008) extended the concept
of finding correlations between the model residuals and
the input (Stanfelj et al., 1991) to MIMO systems in order
to detect which element of the transfer function matrix
has significant mismatch. Badwe et al. (2009) proposed a
method which detects channels with significant mismatch
in MIMO systems from routine-operating data, using par-
tial correlations between the model residuals and inputs.
The partial correlation analysis essentially decouples the
n×n MIMO system into n2 SISO systems, and hence the
mismatch in each of these sub-systems can be individually
assessed. Kano et al. (2010) proposed a mismatch score to
select those sub-models of a MIMO MPC system which
contain significant MPM.

A major shortcoming of the above works is that they
do not attempt to identify the type of mismatch (mis-
match in gain, dynamics or delay) within each input-
output channel. This is because their methods intrinsically
represent MPM as additive uncertainty. This representa-
tion is useful for robust control design (Skogestad and

4th International Conference on Advances in Control and
Optimization of Dynamical Systems
February 1-5, 2016. NIT Tiruchirappalli, India

Copyright © 2016 IFAC 266

Detection and diagnosis of model-plant
mismatch in MIMO systems using

plant-model ratio

Suraj Yerramilli ∗ Arun K. Tangirala ∗

∗ Department of Chemical Engineering, IIT Madras, Chennai 600036,
India

Abstract: The performance of any model-based controller depends on the quality of the model
and hence on the model-plant mismatch (MPM). Model maintenance and correction is necessary
to achieve desired performance. However, a complete re-identification of the model is usually
a costly exercise. Therefore, it would be highly desirable to detect the precise location of the
mismatch and update only those parts. The recently introduced plant-model ratio (PMR) was
found to be effective in detecting and diagnosing MPM from closed loop operation data for
SISO systems. The PMR facilitates a unique identification of the source of mismatch - namely
gain, dynamics and delay mismatches. However, direct application of PMR to MIMO systems
is a challenge due to the presence of interactions between the various input-output channels.
In this paper, the PMR approach is extended to MIMO control systems. It is assumed that
the control loop is driven through broadband excitation in the set-points. The key step in the
proposed methodology involves decoupling interactions using partial cross-spectral density. The
proposed methodology is able to detect the input-output channels with significant mismatch as
well as identify the source of mismatch within these channels. The efficacy of this method is
demonstrated through two simulation case studies.

Keywords: model-plant mismatch, MIMO, frequency domain, plant-model ratio, partial
cross-spectral density, model-based control

1. INTRODUCTION

Process models play an important role in any control
system design. Classical control schemes use models offline
in combination with well-defined tuning guidelines. On the
other hand, model-based controllers (Maciejowski, 2002)
use the model on-line to generate output predictions and
take corrective action accordingly. Therefore, the quality of
the model significantly affects the closed loop performance.
It is widely accepted that uncertainties always exist in the
model. Moreover, the models identified are generally linear
while the processes themselves are non-linear. Therefore,
the models are valid only over limited operating condi-
tions. Over time, several changes can occur in the process,
which may widen the mismatch with the model. This
model-plant mismatch (MPM) can cause degradation in
controller performance, as the predictions are no longer
accurate. It is therefore necessary to periodically detect
MPM and perform re-identification of the model. However,
this exercise is usually costly, particularly for systems with
large number of inputs, as it would require intrusive plant
tests. Therefore, it would be desirable to locate the source
of mismatch and re-identify only the concerned subsys-
tems.

The diagnosis of poor control loop performance that oc-
curs due to model-plant mismatch is an evolving field.
Patwardhan and Shah (2002) presented a benchmark spe-
cific to model predictive controllers, which compares the
achieved and designed objective functions. Badwe et al.

(2010) studied the impact of MPM on the achieved con-
troller performance by analyzing certain key closed loop
sensitivities. The above methods indicate the presence
of MPM but do not attempt to specify which subset of
models need re-identification. In Jiang et al. (2004), the
MPM problem is formulated in the state-space domain.
The specific issue addressed here was to find elements in
the state-space matrices with significant mismatch. Three
MPM detection indices (MDIs) were proposed to solve this
problem. Webber and Gupta (2008) extended the concept
of finding correlations between the model residuals and
the input (Stanfelj et al., 1991) to MIMO systems in order
to detect which element of the transfer function matrix
has significant mismatch. Badwe et al. (2009) proposed a
method which detects channels with significant mismatch
in MIMO systems from routine-operating data, using par-
tial correlations between the model residuals and inputs.
The partial correlation analysis essentially decouples the
n×n MIMO system into n2 SISO systems, and hence the
mismatch in each of these sub-systems can be individually
assessed. Kano et al. (2010) proposed a mismatch score to
select those sub-models of a MIMO MPC system which
contain significant MPM.

A major shortcoming of the above works is that they
do not attempt to identify the type of mismatch (mis-
match in gain, dynamics or delay) within each input-
output channel. This is because their methods intrinsically
represent MPM as additive uncertainty. This representa-
tion is useful for robust control design (Skogestad and

4th International Conference on Advances in Control and
Optimization of Dynamical Systems
February 1-5, 2016. NIT Tiruchirappalli, India

Copyright © 2016 IFAC 266

Detection and diagnosis of model-plant
mismatch in MIMO systems using

plant-model ratio

Suraj Yerramilli ∗ Arun K. Tangirala ∗

∗ Department of Chemical Engineering, IIT Madras, Chennai 600036,
India

Abstract: The performance of any model-based controller depends on the quality of the model
and hence on the model-plant mismatch (MPM). Model maintenance and correction is necessary
to achieve desired performance. However, a complete re-identification of the model is usually
a costly exercise. Therefore, it would be highly desirable to detect the precise location of the
mismatch and update only those parts. The recently introduced plant-model ratio (PMR) was
found to be effective in detecting and diagnosing MPM from closed loop operation data for
SISO systems. The PMR facilitates a unique identification of the source of mismatch - namely
gain, dynamics and delay mismatches. However, direct application of PMR to MIMO systems
is a challenge due to the presence of interactions between the various input-output channels.
In this paper, the PMR approach is extended to MIMO control systems. It is assumed that
the control loop is driven through broadband excitation in the set-points. The key step in the
proposed methodology involves decoupling interactions using partial cross-spectral density. The
proposed methodology is able to detect the input-output channels with significant mismatch as
well as identify the source of mismatch within these channels. The efficacy of this method is
demonstrated through two simulation case studies.

