
ETRI Journal, Volume 25, Number 5, October 2003  M.J. Dehghani et al.   345 

In this paper, we propose a method for designing a class 

of M-channel, causal, stable, perfect reconstruction, infinite 

impulse response (IIR), and parallel uniform discrete 

Fourier transform (DFT) filter banks. It is based on a 

previously proposed structure by Martinez et al. [1] for IIR 

digital filter design for sampling rate reduction. The 

proposed filter bank has a modular structure and is 

therefore very well suited for VLSI implementation. 

Moreover, the current structure is more efficient in terms of 

computational complexity than the most general IIR DFT 

filter bank, and this results in a reduced computational 

complexity by more than 50% in both the critically 

sampled and oversampled cases. In the polyphase 

oversampled DFT filter bank case, we get flexible stop-band 

attenuation, which is also taken care of in the proposed 

algorithm. 
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I. Introduction 

In recent years, there has been an increasing trend towards 

the use of multirate digital signal processing. A filter bank (FB) 

is a signal processing device that produces M signals from a 

single signal by means of M parallel or polyphase filters. There 

are several designs for perfect reconstruction (PR) digital filter 

banks, such as parallel uniform bandwidth decomposition [the 

same as discrete Fourier transform (DFT) FBs], complex-

modulated FBs, and cosine-modulated FBs [2]. Although 

infinite impulse response (IIR) filter banks can potentially offer 

lower system delays and higher stopband attenuation than their 

finite impulse response (FIR) counterparts, their design is much 

more involved, and generally they have been restricted only to 

the two-channel case [3]-[5]. In fact, the difficulty in designing 

such filter banks is to satisfy the complicated PR condition and 

the causality-stability requirements of the filters. Some M-

channel FBs have been presented [6], [7]. In [6], the design 

method includes a complicated stabilization procedure of the 

synthesis filters. Reference [7] proposed the design of a stable, 

casual, PR, IIR DFT FB, which is based on the geometrical 

progression expansion of the denominator of the prototype 

filter and is outlined in section III. 

In this paper, we propose a design procedure and the 

structure for a class of PR IIR FBs, using stable and causal 

polyphase components. The proposed structure has the same 

system function denominator for all the polyphase components 

of its prototype filter. Hence, the PR condition is considerably 

simplified and it is simpler to satisfy the PR condition and the 

causality-stability requirements. The proposed work deals with 

the design of analysis and synthesis filters using a polyphase 

approach. The main advantages of the proposed method are 

summarized below: 
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• These filter banks satisfy both the PR and causality-

stability conditions. 

• The technique can be used to design filter banks for an 

arbitrary number of channels M, which is a multiple of the 

decimator/expander factor D. 

• The analysis and synthesis filters are obtained easily 

from the prototype filter and can be efficiently implemented, 

since they have modular structures and are highly parallel. 

Therefore, they are good candidates for VLSI 

implementation and suitable for high-bandwidth, complex 

parallel signal processing. 

Section II of the paper details considerations on stability, 

causality, and PR conditions. Section III gives a general design 

method with arbitrary frequency specifications for the 

prototype filter. By allowing the number of polyphase 

components of the prototype filter to be either a multiple of the 

decimator/expander factor D or equal to the decimator/ 

expander factor D itself, we have two different structures, 

namely, the oversampled and the critically sampled filter bank 

structures. In the same section, we investigate the numerical 

stability of the proposed technique and also present the 

realizations of the parallel structures for the critically sampled 

and oversampled DFT FB. Section IV gives several examples, 

which are helpful in understanding the proposed method. 

Finally, section V summarizes the results. 

II. Uniform DFT Filter Bank Analysis and PR 

Conditions 

One important class of filter banks is the uniform filter bank, 

where the input signal is split into equal-width subbands (Fig. 

