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Semiholographic models of non-Fermi liquids have been shown to have generically stable generalized

quasiparticles on the Fermi surface. Although these excitations are broad and exhibit particle-hole

asymmetry, they were argued to be stable from interactions at the Fermi surface. In this work, we use this

observation to compute the density response and collective behaviour in these systems. Compared to the

Fermi liquid case, we find that the boundaries of the particle-hole continuum are blurred by incoherent

contributions. However, there is a region inside this continuum, that we call inner core, within which salient

features of the Fermi liquid case are preserved. A particularly striking prediction of our work is that these

systems support a plasmonic collective excitation which is well-defined at large momenta, has an

approximately linear dispersion relation and is located in the low-energy tail of the particle-hole continuum.

Furthermore, the dynamic screening potential shows deep attractive regions as a function of the distance at

higher frequencies which might lead to long-lived pair formation depending on the behavior of the pair

susceptibility. We also find that Friedel oscillations are present in these systems but are highly suppressed.

DOI: 10.1103/PhysRevD.96.106011

I. INTRODUCTION

There is by now a large amount of experimental evidence

for the existence of systems that have a metallic phase but

manifest an anomalous behavior, in the sense that their

properties are not accounted for by the Landau theory of

Fermi liquids, and for this reason have been called non-

Fermi liquids [1]. The main examples are the 1D Luttinger

liquids [2], heavy fermion metallic systems exhibiting

quantum criticality [3], and the strange metal phase of

cuprate superconductors [4].

Such systems pose a big challenge for theorists, since it

turns out to be difficult to escape the paradigm of Landau.

Several models have been proposed (see e.g. [5] for a

review), but they are either not fully consistent or cannot be

studied in a controlled approximation, and the problem is

far from being settled.

It is commonly believed that the anomalous behavior in

many such systems is a consequence of the vicinity to a

quantum critical point, and could be the result of the

interplay between the fermionic degrees of freedom and the

modes associated with the critical behavior. It can be

argued that the mixing with the long-range fluctuations

turns the ground state into a non-Fermi liquid [6]. A natural

idea is then to couple an ordinary Fermi liquid to a gapless

system. The subject of fermion systems coupled by long

range interactions, mediated either by scalar potential or

transverse gauge fields, has been intensively revisited in the

1990s, thanks to its possible connection with high temper-

ature superconductivity [7,8], and also with the anomalous

Fermi liquid in a strong magnetic field at density corre-

sponding to a half-filled Landau level [9]. Many theoretical

works have, to a large extent, confirmed the validity of the

random phase approximation (RPA) for a large class of

systems whose interactions are singular at small momen-

tum transfer (a detailed review of these works is given by

[10]). A key ingredient here is the fact that the contributions

associated to various orderings of density or current

insertions attached to any fermionic loops in a Feynman

graph tends to cancel, when more than two such insertions

are present, in the limit when all momentum transfers are

small [11,12]. Note that it had been known for two decades

already that this cancellation is exact for the 1D Luttinger

model [13].

It remains to insert this RPA dressing of either the

long range scalar potential interaction or the transverse

gauge field propagator, into a calculation of the fermion
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propagator. This rather difficult task has been addressed by

various methods, including eikonal approximation [14],

Ward identities [15], higher dimensional bosonization [16],

renormalization group approaches [17–19], large and small

N expansions [20,21]. Although some discrepancies exist

at this stage, these works have confirmed the possibility to

destroy the conventional Fermi liquid fixed point in any

dimension, for singular enough interactions.

The holographic correspondence [22] has been

employed extensively in recent years as a tool to study a

variety of strongly-coupled systems. A system has a

holographic description if it can be equivalently described

by a dual theory that lives in a higher dimensional space

and usually contains gravity. In some very particular cases

of theories with extended supersymmetry the equivalence is

well established, though it cannot be rigorously proven. Its

usefulness comes from the fact that it is a weak-strong

coupling duality, so that perturbative calculations on the

dual theory give insight into strong coupling behaviour of

the system. The geometric properties of the dual space

reflect dynamical properties of the system, for instance the

behavior under renormalization group flow is encoded in

the scale factor and one can describe systems that are scale-

invariant (they correspond to an anti-de Sitter space of

constant curvature), as well as systems with Lifshitz

scaling, or hyperscaling violation. One can also easily

introduce a finite temperature and density by looking at

charged black hole solutions in the dual geometry. In

particular, the application to systems at finite density, and

so with potential interest for condensed matter systems, was

pioneered in [23] (see the reviews [24,25]). One can obtain

some nontrivial predictions on the features of systems at a

quantum critical point (e.g. quantum dissipation, charge

fractionalization) that can be matched to those that have

been observed in real materials or in field-theoretic models

[26]. However the dual (gravitational) description typically

hides the information about the microscopic degrees of

freedom and gives access only to a few observables such as

conserved currents or order parameters. Moreover, as a

model building tool, holography is somewhat rigid and

does not easily allow for tweaks to accommodate some

features that one would like to add to a given model (it is of

course, at the same time, part of the strength of the setup, in

that one is arguably always obtaining consistent results,

purely theoretical as they may be).

As a remedy to these drawbacks, Faulkner and

Polchinski [27] (drawing on previous works [28–31]) have

proposed that for many purposes a semiholographic model,

in which free fermions living on the boundary of the space

are coupled with fields living in the bulk, would be

sufficient to capture the low-energy physics of the fully

holographic constructions, and at the same time allows for

some extensions, for instance the interior geometry can be

taken to be AdS4 or AdS2 ×R2 or a geometry with Lifshitz

scaling, corresponding to coupling the fermions to different

types of scale invariant field theories. In all these cases the

model describe an IR fixed point that is expected to encode

the universal properties of a large class of interacting

fermion systems (see also [32]).

In this class of models, the fermions are interacting with

a strongly coupled sector that has a large number N of

degrees of freedom. This can be exploited to obtain a small

expansion parameter. In the geometrical picture, the leading

term corresponds to considering the effect of the strongly

coupled sector on the fermions, but neglecting the back-

reaction of the fermions on the critical modes. In the model

of free fermion coupled to a massless boson, the large-N

expansion is known to break down [33]. In our case we can

argue that the situation is better, so we assume that the

expansion is valid, though this has not been completely

proven yet.

We have then a class of non-Fermi liquids depending on

some parameters: a real number ν depending on the

conformal dimension of the lowest CFT operator that

couples to the fermions, which controls the deviation from

FL behaviour; and a complex coupling constant ζ, whose

absolute value determine a cutoff scale below which the

semi-holographic theory is an effective description, and

whose phase determine the breaking of particle-hole

symmetry. However the phase can only take values in a

bounded range, and we will take it to be close to the upper

limiting value as it can be argued that this will be realized in

the generic case.

In a previous paper [34] two of the present authors (AM

and GP) started to explore the phenomenology of the semi-

holographic model. We attempted to generalize the frame-

work of Landau’s theory, and showed that, in analogy with

the Fermi liquid case, one can describe the properties of the

system in terms of the Landau parameters that essentially

contain the information about four-fermion scattering at the

Fermi surface. We also attempted to solve the generalized

Landau-Silin equations in order to find collective excita-

tions, employing a particular ansatz for the solution which

however we could not completely justify from first prin-

ciples. The key point of the work [34] is that the semi-

holographic non-Fermi liquids preserve the notion of

generalized quasiparticle excitations which are broad and

which exhibit particle-hole asymmetry but are stable from

interactions at the Fermi surface in the low-energy limit.