Keywords: model-plant mismatch, MIMO, frequency domain, plant-model ratio, partial
cross-spectral density, model-based control

1. INTRODUCTION

Process models play an important role in any control
system design. Classical control schemes use models offline
in combination with well-defined tuning guidelines. On the
other hand, model-based controllers (Maciejowski, 2002)
use the model on-line to generate output predictions and
take corrective action accordingly. Therefore, the quality of
the model significantly affects the closed loop performance.
It is widely accepted that uncertainties always exist in the
model. Moreover, the models identified are generally linear
while the processes themselves are non-linear. Therefore,
the models are valid only over limited operating condi-
tions. Over time, several changes can occur in the process,
which may widen the mismatch with the model. This
model-plant mismatch (MPM) can cause degradation in
controller performance, as the predictions are no longer
accurate. It is therefore necessary to periodically detect
MPM and perform re-identification of the model. However,
this exercise is usually costly, particularly for systems with
large number of inputs, as it would require intrusive plant
tests. Therefore, it would be desirable to locate the source
of mismatch and re-identify only the concerned subsys-
tems.

The diagnosis of poor control loop performance that oc-
curs due to model-plant mismatch is an evolving field.
Patwardhan and Shah (2002) presented a benchmark spe-
cific to model predictive controllers, which compares the
achieved and designed objective functions. Badwe et al.

(2010) studied the impact of MPM on the achieved con-
troller performance by analyzing certain key closed loop
sensitivities. The above methods indicate the presence
of MPM but do not attempt to specify which subset of
models need re-identification. In Jiang et al. (2004), the
MPM problem is formulated in the state-space domain.
The specific issue addressed here was to find elements in
the state-space matrices with significant mismatch. Three
MPM detection indices (MDIs) were proposed to solve this
problem. Webber and Gupta (2008) extended the concept
of finding correlations between the model residuals and
the input (Stanfelj et al., 1991) to MIMO systems in order
to detect which element of the transfer function matrix
has significant mismatch. Badwe et al. (2009) proposed a
method which detects channels with significant mismatch
in MIMO systems from routine-operating data, using par-
tial correlations between the model residuals and inputs.
The partial correlation analysis essentially decouples the
n×n MIMO system into n2 SISO systems, and hence the
mismatch in each of these sub-systems can be individually
assessed. Kano et al. (2010) proposed a mismatch score to
select those sub-models of a MIMO MPC system which
contain significant MPM.

A major shortcoming of the above works is that they
do not attempt to identify the type of mismatch (mis-
match in gain, dynamics or delay) within each input-
output channel. This is because their methods intrinsically
represent MPM as additive uncertainty. This representa-
tion is useful for robust control design (Skogestad and

4th International Conference on Advances in Control and
Optimization of Dynamical Systems
February 1-5, 2016. NIT Tiruchirappalli, India

Copyright © 2016 IFAC 266

Detection and diagnosis of model-plant
mismatch in MIMO systems using

plant-model ratio

Suraj Yerramilli ∗ Arun K. Tangirala ∗

∗ Department of Chemical Engineering, IIT Madras, Chennai 600036,
India

Abstract: The performance of any model-based controller depends on the quality of the model
and hence on the model-plant mismatch (MPM). Model maintenance and correction is necessary
to achieve desired performance. However, a complete re-identification of the model is usually
a costly exercise. Therefore, it would be highly desirable to detect the precise location of the
mismatch and update only those parts. The recently introduced plant-model ratio (PMR) was
found to be effective in detecting and diagnosing MPM from closed loop operation data for
SISO systems. The PMR facilitates a unique identification of the source of mismatch - namely
gain, dynamics and delay mismatches. However, direct application of PMR to MIMO systems
is a challenge due to the presence of interactions between the various input-output channels.
In this paper, the PMR approach is extended to MIMO control systems. It is assumed that
the control loop is driven through broadband excitation in the set-points. The key step in the
proposed methodology involves decoupling interactions using partial cross-spectral density. The
proposed methodology is able to detect the input-output channels with significant mismatch as
well as identify the source of mismatch within these channels. The efficacy of this method is
demonstrated through two simulation case studies.

Keywords: model-plant mismatch, MIMO, frequency domain, plant-model ratio, partial
cross-spectral density, model-based control

1. INTRODUCTION

Process models play an important role in any control
system design. Classical control schemes use models offline
in combination with well-defined tuning guidelines. On the
other hand, model-based controllers (Maciejowski, 2002)
use the model on-line to generate output predictions and
take corrective action accordingly. Therefore, the quality of
the model significantly affects the closed loop performance.
It is widely accepted that uncertainties always exist in the
model. Moreover, the models identified are generally linear
while the processes themselves are non-linear. Therefore,
the models are valid only over limited operating condi-
tions. Over time, several changes can occur in the process,
which may widen the mismatch with the model. This
model-plant mismatch (MPM) can cause degradation in
controller performance, as the predictions are no longer
accurate. It is therefore necessary to periodically detect
MPM and perform re-identification of the model. However,
this exercise is usually costly, particularly for systems with
large number of inputs, as it would require intrusive plant
tests. Therefore, it would be desirable to locate the source
of mismatch and re-identify only the concerned subsys-
tems.

The diagnosis of poor control loop performance that oc-
curs due to model-plant mismatch is an evolving field.
Patwardhan and Shah (2002) presented a benchmark spe-
cific to model predictive controllers, which compares the
achieved and designed objective functions. Badwe et al.

(2010) studied the impact of MPM on the achieved con-
troller performance by analyzing certain key closed loop
sensitivities. The above methods indicate the presence
of MPM but do not attempt to specify which subset of
models need re-identification. In Jiang et al. (2004), the
MPM problem is formulated in the state-space domain.
The specific issue addressed here was to find elements in
the state-space matrices with significant mismatch. Three
MPM detection indices (MDIs) were proposed to solve this
problem. Webber and Gupta (2008) extended the concept
of finding correlations between the model residuals and
the input (Stanfelj et al., 1991) to MIMO systems in order
to detect which element of the transfer function matrix
has significant mismatch. Badwe et al. (2009) proposed a
method which detects channels with significant mismatch
in MIMO systems from routine-operating data, using par-
tial correlations between the model residuals and inputs.
The partial correlation analysis essentially decouples the
n×n MIMO system into n2 SISO systems, and hence the
mismatch in each of these sub-systems can be individually
assessed. Kano et al. (2010) proposed a mismatch score to
select those sub-models of a MIMO MPC system which
contain significant MPM.