1). In the uniform DFT FB case, the analysis )(zH i  and the 

synthesis filters )(zGi  are all frequency-translated versions 

of a prototype lowpass filter [2]. Thus, 
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Due to non-ideal filters, distortions such as aliasing, imaging, 

amplitude, and phase are introduced. However, with the proper 

choice of the prototype filter, the analysis-synthesis system can 

be free from all these distortions. Such a system satisfies the 

relation )( )( 0nnxcny −=  for any input )(nx , and it is said 

to be a PR system. Using the polyphase decomposition, we can 

express the analysis and the synthesis filter banks of Fig. 1 [2] 

as: 
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Fig. 1. M-channel maximally decimated filter bank. 
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where )( M
il zE  and )( M

il zR  are the polyphase elements of 

)(zH i  and )(zGi , type I and type II, respectively. It is 

shown in [2] that the system is PR, in general, if and only if 
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where [ ])()( zEz il=E  and )]([)( zRz il=R are the 

polyphase matrices, rI  is an rr ×  identity matrix, 

10 −≤≤ Mr , 0m  is an integer and c is a nonzero constant. 

Under this constraint, the reconstructed signal is 

),( )( 0nnxcny −= where .100 −++= MrMmn  In the 

uniform DFT FB case, the polyphase matrices have, as derived 

in [2], [7], the following expressions: 
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where W is the MM ×  DFT matrix with (i, l) elements given 

by  Me Milj //2π−  (W* is the complex conjugate of W). 

Here, )(zEk  and )(zRk  are the polyphase components of 

the analysis and the synthesis prototype filters, respectively, and 

consequently the prototype filters have the following 

expressions: 
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For simplicity, we consider the PR condition with 0=r , 

00 =m  and .1=c  By substituting (4) in (3), and noting that 

MI =∗
WW , we get [7]: 
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Hence, a sufficient condition for PR is )(/1)( zRzE kk = , for 

1 ..., 1, ,0 −= Mk . If the prototype analysis filter )(0 zH is 

causal and stable, then the components )(zEk  are also causal 

and stable [2]. In the synthesis part, the resulting components 

)(zRk  are also causal, but their stability requires that )(zEk  

be a minimum phase for all k , i.e., all the zeros of )(zEk  are 

strictly inside the unit circle. Therefore, a straightforward 

method to design a PR DFT FB is the design of a causal and 

stable prototype filter (FIR or IIR) )(0 zH . In the case of IIR, 

the only condition for this FB to be stable is that all )(zEk s 

must be minimum phase. The main reason for the difficulty in 

designing a stable PR IIR FB is that there is no simple 

relationship between the prototype filter and the zeros of its 

polyphase components. In [7], a design method for an IIR DFT 

FB having a prototype filter with minimum phase polyphase 

components was investigated and is summarized in the next 

section. Figure 2(a) shows the structure of the DFT FB, and we 

note that the outputs of the inverse discrete Fourier transform 

(IDFT) operation of Fig. 2(a) are identical to the signals in the 

corresponding arm of Fig. 1 (after the decimator). 

In the above discussion, the filter bank has a maximally 

decimated or critically sampled structure. Critically sampled 

refers to the fact that the number of fullband samples per 

second equals the total number of subband samples per second. 

In this case, one must carefully control the aliasing in the 

subband signals through a proper design of the analysis and 

synthesis filters. We next generalize the FB structure to the 

oversampled polyphase case, where the decimator/expander 

factor D is an integer sub-multiple of the number of channels 

M, i.e., IDM = . We refer to I as the oversampling ratio, since 

it determines the amount of oversampling from the theoretical 

minimum rate (if I = 1, the FB is critically sampled and if I = 2, 

it is oversampled by a factor of two [8]). The general structure 

shown in Fig.1 becomes an M-channel oversampled FB if we 

use decimator/expander D instead of M in each channel. Figure 

2(b) shows an oversampled DFT FB with the polyphase 

components )(ˆ zEk  and )(ˆ zRk  in the place of )(zEk  and 

)(zRk . In Appendix A, we have derived a z-domain 

formulation of the oversampled polyphase decomposition. 

Based on Appendix A, the system functions )(0 zH  and 

)(0 zG  of the prototype analysis and synthesis filters in terms 

of )(ˆ zEk  and )(ˆ zRk , respectively, are: 
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Fig. 2. M-channel DFT filter bank: (a) critically sampled case,
(b) oversampled case. 
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In [8], a time domain approach was used to obtain an 

oversampled polyphase filter. As we show in the next section, 

the condition 1)(ˆ)(ˆ =zRzE kk  is sufficient to guarantee PR. 

The other analysis filters )(zH i and the synthesis filters 

)(zGi  are related to the prototype filters as in (1a) and (1b), 

respectively. 