We elaborate on this in Sec. II A.

In the present paper we continue this exploration. We

consider the Lindhard function, which is nothing but the

density response function, and we consider in particular the

case of 2D systems (although non-Fermi liquids can exist

also in other dimensions, the 2D case is the most interesting

phenomenologically). From this function one obtains

information about the continuum spectrum of particle-hole

excitations (in the Fermi liquid language, though strictly

speaking we do not have quasiparticles), and under the

assumption that an RPA resummation is valid, also about
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the collective modes, the screening of external charges,

and the effective interaction potential. We compute the

function explicitly by numerically performing the corre-

sponding integrals, for several values of the parameters

of the model. In Sec. III, we discuss how to impose the

energy cutoff (beyond which our semiholographic effec-

tive theory cannot be trusted) in the one-loop integrals in a

consistent way.

We summarize here the main results of this paper:

(1) The imaginary part of the Lindhard function is not

supported only in some region of the ðΩ; qÞ plane as
in the FL case. Rather it has a broad distribution.

However, the shape of ImL as a function of the

momentum has features that resemble those appear-

ing in the Fermi liquid and can be traced back to

kinematic/geometric properties and the existence of

a Fermi surface, as we explain in detail in Sec. IV. In

particular, one can show that a part of the continuum

of the Fermi liquid.,
1
which we refer to as the inner

core is preserved in the semi-holographic non-

Fermi liquids. The features corresponding to the

boundaries of the continuum are also present in

the Lindhard function although they lie outside of

the inner core region. However, these features are

blurred.

(2) The dressed (i.e. RPA-resummed) Lindhard function

describes the response of a system of charged

electrons, when the effect of the Coulomb interac-

tion is taken into account. In the FL case, one finds a

pole corresponding to plasma oscillations, which

becomes damped when it enters the region of the

particle-hole continuum. In our case, we have a

different behavior: the response is very incoherent

for low frequency and momentum, and only after a

threshold we see a well-defined reasonably sharp

peak developing standing out very clearly on top of

the incoherent background with an approximately

linear dispersion relation. The presence of a thresh-

old can be related to the fact that the inner core of the

continuum has conventional FL features disallowing

any well-defined collective excitation to exist. Based

on the behavior of the Lindhard function, we can

give a robust explanation for the existence of these

plasmonic excitations in the relatively low frequency

and high momentum (>2kF) regime.

(3) The effective potential, that is the dressed Coulomb

interaction, is modified and is frequency-dependent.

As a function of the distance, it has attractive regions

and the depth of the well increases with the fre-

quency. This unexpected behavior raises the pos-

sibility of a pairing mechanism that would lead to a

new type of instability, but pairing particles of

different frequencies. Since there is an appreciable

spectral weight even quite far from the Fermi energy,

it is possible that this mechanism is operative and

leads to superconductivity. This is reminiscent of

plasmonic mechanisms for superconductivity [35].

We should note that the role of Coulomb interaction

has been emphasized by Leggett in his phenomeno-

logical scenario for high-temperature superconduc-

tivity in cuprates [36]. According to this scenario,

the main energy gain in crossing the superconduct-

ing transition is due to an improved screening in the

superconducting phase. If the superconducting in-

stability is indeed present in our models, it would be

one possible theoretical realization of Leggett’s

proposal.

We would like to point out that semiholography has been

recently proposed as a general method for constructing an

effective nonperturbative description of some physical

systems in a wide range of energy scales [37–39]. In

particular, in the case of QCD it has been proposed that the

classical gravity theory capturing the strongly coupled

degrees of freedom should be constructed by demanding

that it should cure the absence of Borel resummability of

perturbation theory. A derivation on these lines in the

context of largeN QCD has been discussed in [39]. We will

discuss how these developments are relevant for under-

standing the microscopic origin of the semiholographic

models briefly in Sec. II B.

The plan of the paper is as follows. In Sec. II, we review

a class of semiholographic non-Fermi liquid models and

the arguments why they lead to a generalization of

Landau’s Fermi liquid theory. In Sec. III, we discuss

how we can consistently impose the energy cutoff in the

calculation of the Lindhard function in the semiholographic

non-Fermi liquid models. In Sec. IV, we discuss the

Lindhard function in detail and in Sec. V, we find the

RPA-resummed Lindhard function and discuss the uncon-

ventional plasmonic pole, the possible superconducting

instability and the presence of Freidel oscillations. In

Sec. VI, we end with an outlook. In the Appendix contains

some details on the special case of ν ¼ 1=2, which is a

limiting case for this class of mdoels.

II. SEMIHOLOGRAPHIC MODELS

A. Generalization of Landau’s Fermi liquid theory

The class of models that we consider are constructed

using a fermionic field χ and an additional sector that, as

explained in the Introduction, represents the critical

modes, so we take it to be an emergent infrared conformal

field theory (IR-CFT). We assume that in the spectrum of

the IR-CFT there is a fermionic operator ψ that has the

same quantum numbers as χ and couples to it linearly

leading to tree-level mixing. The most generic form of the

action is then:

1
The continuum is the region in Ω-q plane where on-shell

gapless particle-hole excitations can exist on the Fermi surface.
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S ¼
Z

dt

�

X

k

ðχ†kði∂t − ϵk þ μÞχk þ N2SCFT

þ N
X

k

ðgkχ†kψk þ c:c:Þ þ 1

2

X

k;k1;q

χ
†

kχk−qVðqÞχ†k1
χk1−q

þ
X

k;k1;q

λk;k1;q
χ†kχk−qχ

†
k1
χk1−q

þ N
X

k;k0;q

ηk;k0χ†kχk0ϕk−k0

þ N
X

k;k1;k2

ð~gk;k1;k2
χ†kχk1

χ†k2
ψk−k1þk2

þ c:c:Þ
�

:

The first line gives the action for the two decoupled

theories; the second line contains the quadratic coupling,

and a potential interaction term (we will consider a

Coulomb interaction). The last two lines contain higher

order interactions, possibly with other CFT operators

denoted by ϕ; these terms were important in establishing

the generalisation of Landau’s theory in [34], but will not

play a role in the present paper.

We have also included a parameter N that allows us to

have a parametric control of the diagrammatic expansion.

The most important thing to note is that here in the large N
limit (i) all terms in the fermionic sector χ scale as Oð1Þ,
(ii) all terms involving interactions of χ with the IR-CFT

operators (including Ψ) scale asOðNÞ, and (iii) SCFT scales
as OðN2Þ. This large-N scaling, as we will see presently, is

crucial to have a modified propagator at¼ Oð1Þ, as we will
see presently. However, it does not suppresses radiative

corrections, e.g. to the vertex coupling the current to the

electromagnetic field Aμχ̄γ
μχ, which enters in the electro-

magnetic response. In this paper we will ignore such

corrections, adopting what is known as the RPA approxi-

mation, though it would be important to investigate them

as well.