A major shortcoming of the above works is that they
do not attempt to identify the type of mismatch (mis-
match in gain, dynamics or delay) within each input-
output channel. This is because their methods intrinsically
represent MPM as additive uncertainty. This representa-
tion is useful for robust control design (Skogestad and

4th International Conference on Advances in Control and
Optimization of Dynamical Systems
February 1-5, 2016. NIT Tiruchirappalli, India

Copyright © 2016 IFAC 266



 Suraj Yerramilli et al. / IFAC-PapersOnLine 49-1 (2016) 266–271 267

Detection and diagnosis of model-plant
mismatch in MIMO systems using

plant-model ratio

Suraj Yerramilli ∗ Arun K. Tangirala ∗

∗ Department of Chemical Engineering, IIT Madras, Chennai 600036,
India

Abstract: The performance of any model-based controller depends on the quality of the model
and hence on the model-plant mismatch (MPM). Model maintenance and correction is necessary
to achieve desired performance. However, a complete re-identification of the model is usually
a costly exercise. Therefore, it would be highly desirable to detect the precise location of the
mismatch and update only those parts. The recently introduced plant-model ratio (PMR) was
found to be effective in detecting and diagnosing MPM from closed loop operation data for
SISO systems. The PMR facilitates a unique identification of the source of mismatch - namely
gain, dynamics and delay mismatches. However, direct application of PMR to MIMO systems
is a challenge due to the presence of interactions between the various input-output channels.
In this paper, the PMR approach is extended to MIMO control systems. It is assumed that
the control loop is driven through broadband excitation in the set-points. The key step in the
proposed methodology involves decoupling interactions using partial cross-spectral density. The
proposed methodology is able to detect the input-output channels with significant mismatch as
well as identify the source of mismatch within these channels. The efficacy of this method is
demonstrated through two simulation case studies.

Keywords: model-plant mismatch, MIMO, frequency domain, plant-model ratio, partial
cross-spectral density, model-based control

1. INTRODUCTION

Process models play an important role in any control
system design. Classical control schemes use models offline
in combination with well-defined tuning guidelines. On the
other hand, model-based controllers (Maciejowski, 2002)
use the model on-line to generate output predictions and
take corrective action accordingly. Therefore, the quality of
the model significantly affects the closed loop performance.
It is widely accepted that uncertainties always exist in the
model. Moreover, the models identified are generally linear
while the processes themselves are non-linear. Therefore,
the models are valid only over limited operating condi-
tions. Over time, several changes can occur in the process,
which may widen the mismatch with the model. This
model-plant mismatch (MPM) can cause degradation in
controller performance, as the predictions are no longer
accurate. It is therefore necessary to periodically detect
MPM and perform re-identification of the model. However,
this exercise is usually costly, particularly for systems with
large number of inputs, as it would require intrusive plant
tests. Therefore, it would be desirable to locate the source
of mismatch and re-identify only the concerned subsys-
tems.

The diagnosis of poor control loop performance that oc-
curs due to model-plant mismatch is an evolving field.
Patwardhan and Shah (2002) presented a benchmark spe-
cific to model predictive controllers, which compares the
achieved and designed objective functions. Badwe et al.

(2010) studied the impact of MPM on the achieved con-
troller performance by analyzing certain key closed loop
sensitivities. The above methods indicate the presence
of MPM but do not attempt to specify which subset of
models need re-identification. In Jiang et al. (2004), the
MPM problem is formulated in the state-space domain.
The specific issue addressed here was to find elements in
the state-space matrices with significant mismatch. Three
MPM detection indices (MDIs) were proposed to solve this
problem. Webber and Gupta (2008) extended the concept
of finding correlations between the model residuals and
the input (Stanfelj et al., 1991) to MIMO systems in order
to detect which element of the transfer function matrix
has significant mismatch. Badwe et al. (2009) proposed a
method which detects channels with significant mismatch
in MIMO systems from routine-operating data, using par-
tial correlations between the model residuals and inputs.
The partial correlation analysis essentially decouples the
n×n MIMO system into n2 SISO systems, and hence the
mismatch in each of these sub-systems can be individually
assessed. Kano et al. (2010) proposed a mismatch score to
select those sub-models of a MIMO MPC system which
contain significant MPM.

A major shortcoming of the above works is that they
do not attempt to identify the type of mismatch (mis-
match in gain, dynamics or delay) within each input-
output channel. This is because their methods intrinsically
represent MPM as additive uncertainty. This representa-
tion is useful for robust control design (Skogestad and

4th International Conference on Advances in Control and
Optimization of Dynamical Systems
February 1-5, 2016. NIT Tiruchirappalli, India

Copyright © 2016 IFAC 266

Detection and diagnosis of model-plant
mismatch in MIMO systems using

plant-model ratio

Suraj Yerramilli ∗ Arun K. Tangirala ∗

∗ Department of Chemical Engineering, IIT Madras, Chennai 600036,
India

Abstract: The performance of any model-based controller depends on the quality of the model
and hence on the model-plant mismatch (MPM). Model maintenance and correction is necessary
to achieve desired performance. However, a complete re-identification of the model is usually
a costly exercise. Therefore, it would be highly desirable to detect the precise location of the
mismatch and update only those parts. The recently introduced plant-model ratio (PMR) was
found to be effective in detecting and diagnosing MPM from closed loop operation data for
SISO systems. The PMR facilitates a unique identification of the source of mismatch - namely
gain, dynamics and delay mismatches. However, direct application of PMR to MIMO systems
is a challenge due to the presence of interactions between the various input-output channels.
In this paper, the PMR approach is extended to MIMO control systems. It is assumed that
the control loop is driven through broadband excitation in the set-points. The key step in the
proposed methodology involves decoupling interactions using partial cross-spectral density. The
proposed methodology is able to detect the input-output channels with significant mismatch as
well as identify the source of mismatch within these channels. The efficacy of this method is
demonstrated through two simulation case studies.

Keywords: model-plant mismatch, MIMO, frequency domain, plant-model ratio, partial
cross-spectral density, model-based control

1. INTRODUCTION

Process models play an important role in any control
system design. Classical control schemes use models offline
in combination with well-defined tuning guidelines. On the
other hand, model-based controllers (Maciejowski, 2002)
use the model on-line to generate output predictions and
take corrective action accordingly. Therefore, the quality of
the model significantly affects the closed loop performance.
It is widely accepted that uncertainties always exist in the
model. Moreover, the models identified are generally linear
while the processes themselves are non-linear. Therefore,
the models are valid only over limited operating condi-
tions. Over time, several changes can occur in the process,
which may widen the mismatch with the model. This
model-plant mismatch (MPM) can cause degradation in
controller performance, as the predictions are no longer
accurate. It is therefore necessary to periodically detect
MPM and perform re-identification of the model. However,
this exercise is usually costly, particularly for systems with
large number of inputs, as it would require intrusive plant
tests. Therefore, it would be desirable to locate the source
of mismatch and re-identify only the concerned subsys-
tems.

The diagnosis of poor control loop performance that oc-
curs due to model-plant mismatch is an evolving field.
Patwardhan and Shah (2002) presented a benchmark spe-
cific to model predictive controllers, which compares the
achieved and designed objective functions. Badwe et al.