III. M-Channel PR IIR Filter Bank 

The proposed filter bank is based on a structure presented in 
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[1] for IIR filters with Dz in the denominator of the system 

function for some integer D > 1, whose zeros are located on the 

unit circle, and whose frequency responses have equiripple 

behavior in the passband and stopband. These system functions 

are of the form: 
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1

)(

1

1

0
0

∑

∑

=

−

−

=

−

+
=

N

l

Dl
l

M

k

k
k

zb

za

zH             (8) 

We observe that such a )(0 zH  is suitable for the prototype 

lowpass filter system function of (7a). From (7a) and (8), we 

define 
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All the polyphase elements )(ˆ zEk  are thus scaled versions of 

the same all-pole filter as shown in (9). Hence, the 

corresponding synthesis polyphase elements )(ˆ zRk  will be 

FIR filters with 
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Since all the poles of )(0 zH  are inside the unit circle 

(causal and stable), the polyphase elements )(ˆ zEk  are also 

causal and stable. Therefore, based on the recursive filter 

design method given in [1], we can design an IIR DFT FB with 

stable and causal polyphase elements by designing a stable, 

causal filter consistent with the transfer function (8) as the 

prototype analysis filter )(0 zH  satisfying a given set of 

specifications. 

We now prove the PR property for the filter bank with 

analysis and synthesis filters as in (7a) and (7b). The signal 

)(zX k  in the k-th branch shown in Fig. 2(b) is related to the 

input signal )(zX  as 
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The signal )(zVm  in the m-th branch, after the IDFT and 

DFT shown in Fig. 2(b), is given by 
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After up sampling by D, the output signal of )(ˆ D
m zR is 
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The final output is 
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We now apply the PR condition 1)(ˆ)(ˆ =zRzE mm , for 

1 ..., ,1 ,0 −= Mm . Changing the summation order, we get 
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nonzero for 1- ., . . ,1 Dl = , unless M is a multiple of D. When 

DIM = , this expression is equal to zero for 0≠l  and M 

for l = 0. Hence, the resulting output is 

).( )()( )1()1( zXzIzXz
D

M
zY MM −−−− ==      (17) 

This means )1( )( +−= MnxIny  and hence the overall 

structure of Fig. 2(b) with our expressions in (9) and (10) is a 

valid polyphase representation of a perfect reconstruction IIR 

DFT FB in the oversampled polyphase case, provided that   

M = I D. 

The above reasoning is valid for any oversampled FB as long 

as IDM =  and .1)(ˆ)(ˆ =zRzE kk  In our formulation, we not 

only satisfy the above requirements but also guarantee the 

stability of both )(ˆ zEk  and ),(ˆ zRk for 1 ..., ,1 ,0 −= Mk . 

Since the critically sampled FB is a special case of the 

oversampled FB, i.e., DM = , our techniques also can be 

applied to the critically sampled case. 
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In [7], a design for a stable, casual, PR, IIR DFT FB was 

proposed, based on the transformation of a prototype filter into 

a filter with only powers of Dz in the system function 

denominator. This is done by making the substitution 

 
D
i

D

D
i

D
i

D

i pz

pzpz

pz −
+⋅⋅⋅++

=
−

−−− 121
1

        (18) 

for all the poles ip  of an arbitrary causal and stable 

lowpass filter. If the above substitution is applied to an elliptic 

filter of order N, both the numerator and denominator of the 

system function will be of degree ND (with the pole-zero 

cancellation), the denominator having the form in (8). When 

this filter is used as the prototype filter of a PR FB, the number 

of channels is equal to the product of the integers N and D, with 

decimator factor D, and the PR is achieved. Given the number 

of channels, this approach results in a reduced flexibility in the 

choice of N. Further, to obtain a critically sampled FB, 

Klouche-Djedid [7] employs a prototype denominator of the 

form N
N zb −+1  (non-elliptic), which imposes constraints on 

the prototype poles. In comparison, we do not impose any 

condition between the number of channels M and the integer N 

of (8). Further, we give a common framework for both 

critically sampled and oversampled FBs. 

IV. Structures and Numerical Stability 

The polyphase structure of Fig. 2(a) shows a FB structure in 

the critically sampled case. Hence, we get the k-th polyphase 

branch as depicted in Fig. 3. The decimators can be moved to 

the left of )(zEak . The resulting realization is shown in Fig. 