Resumming the quadratic interaction with ψ leads to the

following retarded propagator
2
:

GRðω;kÞ¼
1

ζων−ϵk
; ϵk¼

k2

2m
−
k2F
2m

; 0< ν<1: ð1Þ

Above, we have ignored the subleading ω term which

arises from the from the free fermionic action. The

exponent ν characterizes the deviation from FL behavior;

apart from it, the model also has some additional param-

eters: the complex number ζ and the Fermi momentum kF.
From the propagator we deduce the spectral function

ρ ¼ −2ImGR:

ImGRðω;kÞ ¼ −
ζIω

ν

ðζRων − ϵkÞ2 þ ζ2Iω
2ν
θðωÞ

−
~ζIjωjν

ð~ζRjωjν − ϵkÞ2 þ ~ζ
2
I jωj2ν

θð−ωÞ; ð2Þ

where ζRðIÞ are the real (imaginary) parts of ζ, and likewise
3

~ζRðIÞ are the real (imaginary) parts of ~ζ, with

~ζ ¼ ζeiπν:

Notice that the spectral function manifestly has particle-
hole asymmetry. In order for the spectral function to be

positive we must require ζI > 0, ~ζI > 0, and this implies

0 < ϕ < πð1 − νÞ: ð3Þ

where ϕ ≔ argðζÞ.
When the propagator is derived from a holographic

model, as in [28], the phase of ζ depends on the parameters

of the model and is given by

argðζÞ ¼ argðΓð−νÞðe−iπν − e−2πqÞÞ ð4Þ

where q is the fermion charge in appropriate units; the

relation (3) is then automatically satisfied, and the upper

bound in (3) is saturated when q→ ∞. In the other limit

q→ 0, which is the probe limit where the backreaction of

the bulk fermion on the bulk gauge field can be ignored, we

obtain ϕ ¼ ðπ=2Þð1 − νÞ, i.e. half of the extremal value. In

this work, we will consider a generic case where ϕ is closer

to the extremal value since otherwise q needs to be very

small.
4

The spectral function (2) is not integrable, since it does not

decay sufficiently fast at infinity. This feature is necessary

for the spectral function to satisfy the sum rule and therefore

is an indication that themodel as it stands is not complete—it

requires aUVcompletion. The simplestway to dealwith this

problem is to consider the theory with a UV cutoff. A better

way is to reintroduce the ω term coming from the free

propagator which leads to a crossover to a FL behaviour at

high energies with a propagator of the form

GRðω;kÞ ¼
1

ζων þ ω − ϵk
; ð5Þ

The crossover to FL behavior happens at the scale

ωc ¼ jζj1=ð1−νÞ. Since it will be more difficult to compute

2
This propagator is obtained by diagonalizing the quadratic

action and therefore describes the propagation of a superposition
of χ and ψ . However, the component of ψ is Oð1=NÞ. The other
piece in the diagonalized quadratic action involves a propagator
that vanishes on the Fermi surface, and plays no role in the low
energy effective theory.

3
Note since GR is analytic in ω in the upper half complex

plane, it follows that ð−ωÞν ¼ eiπνjωjν. This is why ~ζ appears in
ImGR for negative values of ω.

4
In practice, choosing the extremal value leads to numerical

instability and qualitative features of our model does not
depend much on the precise value of ϕ as long as we avoid
the extremal value.
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using this propagator, wewill instead use the crossover scale

as a cutoff, and argue that this introduces errors that are small

at low energies.

The reasoning behindwhy these semiholographicmodels

lead to a generalization of Landau’s Fermi liquid theory has

been presented in [34]. The crux of this argument is that all

the interaction terms beyond the quadratic part of the action

which lead to the propagator (1) are irrelevant for the low

energy non-Fermi liquid in the sense that both the real and

imaginary parts of self-energy corrections to (1) are smaller

thanων whenω is small. This can also be argued on the basis

of the scaling behavior, extending the argument from the

Fermi liquid case presented e.g. in [26]. The argument given

in [34] started from the model defined by (1), but one can

also start directly from the model corresponding to the

propagator (1); the quadratic action is invariant under the

rescaling fω;k⊥;kjjg → fλ2=νω; λ2k⊥; λkjjg5 where k⊥

denotes the component of the momentum perpendicular

to the Fermi surface and kjj denotes the tangential compo-

nent. With this scaling, it is easy to see that all interaction

terms are irrelevant. For instance, a coupling gχ4 has

dimension 3 − d − 2=ν and is always irrelevant in d ≥ 1.

These arguments were also supported by explicit two-loop

self-energy calculations in the patch approximation, which

give a leading behavior Σ ∼ ω2, as in the Fermi liquid case

and in agreementwith the scaling argument. It would be thus

appropriate to say that the semiholographic non-Fermi

liquid allows the notion of generalized quasiparticle exci-
tations of the Fermi surface in the sense that the interactions

of these generalized quasiparticles are irrelevant in the low-

energy limit.

One fundamental issue is that although the infrared semi-

holographic theory is a generalization of Landau’s Fermi

liquid theory, it is not well-defined in the ultraviolet. Here,

we will merely assume that the semiholographic models

provide an effective nonperturbative infrared description of
an appropriatematerial. The crucial question of what kind of

material physics can lead to such an infrared limit will be left

for future investigations. Nevertheless, it is worth asking

whether the semiholographic models described above are of

the most general kind to be realized in a class of materials

that can be prepared in laboratories. This will be the subject

of discussion of the following subsection.

B. More general constructions

In this subsection we discuss more general constructions

of semiholographic models for both conceptual clarity and

completeness. This discussion is not essential for what

follows, so the reader can skip this subsection on the first

reading.

The arguments presented in the previous subsection

depend on the strong assumption that the critical fermions

to which the perturbative electrons are linearly coupled live

in a dual AdS2 geometry. Naively, one would expect that

the backreaction on the AdS2 geometry can originate only

from perturbative electrons at the boundary and the bulk

critical fermions, and this should be suppressed because

these fermions haveOð1Þ density as opposed to the OðN2Þ
density needed for a significant backreaction effect (see

also footnote 5). In more general constructions however,

this may not be true and then the concept of a stable

generalized quasiparticle at the Fermi surface discussed

earlier would need to be revisited.

The need to generalize our construction originates in the

observation that the background AdS2 geometry represents

nonperturbative dynamical effects of the lattice particu-

larly in generating long-range correlations in the fermionic

sector. Nevertheless, the lattice itself can have degrees of

freedom which must be taken into account perturbatively.

In turn they can affect the nonperturbative long range

correlations which should be generated in the fermionic

sector—implying a modification of the background AdS2
geometry of the bulk fermions. As a concrete example, one

can consider the effect of impurities in the lattice. For this

one can introduce a bulk scalar field which provides a non-

perturbative counterpart to the density of impurities at the

boundary by explicitly coupling to it. In this case, one

would need to solve the lattice and bulk dynamics self-

consistently. This bulk scalar field can not only change the

background AdS2 geometry, but also dynamically modify

the effective mass of the critical bulk fermion through a

bulk Yukawa coupling. Both of these will lead to a

modification of the leading scaling exponent of the self-

energy which has been assumed to be fixed by the choice

of parameters in the previous subsection. Furthermore,

certain interactions at the Fermi surface can now become

relevant.