(2010) studied the impact of MPM on the achieved con-
troller performance by analyzing certain key closed loop
sensitivities. The above methods indicate the presence
of MPM but do not attempt to specify which subset of
models need re-identification. In Jiang et al. (2004), the
MPM problem is formulated in the state-space domain.
The specific issue addressed here was to find elements in
the state-space matrices with significant mismatch. Three
MPM detection indices (MDIs) were proposed to solve this
problem. Webber and Gupta (2008) extended the concept
of finding correlations between the model residuals and
the input (Stanfelj et al., 1991) to MIMO systems in order
to detect which element of the transfer function matrix
has significant mismatch. Badwe et al. (2009) proposed a
method which detects channels with significant mismatch
in MIMO systems from routine-operating data, using par-
tial correlations between the model residuals and inputs.
The partial correlation analysis essentially decouples the
n×n MIMO system into n2 SISO systems, and hence the
mismatch in each of these sub-systems can be individually
assessed. Kano et al. (2010) proposed a mismatch score to
select those sub-models of a MIMO MPC system which
contain significant MPM.

A major shortcoming of the above works is that they
do not attempt to identify the type of mismatch (mis-
match in gain, dynamics or delay) within each input-
output channel. This is because their methods intrinsically
represent MPM as additive uncertainty. This representa-
tion is useful for robust control design (Skogestad and

4th International Conference on Advances in Control and
Optimization of Dynamical Systems
February 1-5, 2016. NIT Tiruchirappalli, India

Copyright © 2016 IFAC 266

Detection and diagnosis of model-plant
mismatch in MIMO systems using

plant-model ratio

Suraj Yerramilli ∗ Arun K. Tangirala ∗

∗ Department of Chemical Engineering, IIT Madras, Chennai 600036,
India

Abstract: The performance of any model-based controller depends on the quality of the model
and hence on the model-plant mismatch (MPM). Model maintenance and correction is necessary
to achieve desired performance. However, a complete re-identification of the model is usually
a costly exercise. Therefore, it would be highly desirable to detect the precise location of the
mismatch and update only those parts. The recently introduced plant-model ratio (PMR) was
found to be effective in detecting and diagnosing MPM from closed loop operation data for
SISO systems. The PMR facilitates a unique identification of the source of mismatch - namely
gain, dynamics and delay mismatches. However, direct application of PMR to MIMO systems
is a challenge due to the presence of interactions between the various input-output channels.
In this paper, the PMR approach is extended to MIMO control systems. It is assumed that
the control loop is driven through broadband excitation in the set-points. The key step in the
proposed methodology involves decoupling interactions using partial cross-spectral density. The
proposed methodology is able to detect the input-output channels with significant mismatch as
well as identify the source of mismatch within these channels. The efficacy of this method is
demonstrated through two simulation case studies.

Keywords: model-plant mismatch, MIMO, frequency domain, plant-model ratio, partial
cross-spectral density, model-based control

1. INTRODUCTION

Process models play an important role in any control
system design. Classical control schemes use models offline
in combination with well-defined tuning guidelines. On the
other hand, model-based controllers (Maciejowski, 2002)
use the model on-line to generate output predictions and
take corrective action accordingly. Therefore, the quality of
the model significantly affects the closed loop performance.
It is widely accepted that uncertainties always exist in the
model. Moreover, the models identified are generally linear
while the processes themselves are non-linear. Therefore,
the models are valid only over limited operating condi-
tions. Over time, several changes can occur in the process,
which may widen the mismatch with the model. This
model-plant mismatch (MPM) can cause degradation in
controller performance, as the predictions are no longer
accurate. It is therefore necessary to periodically detect
MPM and perform re-identification of the model. However,
this exercise is usually costly, particularly for systems with
large number of inputs, as it would require intrusive plant
tests. Therefore, it would be desirable to locate the source
of mismatch and re-identify only the concerned subsys-
tems.

The diagnosis of poor control loop performance that oc-
curs due to model-plant mismatch is an evolving field.
Patwardhan and Shah (2002) presented a benchmark spe-
cific to model predictive controllers, which compares the
achieved and designed objective functions. Badwe et al.

(2010) studied the impact of MPM on the achieved con-
troller performance by analyzing certain key closed loop
sensitivities. The above methods indicate the presence
of MPM but do not attempt to specify which subset of
models need re-identification. In Jiang et al. (2004), the
MPM problem is formulated in the state-space domain.
The specific issue addressed here was to find elements in
the state-space matrices with significant mismatch. Three
MPM detection indices (MDIs) were proposed to solve this
problem. Webber and Gupta (2008) extended the concept
of finding correlations between the model residuals and
the input (Stanfelj et al., 1991) to MIMO systems in order
to detect which element of the transfer function matrix
has significant mismatch. Badwe et al. (2009) proposed a
method which detects channels with significant mismatch
in MIMO systems from routine-operating data, using par-
tial correlations between the model residuals and inputs.
The partial correlation analysis essentially decouples the
n×n MIMO system into n2 SISO systems, and hence the
mismatch in each of these sub-systems can be individually
assessed. Kano et al. (2010) proposed a mismatch score to
select those sub-models of a MIMO MPC system which
contain significant MPM.

A major shortcoming of the above works is that they
do not attempt to identify the type of mismatch (mis-
match in gain, dynamics or delay) within each input-
output channel. This is because their methods intrinsically
represent MPM as additive uncertainty. This representa-
tion is useful for robust control design (Skogestad and

4th International Conference on Advances in Control and
Optimization of Dynamical Systems
February 1-5, 2016. NIT Tiruchirappalli, India

Copyright © 2016 IFAC 266

Detection and diagnosis of model-plant
mismatch in MIMO systems using

plant-model ratio

Suraj Yerramilli ∗ Arun K. Tangirala ∗

∗ Department of Chemical Engineering, IIT Madras, Chennai 600036,
India

Abstract: The performance of any model-based controller depends on the quality of the model
and hence on the model-plant mismatch (MPM). Model maintenance and correction is necessary
to achieve desired performance. However, a complete re-identification of the model is usually
a costly exercise. Therefore, it would be highly desirable to detect the precise location of the
mismatch and update only those parts. The recently introduced plant-model ratio (PMR) was
found to be effective in detecting and diagnosing MPM from closed loop operation data for
SISO systems. The PMR facilitates a unique identification of the source of mismatch - namely
gain, dynamics and delay mismatches. However, direct application of PMR to MIMO systems
is a challenge due to the presence of interactions between the various input-output channels.
In this paper, the PMR approach is extended to MIMO control systems. It is assumed that
the control loop is driven through broadband excitation in the set-points. The key step in the
proposed methodology involves decoupling interactions using partial cross-spectral density. The
proposed methodology is able to detect the input-output channels with significant mismatch as
well as identify the source of mismatch within these channels. The efficacy of this method is
demonstrated through two simulation case studies.