4(a) for the critically sampled case. Using the noble identities 

for polyphase filters, the decimators and the expanders are 

brought after the all-pole filters  )( MzE and before the all-zero 

filters 1)( −MzE . Hence, a second realization is obtained as 

shown in Fig. 4(b). 

In [8], a DFT FB in the oversampled polyphase structure for 

IDM =  has been described. In the same structure, it could be 

recognized that the decimator D is given by the interconnection 

of decimator M and expander I. In Appendix B, we have 

formulated a z-domain approach of the combination mentioned. 

Hence, we get the k-th polyphase branch as depicted in Fig. 

5(a). Using the noble identities and rearranging, Fig. 5(a) can 

be redrawn as in Figs. 5(b), 5(c) and 5(d), respectively. The 

resulting FB structures in the polyphase oversampled case are 

shown in Fig. 6 (a). Using the noble identities, the decimators 

and the expanders are brought after the all-pole filters 

 )(ˆ DzE and before the all-zero filters 1)(ˆ −DzE . Hence, a 

second structure is obtained as shown in Fig. 6(b). 

 

Fig. 3. The k-th polyphase branch and its equivalent. 
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Fig. 4. Realizations of the proposed stable, causal, IIR DFT FB

in the critically sampled case: (a) first realization, (b) 
second realization. 
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Fig. 5. The equivalent k-th polyphase branch in the 

oversampled case. 
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The structure shown in Figs. 5(b) and 6(b) are equivalent to 

placing an IIR filter with system function )( MzE  and 

)(ˆ DzE , respectively, in front of a purely FIR DFT filter bank 

with taps ka . Consequently, the filter with the system 

functions 1)( −MzE  and 1)(ˆ −DzE  required after the FIR 

DFT synthesis bank is shown in Figs. 4(b) and 6(b), 

respectively. An important property of the filter banks, with the 

prototype filter as given in (8), the polyphase components in (9) 
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Fig. 6. Structure of the proposed stable, causal, IIR DFT FB in the oversampled case: (a) first realization, (b) second realization.
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and (10), and the realizations shown in Figs. 4 and 6, is that 

they are very simple and modular. 

The computational complexity is determined by the number 

of multiplications per unit time required to implement the IIR 

DFT FB. In the realization shown in Fig. 6 (a), if we use the 

IFFT algorithm, the analysis filters need )(log
2

2 M
M

 

complex multiplications for the IDFT. Additionally, for the 

given polyphase components of order N, the multiplication of 

complex input values with real coefficients requires 

)2(2 +NM  real multiplications for the polyphase elements. 

The statement about the complexity in the analysis filter part is 

also valid for the synthesis part. Therefore, for the whole FB, 

the number of real multiplications per unit time is 

DNMMM /))2(4)(log3( 2 ++ . The factor D appears in the 

denominator, due to the reduced rate when compared to the 

input rate. We have considered three real multiplications for the 

multiplication of two complex numbers. In the second 

realization given in Fig. 6(b), the number of real multiplications 

amounts to DNMMM /))1(4)(log3( 2 +++ . We obtain the 

same expressions for the number of multiplications in the 

critically sampled structure shown in Figs. 4(a) and 4(b), if we 

substitute D by M in the above equations. The computational 

complexity ratio of the structures shown in Figs. 4(b), 6(b) and 

4(a), 6(a) for different M and N are summarized in Table 1. The 

computational complexity ratio (CCR) is defined as 

.
)2(4)(log3

)1(4)(log3

2

2

++
+++

=
NMMM

NMMM
CCR         (19) 

The results show that the structures proposed in Figs. 4(b) 

and 6(b) have a reduced amount of complexity, by more than 

50% overall, for the critically sampled and oversampled cases. 

This is due to the same polyphase components in the proposed 

approach when compared to the general cases shown in Figs. 

2(a) and 2(b). In comparison to the conventional FIR [9], the 

IIR DFT FBs proposed in this paper have a reduced order for 
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the same number of channels. The overall cost is higher and 

FB delays are much longer for real-time processing, when 

compared to the delay in the proposed FB. 

 

Table 1. Computational complexity ratio of proposed IIR DFT 
FB structure. 