The generic construction of the semiholographic frame-

work as a generalization of the effective field theory

framework including nonperturbative effects has been

developed recently in [39] where a concrete proposal has

been made to construct it for the case of quantum chromo-

dynamics (QCD). The basic principles of the construction of

the framework are as follows. First, we set the coupling rules

between the perturbative and the nonperturbative (holo-

graphic) sectors such that there exist a local conserved

energy-momentum tensor of the full system [38,39]. Then

we determine the parameters of the holographic gravity

theory dual to the nonperturbative sector and the additional

couplings between the two sectors in terms of the usual

perturbative couplings. This is done by demanding that the

ambiguities generated by the lack of Borel resummability of

5
The large N scaling of various terms in the action plays a

subtle but crucial role here. The scaling properties of the effective
fermionic field and hence of the couplings depends on the
quadratic action whose form can be fixed reliably only in the
large N limit provided all couplings have the proposed large N
scalings. Otherwise, the geometry will suffer backreaction and
this will in turn affect the quadratic terms themselves.
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the perturbation series vanish. The feasibility of such a

construction has been demonstrated in a toy example [39].

It is not clear to us at this stage how such a semiholo-

graphic framework can be derived from first principles in

case of a specific class of strongly correlated materials.

Nevertheless, some natural generalizations discussed above

should be worth pursuing in the future particularly for

investigating general consequences for the low energy

dynamics at the Fermi surface.

III. HOW TO COMPUTE THE GENERALIZED

LINDHARD FUNCTION

The main object of this paper is the generalized Lindhard

function LðΩ;qÞ, defined as the time-ordered density-

density correlation function.
6
It also gives the medium-

induced correction to the photon self-energy at one-loop

order. Explicitly, it is given by:

LðΩ;qÞ ¼ −2i

Z

k

Z

ω

GFðωþ;kþÞGFðω−;k−Þ; ð6Þ

where

ω� ¼ ω�Ω

2
; k� ¼ k� q

2
: ð7Þ

Also, GF denotes the fermionic Feynman propagator.

We will establish a few properties that will be useful later.

First, it is easy to see that LðΩ;qÞ ¼ Lð−Ω;qÞ, so we can

takeΩ > 0. Wewill only consider isotropic systems, soL it

is only a function of jqj≡ q.
In order to preserve analytic properties of correlation

functions in the Schwinger-Keldysh contour, it is convenient

to rewrite the Feynman propagator in terms of the retarded

propagator as follows
7
:

GFðω;kÞ¼ReGRðω;kÞþ iImGRðω;kÞð1−2nFðωÞÞ: ð8Þ

with nF denoting the Fermi-Dirac distribution function at

finite temperature. Using this it is easy to show that:

LðΩ;qÞ¼2

Z

k

Z

ω

ðReGRðω−;k−ÞImGRðωþ;kþÞð1−2nFðωþÞÞþReGRðωþ;kþÞImGRðω−;k−Þð1−2nFðω−ÞÞÞ

−2i

Z

k

Z

ω

ðReGRðω−;k−ÞReGRðωþ;kþÞ− ImGRðωþ;kþÞImGRðω−;k−Þð1−2nFðωþÞÞð1−2nFðω−ÞÞÞ: ð9Þ

For reasons to be clear soon, it is convenient to note that

since GRðω;kÞ is analytic in ω in UHP, assuming that

GRðω;kÞ decays sufficiently fast at large values of ω, we

should have
Z

ω

GRðω−;k−ÞGRðωþ;kþÞ ¼ 0: ð10Þ

The real part of the above identity implies

Z

ω

ReGRðω−;k−ÞReGRðωþ;kþÞ

¼
Z

ω

ImGRðω−;k−ÞImGRðωþ;kþÞ: ð11Þ

Combining the above with (9), we obtain

ReLðΩ;qÞ¼2

Z

k

Z

ω

ðReGRðω−;k−ÞImGRðωþ;kþÞ

×ð1−2nFðωþÞÞ
þReGRðωþ;kþÞImGRðω−;k−Þð1−2nFðω−ÞÞÞ;

ð12aÞ

ImLðΩ; qÞ ¼ −2

Z

k

Z

ω

ImGRðω−;k−ÞImGRðωþ;kþÞ

× ð1 − ð1 − 2nFðωþÞÞð1 − 2nFðω−ÞÞÞ:
ð12bÞ

In order to go to zero temperature, we need to note that

limT→0nFðωÞ ¼ θð−ωÞ and therefore

lim
T→0

ð1 − 2nFðωÞÞ ¼ sgnðωÞ: ð13Þ

It then follows from (8) that at zero temperature,

ReGFðω;kÞ ¼ ReGRðω;kÞ;
ImGFðω;kÞ ¼ ImGRðω;kÞsgnðωÞ: ð14Þ

Furthermore, for Ω > 0, the real and imaginary parts of the

generalized Lindhard function given by (12a) and (12b)

respectively reduce to

6
We call this the generalized Lindhard function from now on,

because the term Lindhard function is used in literature in the
context of Fermi liquids.

7
To derive the relation below, we recall that GFðx−x0;t−t0Þ¼

−iG>ðx−x0;t−t0Þθðt−t0Þ−iG<ðx−x0;t−t0Þθðt0−tÞ. To go to Fou-
rier space,we canuse the convolution theorem, and thatG>ðω;kÞ¼
ImGRðω;kÞð1−nFðωÞÞ and G<ðω;kÞ¼−ImGRðω;kÞnFðωÞ. We
also use the Kramers-Kronig relation between ReGRðω;kÞ and
ImGRðω;kÞ.
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ReLðΩ; qÞ ¼ −2

Z

k

Z

−Ω

2

−ωc

ðReGRðω−;k−ÞImGRðωþ;kþÞ

þ ReGRðωþ;kþÞImGRðω−;k−ÞÞ

þ 2

Z

k

Z

−Ω

2

−ωc

ðReGRðω−;k−ÞImGRðωþ;kþÞ

− ReGRðωþ;kþÞImGRðω−;k−ÞÞ

þ 2

Z

k

Z

−Ω

2

−ωc

ðReGRðω−;k−ÞImGRðωþ;kþÞ

þ ReGRðωþ;kþÞImGRðω−;k−ÞÞ; ð15aÞ

ImLðΩ; qÞ ¼ −4

Z

k

Z

Ω

2

−Ω

2

ImGRðωþ;kþÞImGRðω−;k−Þ:

ð15bÞ

Above we have also implemented the cutoff ωc in the loop

integral as should be done in an effective field theory.

Furthermore, we have assumed that the external frequency

Ω is less than the cutoff ωc. We find that ImLðΩ; qÞ gets
contribution only from −Ω=2 < ω < Ω=2 and is therefore

independent of the cutoff both in the exact theory (where

ωc ¼ ∞) and in the effective theory. This justifies the

manipulation of the imaginary part of ImLðΩ; qÞ in the

form (12) from (9) using the identity (11).

Note that if we impose a cutoff ωc on both sides of (11),

the identity will not be strictly valid. Nevertheless, if the

effective theory can be interpolated to the right material

physics in the UV, the violation should be suppressed by

powers of Ω=ωc as argued before. Here we will simply

assume this to be the case and therefore the Kramers-

Kronig relations between the imaginary and retarded parts

of the retarded propagator should be satisfied in the same

spirit. It is not hard to show that the retarded self-energy

LRðΩ; qÞ is related to LðΩ; qÞ just as the retarded propa-

gator is related to the Feynman propagator, i.e.