Keywords: model-plant mismatch, MIMO, frequency domain, plant-model ratio, partial
cross-spectral density, model-based control

1. INTRODUCTION

Process models play an important role in any control
system design. Classical control schemes use models offline
in combination with well-defined tuning guidelines. On the
other hand, model-based controllers (Maciejowski, 2002)
use the model on-line to generate output predictions and
take corrective action accordingly. Therefore, the quality of
the model significantly affects the closed loop performance.
It is widely accepted that uncertainties always exist in the
model. Moreover, the models identified are generally linear
while the processes themselves are non-linear. Therefore,
the models are valid only over limited operating condi-
tions. Over time, several changes can occur in the process,
which may widen the mismatch with the model. This
model-plant mismatch (MPM) can cause degradation in
controller performance, as the predictions are no longer
accurate. It is therefore necessary to periodically detect
MPM and perform re-identification of the model. However,
this exercise is usually costly, particularly for systems with
large number of inputs, as it would require intrusive plant
tests. Therefore, it would be desirable to locate the source
of mismatch and re-identify only the concerned subsys-
tems.

The diagnosis of poor control loop performance that oc-
curs due to model-plant mismatch is an evolving field.
Patwardhan and Shah (2002) presented a benchmark spe-
cific to model predictive controllers, which compares the
achieved and designed objective functions. Badwe et al.

(2010) studied the impact of MPM on the achieved con-
troller performance by analyzing certain key closed loop
sensitivities. The above methods indicate the presence
of MPM but do not attempt to specify which subset of
models need re-identification. In Jiang et al. (2004), the
MPM problem is formulated in the state-space domain.
The specific issue addressed here was to find elements in
the state-space matrices with significant mismatch. Three
MPM detection indices (MDIs) were proposed to solve this
problem. Webber and Gupta (2008) extended the concept
of finding correlations between the model residuals and
the input (Stanfelj et al., 1991) to MIMO systems in order
to detect which element of the transfer function matrix
has significant mismatch. Badwe et al. (2009) proposed a
method which detects channels with significant mismatch
in MIMO systems from routine-operating data, using par-
tial correlations between the model residuals and inputs.
The partial correlation analysis essentially decouples the
n×n MIMO system into n2 SISO systems, and hence the
mismatch in each of these sub-systems can be individually
assessed. Kano et al. (2010) proposed a mismatch score to
select those sub-models of a MIMO MPC system which
contain significant MPM.

A major shortcoming of the above works is that they
do not attempt to identify the type of mismatch (mis-
match in gain, dynamics or delay) within each input-
output channel. This is because their methods intrinsically
represent MPM as additive uncertainty. This representa-
tion is useful for robust control design (Skogestad and
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Postlethwaite, 2005). However its utility in the problem
of interest is limited as the different types of mismatch
manifest in a complex way and it is very difficult to
identify them. On the other hand, quantifying MPM as
multiplicative uncertainty provides a way of identifying
the type of mismatch from the MPM. Keeping this in
mind, Selvanathan and Tangirala (2010) defined a quantity
known as the plant-model ratio (PMR) based on multi-
plicative uncertainty. They have theoretically shown that
there exists a unique mapping between the properties of
the PMR and the source of mismatch - namely gain, time
constant and delay mismatch. They have also proposed
a closed loop estimation procedure for the PMR, which
requires sufficient excitation to be present in the set-point.
For those systems which have no set-point excitation by
default, Kaw et al. (2014) proposed a sinusoidal set-point
design with minimal excitation. They have also proposed
a rigorous assessment procedure based on the theoretical
properties of the PMR. Notwithstanding its benefits, the
PMR methodology is applicable to only SISO systems.
Extension to MIMO systems is not straightforward due
to the presence of closed-loop interactions.

The current work extends the PMR concept to MIMO
systems for diagnosing MPM. The major challenge is to
reliably estimate PMR in the presence of interactions.
When the control loop is driven through broadband ex-
citation in the set-points, the proposed method decouples
these interactions using the partial cross-spectral density.
While the primary focus is on parametric uncertainty, the
proposed method can be potentially extended to the case
of unstructured uncertainties.

The article is organized as follows. We present a review
of PMR and discuss the problem statement in Section 2.
Section 3 reviews the concept of the partial cross-spectral
density and deals with the extension of PMR to MIMO
systems. Section 4 discusses the proposed methodology to
detect and diagnose MPM. The method is demonstrated
through two simulation studies in Section 5. The paper
concludes in Section 6.

2. PRELIMINARIES

2.1 Plant-model ratio

For SISO systems, plant-model ratio (Selvanathan and
Tangirala, 2010) is defined as the ratio of the frequency
response function of the plant to the frequency response
function of the model:

ΠG(ω) =
G(ω)

Ĝ(ω)
= M(ω)ej∆P (ω) (1)

PMR can be interpreted as the transfer function between
the model output (ŷ) and the plant output (y), as shown
in Figure 1.

Fig. 1. Interpretation of PMR as a transfer function

Mismatch in gain affects only the magnitude of the PMR,
while the mismatch in delay affects only the phase. Mis-
match in dynamics (time constants) on the other hand

Fig. 2. Closed loop system - IMC structure

affects both the PMR signatures. In the absence of mis-
match, ΠG(ω) = 1, or, M(ω) = 1 and ∆P (ω) = 0.
The following assessment procedure based on the PMR
signatures can be used to diagnose MPM:

(1) For no mismatch in gain: M(ω)|ω=0 = 1
(2) For no mismatch in dynamics: M(ω) must be flat
(3) For mismatch in delay: ∆P (ω) must be linear

This signature-based method also identifies the sign of the
mismatch: whether the actual parameter is greater or less
than the corresponding model parameter.

2.2 Estimation from closed-loop data

Consider the closed loop internal model control (IMC)
structure shown in Figure 2. The control loop is driven
through set-point excitation. The expressions for the plant
and model outputs respectively are:

Y (ω) = G(ω)U(ω) +D(ω) (2)

Ŷ (ω) = Ĝ(ω)U(ω) (3)

To efficiently estimate PMR, it is necessary to mitigate
the effects of the noise. This is done by first correlating
the plant and model outputs with the set-point (which is
usually uncorrelated with the noise), and then calculating
their ratio in the frequency domain. Therefore,

Π̂G(ω) =
γ̂y,r(ω)

γ̂ŷ,r(ω)
(4)

where γ̂y,r(ω) is the estimated cross-spectral density be-
tween the plant output y and the set-point r.

2.3 Problem statement

For MIMO systems, the plant and model transfer functions
are matrices, whose elements are individual transfer func-
tions of the various input-output channels. The objective
of the work is to identify the channels with significant
mismatch and isolate the mismatch within each of these
channels, when it is known that MPM is the only cause
for performance degradation. The extension of PMR to
the MIMO case is dealt in the next section.

3. EXTENSION TO MIMO SYSTEMS

The definition of PMR for SISO systems is clearly inade-
quate for the MIMO case. We begin by defining PMR for
MIMO systems.
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Fig. 3. Interpretation of PMR for the MIMO case

3.1 Definition

For a n × n MIMO system, the PMR matrix is defined
as the element-wise division quotient between the transfer
function matrices of the process and the model:

ΠG(ω) =




G11(ω)

Ĝ11(ω)

G12(ω)

Ĝ12(ω)
. . .