M 

N 
8 16 32 64 256 1024 

4 46.9% 47.9% 50% 53.1% 58.5% 63% 

5 43.2% 43.7% 45.9% 48.6% 54% 58.7%

 

 

In addition to PR, numerical stability is very important in 

IIR FBs. It can be measured with the help of the Weyl-

Heisenberg frame (WHF) theory [10], [11]. The frame 

bounds A and B in the analysis DFT FB have been derived as 

the minimum and maximum eigenvalues of the positive 

definite matrix )()( ωω∗ jj ee EE  in [7], [10]. As can be seen 

from (4), these eigenvalues are equal to the polyphase 

components of the prototype filter and hence, the frame 

bounds are given by: 

 
2

,
min )(min jω

kπω0k
eE

≤≤
=λ  and 

.)(max
2

,
max

jω
kπω0k

eE
≤≤

=λ             (20) 

The frame ratio, which is defined as ,/ minmax λλ can be used 

for the description of numerical properties. The frame ratio is 

bounded by ,/1 minmax ∞<λλ<  where the lower bound has 

the best numerical behavior. Generally, for good numerical 

behavior, we should have a tight frame ratio, i.e., all 

|)(| ωj
k eE  are constants or all )(zEk  are allpass filters. 

Stable, causal allpass filters are non-minimum phase, which are 

not permissible in our case. However, we take into account the 

WHF approach to numerical properties when designing our 

PR FBs and try to maintain a tight frame ratio for requiring a 

smaller dynamic range. 

As a check, an important condition is that each of the 

numerator coefficients ka  of )(0 zH is different from zero. If 

any ka  is zero, the PR condition is not satisfied, since some 

synthesis filters )(zRk  would have infinite coefficients [see 

(10)]. The case of one of the ka s being zero corresponds to an 

infinite frame ratio. Further, since our design method places all 

zeros of )(0 zH on the unit circle, the numerator coefficients 

ka  will be symmetric, i.e, kMk aa −−= 1 . 

V. Design Examples 

In [1], an algorithm for the design of equiripple digital filters 

is presented. This algorithm finds the equiripple solution by 

working iteratively with the magnitude of the numerator and 

the denominator. It works as follows: Given a passband ripple 

( pδ ), normalized passband edge frequency ( pf ), normalized 

stopband edge frequency ( sf ), M, N, and D, the algorithm 

chooses the value of stopband attenuation ( sδ ), such that the 

resulting filter has equiripple behavior in both the stopband and 

passband. Refs. [1] and [12] show that this algorithm is 

optimized in the Chebyshev sense. 

According to [1], generally, we should choose an M and N as 

a starting point and design a filter with these values. If the 

desired pδ  is not attainable with this M and N, it is necessary 

to increase N. Once the desired pδ  is obtained, we can check 

if the desired stopband attenuation is achieved. If not, then by 

increasing M, the value of sδ is reduced. Increasing M can 

make pδ  unattainable, making it necessary to increase N also. 

In our case, we are not allowed to change the number of 

channels M, so we have to increase ND. The number of poles 

of )(0 zH  is ND , where only a small number of poles shapes 

the passband [1]. The rest of the poles increase the attenuation 

in the stopband. Their effect has to be overcome by the zeros 

that are restricted to being on the unit circle. Since the number 

of zeros is also restricted to M-1, the number of poles ND must 

be changed so that the desired passband ripple and stopband 

attenuation is attained. Since increasing D causes pole 

repetition in the prototype filter, it is not effective in increasing 

the attenuation in the stopband. Hence, we have to increase N 

and choose proper values of D for the desired attenuation in the 

stopband. 

Example 1. Let us consider a four-channel PR IIR DFT FB 

with normalized stopband and passband edge frequencies 

1.0=pf  and 15.0=sf , respectively, and a passband ripple 

of dB 025.0=δ p  and stopband attenuation of =δ s 35 dB. 

We have applied the algorithm for designing the prototype 

filter given in (8). With the above considerations, we choose M 
= 4, N = 5 and D = 2 for the above-mentioned specifications. 

Figure 7 shows the frequency response of the analysis filters. 

The passband ripple is about 0.025 dB and the stopband 

attenuation of the analysis filter is about 38 dB. 

The poles of )(ˆ zE and the coefficients ka  are shown in 

Table 2 when the frame ratio is about 46.4 dB. As can be seen 

from Table 2, since the zeros of the prototype low pass filter are 

located on the unit circle, the coefficients of ka are symmetric 

as expected, i.e., kMk aa −−= 1 . As [7] showed, the typical 

values obtained for the frame ratio are around 50–60 dB and 

could be practical for good numerical behavior of the FB. 