ReLðΩ;qÞ¼ReLRðΩ;qÞ; ImLðΩ;qÞ¼ ImLRðΩ;qÞsgnðΩÞ
ð16Þ

at zero temperature.

Since the retarded correlator does not decay sufficiently

fast for large ω when 0 ≤ ν ≤ 1=2, the identity (10) and

hence the identity (11) is not even approximately valid in

the effective theory up to positive powers of Ω=ωc (for

ν ¼ 1=2 the identities are violated by logðΩÞ terms as for

instance). This leads to a problem in arriving at a consistent

prescription where ImL is independent of ωc for Ω < ωc.

The case of ν ¼ 1=2 is discussed in the Appendix in detail.
In particular, we suspect that for ν < 1=2 the infrared

theory does not make sense as it does not decouple from the

UV physics. This seems to contradict the intuition from the

scaling argument where the value ν ¼ 1=2 does not appear

be special. This issue deserves further investigation. In this

paper we will restrict ourselves to ν > 1=2.
From (15) we can read many things: the imaginary part of

the generalized Lindhard function gets contribution only

from a bounded interval of length proportional to Ω, so in

particular it is a convergent integral. Furthermore, in the limit

Ω → 0, the region of integration shrinks away, so LðΩ ¼
0;qÞ is purely real. It is also clear that ImLðΩ; qÞ < 0 since

ImGRðω;kÞ < 0. Note that L refers to the bosonic (pho-

tonic) self-energy correction. Therefore ImLRðΩ;qÞΩ<0

should be satisfied. This is indeed the case as is clear from

Eq. (16) and that ImLðΩ; qÞ < 0.

For our specific case:

ImLðΩ;qÞ ¼ −4

Z

d2k

Z jΩj
2

−
jΩj
2

dω
ζI
~ζIðωþ jΩj

2
ÞνðjΩj

2
− ωÞν

ðjζj2ðωþ jΩj
2
Þ2ν − 2ζRϵkþq

2
ðωþ jΩj

2
Þν þ ϵ2

kþq

2

Þðjζj2ðjΩj
2
− ωÞ2ν − 2~ζRϵk−q

2
ðjΩj
2
− ωÞν þ ϵ2

k−
q

2

; Þ

ð17Þ
where ζR ¼ Reζ, ζI ¼ Imζ, etc. We can change to following dimensionless variables:

x ¼ ω

jΩj ; y ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mjζjjΩjν
p ð18Þ

and define the following dimensionless parameters

yF ¼ kF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mjζjjΩjν
p ; q̂ ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mjζjjΩjν
p ; ζ̂ ¼ ζ

jζj ¼ eiϕ; ~̂ζ ¼ ζ̂eiπν ¼ eiðϕþπνÞ: ð19Þ

Then,

ImLðΩ; qÞ ¼ 2m
jΩj1−ν
jζj Kðq̂; yF; ν;ϕÞ; ð20Þ

DENSITY RESPONSE AND COLLECTIVE MODES OF … PHYSICAL REVIEW D 96, 106011 (2017)

106011-7



with K being the dimensionless integral

Kðq̂; yF; ζ̂;νÞ ¼ −4

Z

∞

0

dyy

Z

2π

0

dθ

Z

1
2

−1
2

dx
sinðϕÞ sinðϕþ πνÞðxþ 1

2
Þνð1

2
− xÞν

ððxþ 1
2
Þ2ν − 2 cosðϕÞϵ1ðxþ 1

2
Þν þ ϵ21Þðð12− xÞ2ν − 2 cosðϕþ πνÞϵ2ð12− xÞν þ ϵ22Þ

;

with ϵ1 ¼ y2 þ q̂2

4
þ yq̂cosθ− y2F;ϵ2 ¼ y2 þ q̂2

4
− yq̂ cosθ− y2F: ð21Þ

The above shows that to study ImLðΩ; qÞ qualitatively we

can set jζj ¼ 1 and m ¼ 1=2 without loss of generality. We

will see that as long we keep ϕ within holographic bounds,

the qualitative features of ImLðΩ; qÞ do not change much

unless ϕ is extremal. Therefore, qualitative features of

ImLðΩ; qÞ will depend only on yF, q̂ and ν if ωc > Ω.

Similar conclusions will also hold for ReLðΩ; qÞ except

that it should also depend on Ω=ωc as mentioned before.

For practical purposes we will choose other dimensionless

variables in the next section.

Let us understand ImLðΩ; qÞ in the limit of small Ω. In

this limit, q̂, yF → ∞ with q̂=yF held fixed. The y-integral
in (21) then will get its contribution maximally from 0 <

y < yF and the integrand behaves as y−4F .

Therefore,

lim
q̂;yF→∞;q̂=yF¼constant

Kðq̂; yF; ζ̂; νÞ

≈
y2F
y4F

Z

1=2

−1=2

dx

�

xþ 1

2

�

ν
�

1

2
− x

�

ν

: ð22Þ

So, in this limit

lim
q̂;yF→∞;q̂=yF¼constant

Kðq̂; yF; ζ̂; νÞ ≈
1

y2F
ð23Þ

Combining above with Eq. (20) implies that for small Ω,

lim
Ω→0

1

Ω
ImLðΩ; qÞ ¼ Mðq; kF; ζ; νÞ: ð24Þ

Therefore for small Ω, ImLðΩ; qÞ has to be proportional

to Ω.

IV. GENERALIZED LINDHARD FUNCTION AND

COMPARISON WITH THE FERMI LIQUID

A. Imaginary part of the generalized Lindhard function

a. The case of the Fermi liquid: Let us begin with the

Fermi liquid. The density response function (aka Lindhard

function) in case of the D-dimensional Fermi liquid takes

the form:

LFLðΩ; qÞ ¼ 2

Z

dDk

ð2πÞD nk−q=2ð1 − nkþq=2Þ ×
�

1

Ω − ϵkþq=2 þ ϵk−q=2 þ iη
−

1

Ωþ ϵkþq=2 − ϵk−q=2 − iη

�

; ð25Þ

where

nk ¼ θðkF − kÞ; ϵk ¼ k2

2m
− ϵF; ϵF ¼ k2F

2m
: ð26Þ

The explicit integrations can be done for D ¼ 1, 2 and 3—

the exact results can be found in [40]. Our case of interest is

D ¼ 2 specifically. Instead of reproducing the exact forms

here, we present the key features and necessary plots for the

sake of comparison with the semiholographic non-Fermi

liquid.

Let us first examine ImLðΩ; qÞ, the imaginary part of the

Lindhard function. In the Ω-q plane, ImLðΩ; qÞ is sup-

ported in the green and red regions of the plots presented in

Fig. 1. These regions combined form the particle-hole

continuum, i.e. the range of allowed values of Ω and q for

which an on-shell particle-hole pair can have total energyΩ
and carry total momentum of magnitude q. The red region

in Fig. 1, which we will refer to as the inner core, will be of
special significance for us because we will see that only in
this region the semiholographic non-Fermi liquid preserves

Fermi-liquid like features.