G1n(ω)

Ĝ1n(ω)

G21(ω)

Ĝ21(ω)

G22(ω)

Ĝ22(ω)
. . .

G2n(ω)

Ĝ2n(ω)
...

...
. . .

...
Gn1(ω)

Ĝn1(ω)

Gn2(ω)

Ĝn2(ω)
. . .

Gnn(ω)

Ĝnn(ω)




(5)

Remark: An alternate definition for PMR is GĜ−1.
While this definition provides a convenient interpretation
of PMR as a transfer function, it is difficult to identify the
type of mismatch from this representation.

Before providing an interpretation for the PMR matrix,
we examine the expression for the plant output yi, and try
to express it in terms of model output ŷi.

Yi(ω) =

n∑
k=1

Gik(ω)Uk(ω) +Di(ω)

=

n∑
k=1

ΠG,ik(ω)Ĝik(ω)Uk(ω) +Di(ω)

=

n∑
k=1

ΠG,ik(ω)Ŷik(ω) +Di(ω) (6)

where ŷik is the kth component of the ith model output
(ŷi), corresponding to the kth input (uk).

Therefore, the ith row of the PMR matrix can be inter-
preted as the transfer function between the n components
(corresponding to the n inputs) of the model output ŷi
and the plant output yi. If the inputs are uncorrelated,
a plausible estimate for the (i, j)th element of the PMR
matrix is given by

Π̂G,ij(ω) =
γ̂yi,ŷij (ω)

γ̂ŷij ,ŷij
(ω)

(7)

However, the inputs have significant correlations due to
the closed-loop interactions. These interactions can be
decoupled through the partial cross-spectral density, which
is reviewed in the next sub-section.

3.2 Partial cross-spectral density

The partial cross-spectral density or the conditioned cross-
spectral density is the frequency domain analogue of the
partial covariance function. Conditioning in the frequency
domain is equivalent to fitting a linear filter between the

variable of interest and the confounding variable(s). The
partial cross-spectral density (Priestley, 1981; Tangirala,
2015) between two variables v1 and v2, conditioned on the
variable set Z, is given by

γv1,v2 |Z(ω) = γv1,v2(ω)− γv1,Z(ω)γ
−1
Z,Z(ω)γZ,v2

(ω) (8)

Equation (8) is equivalent to the following two steps:

(1) Construct residuals from the best linear predictors of
v1 and v2, with the variables in set Z as the predictors.

(2) Compute the cross-spectral density between the resid-
uals to obtain the partial cross-spectral density.

Partial cross-spectral density analysis has certain advan-
tages over its time domain counterpart, which arise from
the advantages of the frequency domain. Analysis can be
performed over a specific band of frequencies. This allows
efficiently handling of the noise spectrum, which has effects
predominantly at high frequencies.

4. PROPOSED METHODOLOGY

In this section, we discuss the estimation of PMR from
operation data, using partial cross-spectral density, and
the mismatch diagnosis method for each channel.

4.1 Estimator for PMR from operating data

From Equation (6), it can be seen that the confound-
ing variables between the plant output yi and the jth

component ŷij are the other (n − 1) components of the
model output. We can therefore use the partial cross-
spectral density to remove the effects of these variables.
The proposed estimate for the (i, j)th element of the PMR
matrix is given by

Π̂G,ij(ω) =
γ̂yi,ŷij |Z(ω)

γ̂ŷij ,ŷij |Z(ω)
(9)

where Z = {ŷik|k �=j}
The partial cross-spectral density decouples the n × n
MIMO system into n2 SISO systems in the frequency
domain. Each of the SISO sub-systems is characterized
by a unique input-output channel. Therefore, the PMR
analysis for SISO system can be applied to each of these
subsystems.

Remark: If the system has measured disturbance vari-
ables (DVs), they should also be included in the set of
the confounding variables to remove their effects on the
channel.

4.2 Set-point excitation

Since the PMR needs to be estimated at multiple frequen-
cies, sufficient broadband excitation must be available at
the set-points. This assumption can be justified, particu-
larly in the case of closed loop MIMO systems operating
under MPC where the set-points are regularly computed
(Seborg et al., 2004) by a real-time optimization (RTO)
layer.

Remark: The partial cross-spectral density will not be
able to isolate interactions when sinusoidal excitation is
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Fig. 3. Interpretation of PMR for the MIMO case

3.1 Definition

For a n × n MIMO system, the PMR matrix is defined
as the element-wise division quotient between the transfer
function matrices of the process and the model:
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Ĝ1n(ω)

G21(ω)
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Remark: An alternate definition for PMR is GĜ−1.
While this definition provides a convenient interpretation
of PMR as a transfer function, it is difficult to identify the
type of mismatch from this representation.

Before providing an interpretation for the PMR matrix,
we examine the expression for the plant output yi, and try
to express it in terms of model output ŷi.

Yi(ω) =

n∑
k=1

Gik(ω)Uk(ω) +Di(ω)

=

n∑
k=1

ΠG,ik(ω)Ĝik(ω)Uk(ω) +Di(ω)

=

n∑
k=1

ΠG,ik(ω)Ŷik(ω) +Di(ω) (6)

where ŷik is the kth component of the ith model output
(ŷi), corresponding to the kth input (uk).

Therefore, the ith row of the PMR matrix can be inter-
preted as the transfer function between the n components
(corresponding to the n inputs) of the model output ŷi
and the plant output yi. If the inputs are uncorrelated,
a plausible estimate for the (i, j)th element of the PMR
matrix is given by

Π̂G,ij(ω) =
γ̂yi,ŷij (ω)

γ̂ŷij ,ŷij
(ω)

(7)

However, the inputs have significant correlations due to
the closed-loop interactions. These interactions can be
decoupled through the partial cross-spectral density, which
is reviewed in the next sub-section.

3.2 Partial cross-spectral density

The partial cross-spectral density or the conditioned cross-
spectral density is the frequency domain analogue of the
partial covariance function. Conditioning in the frequency
domain is equivalent to fitting a linear filter between the

variable of interest and the confounding variable(s). The
partial cross-spectral density (Priestley, 1981; Tangirala,
2015) between two variables v1 and v2, conditioned on the
variable set Z, is given by

γv1,v2 |Z(ω) = γv1,v2(ω)− γv1,Z(ω)γ
−1
Z,Z(ω)γZ,v2

(ω) (8)

Equation (8) is equivalent to the following two steps:

(1) Construct residuals from the best linear predictors of
v1 and v2, with the variables in set Z as the predictors.

(2) Compute the cross-spectral density between the resid-
uals to obtain the partial cross-spectral density.

Partial cross-spectral density analysis has certain advan-
tages over its time domain counterpart, which arise from
the advantages of the frequency domain. Analysis can be
performed over a specific band of frequencies. This allows
efficiently handling of the noise spectrum, which has effects
predominantly at high frequencies.