According to (9) and (20), the frame ratio directly depends on 

the coefficients ka as well as the poles of the polyphase 

components of FB. There is a trade-off between the frequency 
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Fig. 7. Frequency response of analysis filters of a 4-channel 
DFT filter bank.  

 

selectivity of the FB and the frame ratio. By definition, a DFT 

FB with good frequency selectivity will always have a high 

frame ratio. 

Example 2. Here we design an 8-channel DFT FB with 

normalized stopband and passband edge frequencies of pf = 

0.0313 and sf = 0.0938, respectively, a passband ripple of 

dB 05.0=δ p and stopband attenuation of =δ s  40 dB. Since 

in the prototype analysis filter the number of zeros is fixed at 

M-1, we have to increase N and the decimator factor D to get 

minimum stopband attenuation. We choose N = 2 and D = 2 as 

a starting point. For these values, the required stopband 

attenuation has not been obtained; therefore, it is necessary to 

increase either N or D. For N = 3 and D = 2, the stopband 

attenuation obtained is about 40 dB and for N = 4 and D = 2, it 

is about 55 dB. We observe that for obtaining the desired 

stopband attenuation, there is no point in increasing D because 

this merely results in repeated poles. For instance, N = 2 and D 

= 4 gives a stopband attenuation of only 20 dB. Figure 8 shows 

the frequency response of all the eight analysis filters designed 

by the proposed method, for M = 8, N = 3 and D = 2, for which 

the passband ripple is dB 05.0 and stopband attenuation is 

about 40 dB. The poles of )(ˆ zE and coefficients ka  are 

shown in Table 3. The frame ratio is about 52.7 dB, which is an 

 

Table 2. Specifications of analysis prototype filter of Example 1. 

Poles ±0.7716 ±0.8028 ±j 0.4436 ±0.7691 ±j 0.2415 - 

Zeros –1 –0.8159 ±j 0.5772 - - 

ak 1 2.6318 2.6318 1 
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Fig. 8. Frequency response of an 8-channel proposed 

DFT filter bank.  

 

acceptable value. 

Example 3. Let us design a 32-channel DFT FB with 

normalized stopband and passband edge frequencies of 

pf =0.008523 and sf = 0.022727, respectively; a passband 

ripple of dB 05.0=δ p  and a stopband attenuation of =δs  

60 dB. In this example, we have considered two different cases, 

( 32== DM , N = 3) and (M = 32, D = 8, N = 5). In the first 

case, the filter order is ND = 96, where there are only three 

effective poles, and each of them is repeated 32 times. In the 

second case, the filter order is ND = 40, where there are five 

effective poles, and each of them is repeated 8 times. Hence, 

we expect to get a better frequency response in the second case. 

Figure 9 shows the frequency response of the four analysis 

filters designed by the proposed method in the second case. 

The stopband attenuation obtained in the first case is about 12 

 

Table 3. Specifications of analysis prototype filter of Example 2. 

Poles ±0.8141 ±0.8930 ±j 0.2171 -- -- 

Zeros –1 0.7952 ±j 0.6063 0.0110 ±j 0.9999 -0.9599 ±j 0.2805 

ak 1 1.3073 0.2468 0.6212 0.6212 0.2468 1.3073 1 

 



ETRI Journal, Volume 25, Number 5, October 2003  M.J. Dehghani et al.   353 

dB and in the second case about 60 dB in spite of a smaller 

order. This is because of the number of effective poles for 

shaping the stopband region, which in the second case is more 

than in the first case. 
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Fig. 9. Frequency response of a 32-channel analysis FB 
in the oversampled case.  

VI. Conclusions 

We have proposed a technique for designing an M-channel 

causal, stable and PR IIR DFT filter bank, which is based on a 

structure proposed by Martinez et al. [1] for sampling rate 

reduction in IIR digital filters. The design procedure for an 

arbitrary channel with prototype filter specifications is included.  