In case of the Fermi liquid, the boundaries of the
kinematic region can be understood geometrically. For a
fixed value of q, the allowed values of Ω (for Ω > 0) is
simply the total energy of an on-shell particle-hole pair
carrying total momentum q:

Ω ¼ ϵkþq=2 − ϵk−q=2 ¼
q · k

m
with

k ∈ fϵk−q=2 < 0 & ϵkþq=2 > 0g: ð27Þ
Without loss of generality, we can choose q along the
(positive) x-axis. Then q · k ¼ qkx. Therefore, for a fixed
value of q, the total energy of the particle-hole pair is given
by Ω ¼ qkx=m when the hole carries momentum fkx −
q=2; kyg and the particle carries momentum fkx þ q=2; kyg.
For q < 2kF, the allowed values of Ω can be readily

inferred from the allowed values of kx and ky as shown in

Fig. 2. The smallest possible value of Ω is 0, corresponding

to kx ¼ 0, and the largest is

ΩmaxðqÞ ¼
q2

2m
þ qkF

m
ð28Þ
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corresponding to kx ¼ kF þ q=2. Furthermore, when

kF − q=2 ≤ kx ≤ kF þ q=2; ð29Þ
i.e.

ΩintðqÞ ≤ Ω ≤ ΩmaxðqÞ; with ΩintðqÞ ¼ −
q2

2m
þ qkF

m

ð30Þ

then the allowed values of ky form a single connected line

segment instead of two disconnected short line segments as

evident from Fig. 2. Thus Ω ¼ ΩintðqÞ represents a change
in topology of the allowed ky region with fixed kx (i.e. Ω)

and q. The region 0 < Ω < ΩintðqÞ forms the inner core
of the particle-hole continuum (marked in red in Fig. 1).

As evident from Figs. 1 and 2, the inner core corre-
sponds to the region of kinematically allowed values of Ω
and q for which kx and ky lie close to the particle Fermi
surface.
For q > 2kF, the allowed values of kx and ky are shown

in Fig. 3. The smallest allowed value of Ω is

–3 –2 –1 0 1 2 3
–2

–1

0

1

2

kx/kF

k
y
/k

F

FIG. 2. The allowed values of kx=kF and ky=kF when q ¼
0.6kF < 2kF is shown above in dark blue. This dark blue region

is simply the intersection of the complement of the region outside

the circle of unit radius centred at f−0.3kF; 0g (representing the

on-shell particle in the pair) and the region bounded by the circle

of unit radius centred at f0.3kF; 0g (representing the on-shell hole
in the pair). The allowed values of Ω are simply those for which

Ω ¼ qkx=m with kx lying within in the dark blue region. Clearly,

the smallest possible value of Ω is 0 which is realized when

kx ¼ 0 (the brown line) and the largest possible value of Ω is

Ωmax given by Eq. (28) which is realized when kx ¼ kF þ q=2.
When kF þ q=2 ≥ kx ≥ kF − q=2, i.e. Ωmax ≥ Ω ≥ Ωint with Ωint

latter given by Eq. (30), the allowed values of ky forms a

continuous line instead of disconnected segments. The red

vertical line represents kx ¼ kF − q=2 for which Ω ¼ Ωint.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
q

5

10

15

20

(kF = 1, m = 0.5)

max[q] =
q2

2 m
+

qkF

m

min[q] = (
q2

2 m
-

qkF

m
) (q- 2)

int[q] = (-
q2

2 m
+

qkF

m
) (2- q)

FIG. 1. The kinematic region in Ω-q plane where ImLðΩ; qÞ is nonzero for the Fermi liquid is the combined green and red regions in

the plot shown above. For convenience, we have chosen kF ¼ 1 andm ¼ 0.5. This region is essentially the particle-hole continuum. The

boundaries of this region are given by ΩmaxðqÞ and ΩminðqÞ. The red region is what we will call as the inner core of the particle-hole
continuum and is bounded by the curve ΩintðqÞ.

–3 –2 –1 0 1 2 3
–2

–1

0

1

2

kx/kF

k
y
/k

F

FIG. 3. The allowed values of kx=kF and ky=kF when q ¼
2.4kF > 2kF is shown above in dark blue. The region bounded

by the unit circle centred at f1.2kF; 0g (representing the hole-

like excitation) now lies entirely in the complement of the unit

circle centred at f−1.2kF; 0g (representing the particle-like

excitation)—the dark blue region simply then coincides with

the first region representing the hole excitations. The allowed

values of Ω are simply those for which Ω ¼ qkx=m with kx lying
within the dark blue region. The smallest allowed value of Ω ¼
Ωmin is given by Eq. (31) for which kx ¼ q=2 − kF (the brown

vertical line) and the largest allowed value ofΩ ¼ Ωmax is given by

Eq. (28) for which kx ¼ q=2þ kF (the blue vertical line). There is

no analogue of Ωint because the allowed values of ky for fixed kx
(i.e. Ω) and q always form a continuous line segment.
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ΩminðqÞ ¼
q2

2m
−
qkF

m
ð31Þ

for which kx ¼ q=2 − kF and the largest allowed value ofΩ

is ΩmaxðqÞ given by Eq. (28) for which kx ¼ kF þ q=2.
There is no analogue of ΩintðqÞ because the allowed values
of ky for a fixed value of kx (i.e. Ω) and q always form a

continuous line segment.

The geometric structure of the particle-hole continuum

governs the behavior of ImLFL as a function of q andΩ. For
reasons to become clear later, it is instructive to look first at

ImLFLðqÞ of the Fermi liquid at fixed values ofΩ. The plots

are shown in Fig. 4. Referring to Fig. 1, we can readily see

that a horizontal line at fixed Ω, for Ω=ϵF < 1, will have

four special points: when it intersects ΩmaxðqÞ at q ¼ q1,
Ωmin at q ¼ q4, and ΩintðqÞ at q ¼ q2, q ¼ q3. These four
special values of q can be readily recognized in each of the

plots in Fig. 4 for Ω=ϵF ¼ 0.1, 0.3 and 0.6. First, ImL

vanishes for q < q1 and q > q4. At the intermediate points

q ¼ q2 and q ¼ q3, ImL has peaks where also the

derivative ∂ImL=∂q becomes discontinuous. In the region

q2 ≤ q ≤ q3, ImLðqÞ is quite flat after a sharp ascent near

q ¼ q3—this is a very specific characteristic which will be

remarkably preserved in case of the semiholographic non-

Fermi liquid. This intermediate region corresponding to the

inner core shrinks continuously with increasing Ω and

disappears when Ω=ϵF ¼ 1. For Ω=ϵF > 1, ImLðqÞ does

not have any kink or flat regions within its domain of

support which is bounded by values of q for which Ω

coincides with Ωmax and Ωmin as evident from Fig. 4.

Similarly, ImL as a function of Ω for fixed values of q
shows a transition in its behavior as q crosses 2kF. This can
be readily understood by drawing vertical lines correspond-

ing to fixed values of q through the particle-hole continuum

depicted in Fig. 1. When q < 2kF, the vertical line will

have two special points Ω1 and Ω2 corresponding to

intersections with ΩintðqÞ, the boundary of the inner core,

andΩmaxðqÞ respectively. On the other hand, for q > 2kF, a
vertical line at fixed q still has two special points corre-

sponding to intersections with Ωmin and Ωmax, however it

does not intersect the inner core. The plots in Fig. 5 clearly

show that there is a maximum with discontinuous deriva-

tive atΩ ¼ Ω1, but when q=kF > 2 the kink disappears and

the curves have support only for Ω > Ω1.