4. PROPOSED METHODOLOGY

In this section, we discuss the estimation of PMR from
operation data, using partial cross-spectral density, and
the mismatch diagnosis method for each channel.

4.1 Estimator for PMR from operating data

From Equation (6), it can be seen that the confound-
ing variables between the plant output yi and the jth

component ŷij are the other (n − 1) components of the
model output. We can therefore use the partial cross-
spectral density to remove the effects of these variables.
The proposed estimate for the (i, j)th element of the PMR
matrix is given by

Π̂G,ij(ω) =
γ̂yi,ŷij |Z(ω)

γ̂ŷij ,ŷij |Z(ω)
(9)

where Z = {ŷik|k �=j}
The partial cross-spectral density decouples the n × n
MIMO system into n2 SISO systems in the frequency
domain. Each of the SISO sub-systems is characterized
by a unique input-output channel. Therefore, the PMR
analysis for SISO system can be applied to each of these
subsystems.

Remark: If the system has measured disturbance vari-
ables (DVs), they should also be included in the set of
the confounding variables to remove their effects on the
channel.

4.2 Set-point excitation

Since the PMR needs to be estimated at multiple frequen-
cies, sufficient broadband excitation must be available at
the set-points. This assumption can be justified, particu-
larly in the case of closed loop MIMO systems operating
under MPC where the set-points are regularly computed
(Seborg et al., 2004) by a real-time optimization (RTO)
layer.

Remark: The partial cross-spectral density will not be
able to isolate interactions when sinusoidal excitation is
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provided at the set-points. This is because the variables of
interest are highly correlated with the confounding vari-
ables at the excited frequencies, and hence the resulting
residuals will have very low power.

4.3 Diagnosing model-plant mismatch

The diagnostic analysis performed in the SISO case can
now be directly extended to each input-output channel.
The following assessment procedure is used for diagnosing
MPM in the (i, j)th input-output channel:

(1) For no mismatch in gain: Mij(ω)|ω=0 = 1
• If Mij(ω)|ω=0 > 1, then the gain is under-
estimated.

• If Mij(ω)|ω=0 < 1, then the gain is over-
estimated.

(2) For no mismatch in dynamics: Mij(ω) must be flat
• If Mij(ω) initially decreases before leveling off,

then the time constant(s) may be under-estimated.
• If Mij(ω) initially increases before leveling off,
then the time constant(s) may be over-estimated.

(3) For mismatch in delay: ∆Pij(ω) must be linear
• If the slope is negative, then the delay is under-
estimated.

• If the slope is positive, then the delay is over-
estimated.

Remark: In practice, the size of the data is finite. The
data also has random variations due to disturbances.
Therefore, it is imperative to perform the diagnostic tests
statistically, which requires the knowledge of the distri-
bution of the estimates. This requires rigorous statistical
analysis, a subject that is reserved for future work. For the
current work, we use heuristic thresholds as proposed by
Selvanathan and Tangirala (2010), which are reproduced
in Table 1.

Table 1. Emperical Thresholds

Assessment Procedure Heuristic Thresholds

Magnitude
Mismatch

M(ω)|ω=0 = 1
M(ω)|ω=0 ≥ 1.05 or
M(ω)|ω=0 ≤ 0.95

Dynamics
Mismatch

Test of flatness (zero slope)
of M(ω) before leveling off:
M(ω) = ατω + β

|ατ | ≥ 0.001

Delay
Mismatch

Linearity of ∆P (ω):
∆(ω) = αDω

|αD| ≥ 0.9

5. SIMULATION STUDIES AND DISCUSSIONS

The proposed methodology is applied to two simulation
case studies. In case study 1, we apply the methodology
to the Wood-Berry distillation column, while in case study
2, we consider a designed 3x3 MIMO system. All the
results are presented in the form of magnitude and phase
spectra plots of the plant-model ratio. The simulations
are performed under closed loop MPC, using the MPC
toolbox in MATLAB. In each scenario, random type dither
signals are added to the set-points. The outputs are cor-
rupted with white noise disturbances, while maintaining
the signal-to-noise ratio (SNR) at 10. The partial cross-
spectral densities are computed using Equation (9). The
cross-spectral densities are computed using the Welch’s
averaged periodogram method (Tangirala, 2015).

5.1 Case study 1: Wood-Berry distillation column

In this case study, we consider control of the Wood-Berry
distillation column. Wood and Berry (1973) have reported
transfer function models of a pilot-scale methanol/water
column. This system has been used extensively in the lit-
erature for the comparison of multivariate control schemes.
One characteristic of this column is the presence of strong
interactions.

The model for this column is as follows:

Ĝ =




12.8e−s

16.7s+ 1

−18.9e−3s

21s+ 1

6.6e−7s

10.9s+ 1

−19.4e−3s

14.4s+ 1


 (10)

The system is discretized using ZOH with a sampling
time of 1 min. The prediction and control horizons chosen
for MPC are 30 and 10 respectively. We consider two
scenarios, where there are mismatches in gains and time
constants. Note that the control loop is unstable in the
presence of delay mismatches, and hence they are not
considered in this simulation study.

Scenario 1 - Mismatch in all channels: In this scenario,
mismatch is introduced in all gains and time constants of
the model. The extent and direction of this mismatch is
varied to show the applicability of the methodology in the
presence of strong interactions. The extent of mismatch is
shown in Table 2.

Table 2. Mismatch added to the channel parameters

Mismatch/Channel 1-1 1-2 2-1 2-2

∆K/Km 40% -22% 30% -15%
∆τ/τm 20% 30% -25% -15%

The magnitude and phase spectra plots are shown in
Figures 4 and 5 respectively. The phase spectra plot
correctly shows no delay mismatch.

Diagnosis of gain mismatches: The estimate of M̂(0)
correct to 3 significant digits, for the four channels is as
follows:

M̂(0) =

[
1.39 0.781

1.29 0.842

]
(11)

Clearly, the direction of the mismatch is correctly identi-
fied. These estimates also provide a rough indication about
the extent of mismatch in the respective directions.

Diagnosis of time constant mismatches: In channels 1-
1 and 1-2, which have under-estimated time constants,
the PMR magnitude decreases initially until leveling off.
In channels 2-1 and 2-2, which have over-estimated time
constant, the PMR magnitude increases initially until
leveling off. Therefore the direction of the mismatch is
correctly identified.

Scenario 2: No mismatch in channel 2-2 This scenario
is similar to the previous one, except that there is no
mismatch in channel 2-2. The extent and direction of
mismatch in the other channels is the same as in the
previous case (Table 2). This scenario is designed to
show that the channels with significant mismatch do not
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Fig. 4. Case study 1, Scenario 1: Estimated PMR magnitude spectra
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Fig. 5. Case study 1, Scenario 1: Estimated PMR phase spectra
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Fig. 6. Case study 1, Scenario 2: Estimated PMR magnitude spectra
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Fig. 7. Case study 1, Scenario 2: Estimated PMR phase spectra

confound the diagnosis of mismatch in the other channels.
The magnitude and phase spectra plots are shown in
Figures 6 and 7 respectively.