PR FBs are always possible with stable and causal polyphase 

components. Two realizations with efficient implementations 

are discussed. Since the realizations are modular structures, 

they are very much suitable for VLSI implementation and 

useful for high-bandwidth, complex parallel signal processing 

tasks. The results show that the current approach reduces the 

computational complexity by more than 50% for the critically 

sampled and oversampled cases. Hence, the proposed 

technique is very useful for stable, causal, IIR DFT FBs in the 

critically and oversampled cases. Examples have been included 

to illustrate the performance of this method. 

Appendix 

A. Derivation of oversampled polyphase decomposition 

In [8], a decomposition of the impulse response of the 

prototype filter )(0 nh  into an oversampled polyphase set of 

sub-filter )(ˆ nek , of the form 

,1...,,1,0),()(ˆ
0 −=+= MkknDhnek        (A1) 

is given, where D is the decimator/expander factor and M is the 

number of the polyphase component, which is an integer sub-

multiple of D, i.e., M = I D. 

It can also be noted that all sub-filters )(ˆ nek  are not 

independent and are related within the set. That is, if we define 

a number of unique components )(ˆ nem , 1 ..., ,1 ,0 −= Dm , it 

can be shown from (A1) that for ,rDmk +=  

1 ..., ,1 ,0 −= Ir , 

).(ˆ

))((

)()(ˆ

0

0

rne

mDrnh

rDmnDhne

m

rDm

+=
++=

++=+

          (A2) 

Thus in the oversampled polyphase case, there are D 

independent components and the rest are delayed versions of 

them. In the following, we derive a z-domain formulation of 

the polyphase decomposition. 

Let us define )()( 0 knhnek += , then 

),()( 0 zHzzE k
k =               (A3) 

where )(zEk and )(0 zH are the z-transforms of 

),( and )( 0 nhnek respectively. From (A1), we note that 

)()(ˆ nDene kk = . Thus 

.1...,,1,0,)(
1

)(ˆ
1

0

/ 2/1 −== ∑
−

=

π− MkezE
D

zE
D

l

DljD
kk   (A4) 

Substituting (A3) in (A4), we get 

.1...,,1,0,)()(ˆ / 2/1

0

/  2
/

−== ∑ π−π− MkezHe
D

z
zE DljDDklj

Dk

k

          (A5) 

Equation (A5) can be rewritten as: 

 .)(
1

)(ˆ
1

0

/ 2

0

/  2∑
−

=

π−π−− =
D

l

DljDkljD
k

k zeHe
D

zEz      (A6) 

From (A6), we get 

.)(
1

)(ˆ
1

0

1

0

1

0

/ 2

0

/  2∑ ∑∑
−

=

−

=

−

=

π−π−− =
M

k

M

k

D

l

DljDkljD
k

k zeHe
D

zEz   (A7) 

Changing the summation order of (A7) and noting that 

),(
1

0

/  2 nIe
M

k

Dlkj δ=∑
−

=

π−  after normalization, we get 

.)(ˆ)(
1

0

0 ∑
−

=

−=
M

k

D
k

k zEzzH              (A8) 
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B. Derivation of the DFT FB structure in the oversampled 

case 

In [8], a time domain formulation of the oversampled DFT 

FB is given, which is based on the interconnection of 

decimator factor M with an expander factor I. We have given 

the z-domain formulation and applied it to the oversampled 

polyphase structure shown in Fig. 6(a). Let us consider a 

critically sampled case. The polyphase components are: 

.1...,,1,0),()( 0 −=+= MkknMhnek        (B1) 

The polyphase components in the oversampled case are the 

expanders of )(nek , with expander factor I, i.e., 



 ⋅⋅⋅±=

=
otherwise.,0

,2,,0),/(
)(ˆ

IInIne
ne k

k        (B2) 

According to (B1), we get [2]: 

).()(
1

0

0

M
k

M

k

k zEzzH ∑
−

=

−=           (B3) 

From (B2), we get: 

).()(ˆ I
kk zEzE =               (B4) 

Substituting (B4) in (B3) and noting that IDM = , we can 

express the prototype filter )(0 zH in terms of the oversampled 

components )(ˆ D
k zE  as shown in (A8). Implementation of 

the k-th branch of the polyphase structure and the 

rearrangement of its base on the noble identities is shown in 

Fig. 5. It can be shown that in the proposed oversampled 

structure shown in Fig. 6, the overall analysis filters )(zH i and 

the synthesis filters )(zGi  are related to the prototype filters 

as in (1a) and (1b). 
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