The features of ImLFL Fermi liquid mentioned above

will be of particular importance for us to understand the

semiholographic non-Fermi liquid case to be discussed

below in relation to both—the features which are kept intact

and also the features which are blurred out via incoherent
quasinormal mode fermionic excitations of the AdS2
black hole.

b. The case of the semiholographic non-Fermi liquid: In
the case of the semiholographic non-Fermi liquid, appa-

rently Lðq;ΩÞ depends on many parameters, namely ν, jζj,
ϕ ¼ argðζÞ, m and kF. Nevertheless, we can easily show

from Eq. (6) that Lðq;ΩÞ takes the form:

Lðq;ΩÞ ¼ mf

�

Ω

jζj1−ν ;
q

kF
;

ϵF

jζj1−ν ; ν;ϕ
�

; ð32Þ

with ϵF ¼ k2F=ð2mÞ being the Fermi energy. However, as

discussed earlier we must choose ϕ ¼ πð1 − νÞ − ϵ, where

ϵ is a small non-negative number in order to represent a

generic case. Therefore, the relevant parameters of the

generalized Lindhard function Lðq;ΩÞ of our low energy

effective theory are

~ϵF ¼ ϵF

jζj1−ν and ν: ð33Þ

It turns out that if we fix ν and vary ~ϵF (by varying kF as for

instance) the features of Lðq;ΩÞ and the phenomenology to

be discussed later do not change qualitatively. Therefore,

the parameter of interest is actually ν which for reasons

0.5 1.0 1.5 2.0 2.5 3.0 3.5

q

kF

–5

–4

–3

–2

–1

m
Im[L( 2 m

kF
2 ,

q

kF
)]

2 m

kF
2 =0.1

2 m

kF
2 =0.3

2 m

kF
2 =0.6

2 m

kF
2 =0.8

2 m

kF
2 =1.0

2 m

kF
2 =1.5

2 m

kF
2 =2.0

2 m

kF
2 =2.5

FIG. 4. Plots of ImLFLðqÞ for various fixed values of Ω are

shown above. Note LFLðq;ΩÞ ¼ ðm=πÞfðq=kF;Ω=ϵFÞ with

ϵF ¼ k2F=2m. Therefore, we have used the dimensionless vari-

ables q=kF,Ω=ϵF and ðπ=mÞImL in the plots above. Note that the

intermediate plateau and the two intermediate kinks where

∂ImLFLðqÞ=∂q is discontinuous appear for Ω=ϵF < 1 and dis-

appears when Ω=ϵF ≥ 1.

2 4 6 8 10 12 14

2 m

kF
2

–4

–3

–2

–1

m
Im[L( 2 m

kF
2 ,

q

kF
)]

q

kF
=0.1

q

kF
=0.3

q

kF
=0.6

q

kF
=1.0

q

kF
=1.5

q

kF
=2.01

q

kF
=2.5

FIG. 5. Plots of ImLFLðΩÞ for various fixed values of q are

shown above. We have used dimensionless variables for plotting

as in Fig. 4. Note the behavior for q < 2kF is different from that

for q > 2kF. In particular, the minimum value of Ω for the latter

case for which ImLFLðΩÞ is nonvanishing is shifted from the

origin. Also the intermediate kink where ∂ImLFLðqÞ=∂Ω is

discontinuous appears only for q < 2kF.
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described before should lie between 1=2 and 1. We will see

that ν acts the parameter which dials a systematic defor-

mation from the Fermi liquid theory.

From the above discussion, it is clear that we can choose

m ¼ 0.5 and jζj ¼ 1 without loss of generality. We recall

that our effective theory breaks down at energiesΩ > ωc ¼
jζj1−ν (i.e. for Ω > 1 with our choice jζj ¼ 1), therefore we

choose kF ¼ 0.4 conveniently so that ~ϵF ≪ 1 and we can

explore the regime Ω=jζj1−ν ≫ ~ϵF. Note that with kF ¼ 0.4

and m ¼ 0.5, ϵF ¼ ~ϵF ¼ 0.16 ≈ 0.2. Let us first study

ImLðqÞ for various fixed values of Ω for the case ν ¼
2=3 and ϕ ¼ π=4 with the above choice of parameters. The

plots are shown in Fig. 6. The trivial result is that we find that

ImLðqÞ vanishes at Ω ¼ 0 as expected on general grounds

(see Sec. III). We find the following nontrivial features:

(1) For Ω < ϵF, i.e. Ω < 0.2, we find a sharp descent

and a plateau type region squeezed between two

peaks/kinks remarkably similar to the features in the

Fermi liquid case governed by the inner core of the
particle hole continuum (particle-hole excitations

lying close to the particle Fermi surface) which also

appears when Ω=ϵF < 1. To see this distinctly, one

can readily compare the curves in Fig. 6 for Ω < 0.1

to those in Fig. 4 for Ω=ϵF < 0.8. Just like in the

Fermi liquid case, this region between the twin peaks

(kinks) shrinks with increasing Ω and disappears

at Ω ¼ ϵF.

(2) Just like in the Fermi liquid case, the extent of the

inner core features is governed by kinematics (see

Figs. 1 and 2). For small Ω, the extent of this region

starts close to q ¼ 0 and ends just short of q ¼ 2kF
(i.e. q ¼ 0.8). The two end points move away from

q ¼ 0 and q ¼ 2kF with increasing Ω merging at

q ¼ kF (i.e. q ¼ 0.4) when Ω ≈ ϵF (i.e. Ω ≈ 0.16).
8

(3) Unlike the Fermi liquid case, the plots in Fig. 6

demonstrate no special values of q corresponding to

Ωmax and Ωmin (see Figs. 1, 2 and 3) where ImLðqÞ
vanishes at fixed values of Ω as visible clearly in

Fig. 4. Nevertheless, these values of q corresponding

to Ωmax and Ωmin get replaced by regions where

∂2ImLðqÞ=∂q2 varies rapidly as happens near in-

flexion points. There are indeed two such regions for

any value of Ω in the plots in Fig. 6, one centred at

the value of qwhereΩmaxðqÞ is supposed to be in the
Fermi liquid case and similarly another centered at

the value of q where ΩminðqÞ is supposed to be.

To summarize,we can conclude that the Fermi liquid features

arising from the inner core of the particle-hole continuum

remain sharply defined in the semiholographic non-Fermi

liquid case in the same ranges ofΩ andq.However, the rest of
the continuum including the boundaries ΩmaxðqÞ and

ΩminðqÞ are blurred out—in particular these boundaries

get replaced by regions where ∂2ImLðqÞ=∂q2 varies rapidly
at fixed values ofΩ. The size of these regions (and hence the

degree of blurring of the boundaries) increases with increas-

ing Ω. Physically the blurring out of the particle-hole

continuum away from the inner core (i.e. the part of the

continuum away from the particle Fermi surface) arises from

the incoherent fermionic quasinormal mode excitations of

the black hole geometry with which the electron hybridizes

and which also leads to particle-hole asymmetry.