The diagnosis of mismatch in the other three channels is
similar to that in the previous scenario. The only difference
is in channel 2-2, where the lack of mismatch in any
parameter is correctly identified.

5.2 Case study 2

In this case study, we consider a MIMO system, whose
model is as follows:
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Fig. 8. Case study 2, Scenario 1: Estimated PMR magnitude spectra
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The system is discretized using ZOH with a sampling time
of 1 min. The prediction and control horizons chosen for
MPC are 20 and 5 respectively. Three scenarios are con-
sidered - one with no mismatch and two with mismatches
in some parameters.

Scenario 1 - Mismatch in channels 1-1, 3-1, and 3-2:
In this case, mismatch is added to channels 1-1, 3-1, and
3-2 in all the three parameters. The extent of mismatch in
each of these channels is shown in Table 3.

Table 3. Mismatch added to the channel parameters

Channel ∆K
Km

∆τ
τm

∆D
Dm

1-1 40% -19% -20%
3-1 -25% 40% 33.3%
3-2 20% -20% 50%

The magnitude and phase spectra plots of the PMR are
shown in Figures 8 and 9 respectively. A quick visual
inspection of the plots shows mismatch in channels 1-1,
3-1 and 3-2 alone. Thus, the absence of mismatch in the
other channels is correctly identified.

Diagnosis of gain mismatch: The estimates of M̂(0) for
channels 1-1, 3-1 and 3-2 are 1.41, 0.788 and 1.21 respec-
tively, correct to 3 significant digits. The second estimate
indicates a over-estimated gain in channel 3-1, while the
other two estimates indicate under-estimated gains in their
respective channels.

Diagnosis of dynamics’ mismatch: The PMR magnitude
in channels 1-1 and 3-2 increase initially before leveling off.
This indicates that the time constants in these channels
are over-estimated. The PMR magnitude in channel 3-1
decreases initially before leveling off, thereby indicating
an under-estimated time constant in this channel.

Diagnosis of delay mismatch: The PMR phase plots
of channel 1-1 shows an upward slope, indicating an
over-estimated delay. The PMR phase plots of the other
two channels show a downward slope, thereby indicating
under-estimated delays.

Scenario 2 - Mismatch in all channels: Here, mismatch
is introduced in such a way that all the model parameters
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Fig. 4. Case study 1, Scenario 1: Estimated PMR magnitude spectra
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Fig. 5. Case study 1, Scenario 1: Estimated PMR phase spectra
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Fig. 6. Case study 1, Scenario 2: Estimated PMR magnitude spectra

0 0.2 0.4 0.6 0.8

∆
P

1
1

-10

0

10

0 0.2 0.4 0.6 0.8

∆
P

1
2

-10

0

10

Frequency (rad/min)

0 0.2 0.4 0.6 0.8

∆
P

2
1

-10

0

10

Frequency (rad/min)

0 0.2 0.4 0.6 0.8

∆
P

2
2

-5

0

5

 PMR Phase Spectra

Fig. 7. Case study 1, Scenario 2: Estimated PMR phase spectra

confound the diagnosis of mismatch in the other channels.
The magnitude and phase spectra plots are shown in
Figures 6 and 7 respectively.

The diagnosis of mismatch in the other three channels is
similar to that in the previous scenario. The only difference
is in channel 2-2, where the lack of mismatch in any
parameter is correctly identified.

5.2 Case study 2

In this case study, we consider a MIMO system, whose
model is as follows:
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Fig. 8. Case study 2, Scenario 1: Estimated PMR magnitude spectra
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(12)

The system is discretized using ZOH with a sampling time
of 1 min. The prediction and control horizons chosen for
MPC are 20 and 5 respectively. Three scenarios are con-
sidered - one with no mismatch and two with mismatches
in some parameters.

Scenario 1 - Mismatch in channels 1-1, 3-1, and 3-2:
In this case, mismatch is added to channels 1-1, 3-1, and
3-2 in all the three parameters. The extent of mismatch in
each of these channels is shown in Table 3.

Table 3. Mismatch added to the channel parameters

Channel ∆K
Km

∆τ
τm

∆D
Dm

1-1 40% -19% -20%
3-1 -25% 40% 33.3%
3-2 20% -20% 50%

The magnitude and phase spectra plots of the PMR are
shown in Figures 8 and 9 respectively. A quick visual
inspection of the plots shows mismatch in channels 1-1,
3-1 and 3-2 alone. Thus, the absence of mismatch in the
other channels is correctly identified.

Diagnosis of gain mismatch: The estimates of M̂(0) for
channels 1-1, 3-1 and 3-2 are 1.41, 0.788 and 1.21 respec-
tively, correct to 3 significant digits. The second estimate
indicates a over-estimated gain in channel 3-1, while the
other two estimates indicate under-estimated gains in their
respective channels.

Diagnosis of dynamics’ mismatch: The PMR magnitude
in channels 1-1 and 3-2 increase initially before leveling off.
This indicates that the time constants in these channels
are over-estimated. The PMR magnitude in channel 3-1
decreases initially before leveling off, thereby indicating
an under-estimated time constant in this channel.

Diagnosis of delay mismatch: The PMR phase plots
of channel 1-1 shows an upward slope, indicating an
over-estimated delay. The PMR phase plots of the other
two channels show a downward slope, thereby indicating
under-estimated delays.

Scenario 2 - Mismatch in all channels: Here, mismatch
is introduced in such a way that all the model parameters
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Fig. 9. Case Study 2, Scenario 1: Estimated PMR phase spectra
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Fig. 10. Case study 2, Scenario 2: Estimated PMR magnitude
spectra
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Fig. 11. Case study 2, Scenario 2: Estimated PMR phase spectra

are under-estimated. The actual gains and time constants
are larger by 20% and 30% respectively, while the delays
are larger by 1 sample.

The magnitude and the phase spectra plots are shown
in Figures 10 and 11 respectively. The estimates of M̂(0)
for all channels are roughly equal to 1.21, correct to 3
significant digits, thereby indicating that all the gains are
under-estimated. The magnitude initially decreases before
leveling off, thereby indicating under-estimated time con-
stants. The downward slope in the phase plot indicates
that all the delays are under-estimated.

6. CONCLUSIONS

In this work, we have extended the PMR methodology for
detection and diagnosis of MPM to MIMO systems. The
proposed method not only detects the channels with signif-
icant mismatch but also identifies the source of mismatch
within the respective channels. The efficacy of this method
is demonstrated through two simulation case studies. The
theoretical analysis of the statistical properties of the es-
timates requires a rigorous treatment, a subject that is
reserved for future study.
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