Our conclusions are also validated by the plots of

ImLðΩÞ at various fixed values of q with the same choice

of parameters as presented in Fig. 7. Nevertheless some of

these features are complicated by the presence of the energy

cutoff ωc. First, as expected on general grounds (see

Sec. III), we find that ImLðΩÞ ≈Ω, for small Ω and small

fixed values of q. The slope atΩ ¼ 0, i.e. ImLðΩÞ=Ω in the

limit Ω → 0 grows with decreasing q as in the Fermi liquid

case which is evident from comparison with Fig. 5. The

other features are

(1) For fixed value of q < kF (i.e. q < 0.4), we find a

peak forΩ ¼ ΩintðqÞ, corresponding to the inner core
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FIG. 6. Plots of ImLðqÞ of the semiholographic non-Fermi

liquid for ν ¼ 2=3 and ϕ ¼ π=4 for various fixed values of Ω. In

order to compare with plots of ImLFLðqÞ shown in Fig. 4, we

need to take into account that for the above plots we have chosen

kF ¼ 0.4, m ¼ 0.5 (i.e. ϵF ¼ 0.16) and jζj ¼ 1.
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FIG. 7. Plots of ImLðΩÞ of the semiholographic non-Fermi

liquid for ν ¼ 2=3 and ϕ ¼ π=4 for various fixed values of q. In

order to compare with plots of ImLFLðΩÞ shown in Fig. 5, we

need to take into account that for the above plots we have chosen

kF ¼ 0.4, m ¼ 0.5 (i.e. ϵF ¼ 0.16) and jζj ¼ 1.

8
Here and elsewhere one must resist exact comparisons with

Fermi liquid because there is some inherent ambiguity in deter-
mining the locations of q corresponding to Ωint, etc. Nevertheless
the comparisons do hold approximately even quantitatively.
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boundary—this peak also involves a sharp change in

∂ImLðΩÞ=∂Ω for small q as in the Fermi liquid case

(see Fig. 5). When q ¼ kF ¼ 0.4, the peak appears

close to ϵF ¼ 0.16 as expected. This inner core feature

however is not so prominent for q > kF perhaps due

to the presence of the energy cutoffωc ¼ 1 although it

is expected to persist for kF < q < 2kF.
(2) For fixed values of q < kFð¼ 0.4Þ, we find another

region centered at the place where ΩmaxðqÞ is

supposed to be where ∂2ImLðΩÞ=∂Ω2 changes

rapidly. Unlike the Fermi liquid case ImLðΩÞ does
not vanish for larger values of Ω indicating presence

of spectral weight arising from fermionic quasinor-

mal mode excitations of the black hole. The pres-

ence of the energy cutoff ωc ¼ 1 perhaps makes this

region less prominent for q > kF.
(3) For q slightly greater than 2kF (see the plots for

q ¼ 0.9 and 1.0 in Fig. 7), we find another region

appearing close toΩ ¼ 0whereΩminðqÞ is supposed
to be and where ∂2ImLðΩÞ=∂Ω2 changes rapidly.

Especially for fixed q > kF, the presence of the energy

cutoff complicates some of the features of ImL as a

function of Ω. The comparison with the Fermi liquid is

therefore best revealed when we study ImL as function of q
for fixed Ω rather than the other way round.

As mentioned before, changing ~ϵF of the two effective

parameters in Eq. (33) of the low energy theory does not

change the qualitative features discussed above. Therefore,

we report specifically on how the features of ImLðq;ΩÞ
change when we increase ν while keeping ϕ near-extremal
[i.e. ϕ ¼ πð1 − νÞ − ϵ with ϵ being a small non-negative

number] for reasons described before and other parameters

the same.
9
To do this, we can choose ν ¼ n=ðnþ 1Þ and

ϕ ¼ π=ðnþ 2Þ, and study the cases ν ¼ 4, 5, 6 and 7. The

plots of ImLðqÞ are presented in Fig. 8 for a representative

value of Ω ¼ 0.01 (we recall that we have set kF ¼ 0.4,

m ¼ 0.5 and jζj ¼ 1).

It is clear from Fig. 8 that as we increase ν, the spectral

weight in the inner core region squeezed between the two

peaks increases—therefore the spectral weight of the

coherent particle-hole continuum is enhanced compared

to that of the incoherent quasinormal mode excitations. The

extent of the inner core region is given by the kinematics of

k-space and is therefore independent of ν. However the

decay of the spectral weight away from this core inner

regions occurs faster as ν becomes closer to 1—in par-

ticular the regions centered around the values of q where

Ωmin and Ωmax become more prominent so that the spectral

weights away from these boundaries become more and

more insignificant thus approaching Fermi liquid type

behavior. Similar features are seen particularly for

Ω < ϵF. Therefore, ν can be thought of as a deformation

parameter—by decreasing ν from 1 towards 1=2 keeping ϕ
near-extremal, we can interpolate between Fermi-liquid-

like behavior and non-Fermi liquid behaviour particularly

for Ω < ϵF (which is needed for the inner core region to

exist).
10
It is remarkable that the features governed by the

inner core of the particle-hole continuum corresponding to

the pair excitations closer to the particle Fermi surface

remain sharply defined as we change ν.

B. Real part of the generalized Lindhard function

The real part of the Lindhard function is related to the

imaginary part of the Lindhard function via the Kramers-

Kronig relations
11
as discussed in Sec. III. Since we need to

impose a frequency cutoff ωc in our effective semi-holo-

graphic non-Fermi liquid framework for reasons discussed

before, the Kramers-Kronig relations will be valid only up

to corrections involving Ω=ωc, where Ω is the frequency at

which we are observing the response.
12
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FIG. 8. Plots of ImLðqÞ for Ω ¼ 0.01 for ν ¼ n=ðnþ 1Þ and
ϕ ¼ π=ðnþ 2Þ with n ¼ 4, 5, 6 and 7. The other parameters are

kept the same as in previous plots, i.e. kF ¼ 0.4, m ¼ 0.5 and

jζj ¼ 1. We see that as we increase ν keeping ϕ near-extremal,
ImLðqÞ becomes closer to the Fermi liquid. The inlay plots

demonstrate the behavior near q� for which Ω ¼ Ωminðq�Þ ¼
0.01 (corresponding to the second boundary of the particle-hole

continuum)where ∂2ImLðqÞ∂q2 varies very rapidly. It is clear that
with increasing ν the decay of ImLðqÞ for q > q� occurs faster.

9
As mentioned before, choosing ϕ to be the extremal value

exactly (i.e. imposing ϕ ¼ πð1 − νÞÞ gives rise to numerical noise
because the singularities in the propagators approach the real
axis, so we avoid doing this.

10
We believe that this interpolation to Fermi liquid as ν → 1

can be made perfectly if we keep the phase strictly extremal;
however as discussed before, it is not easy to achieve this
numerically.

11
The Kramers-Kronig relations for the retarded propagator

imposes similar relations for the Feynman propagator.
12
Recall that to do this we need to find the right type of UV

completion, i.e. the right type of material properties that ensures
appropriate large frequency behavior of the fermionic Green’s
functions. Since the exact Kramers-Kronig relations dictate that
UV (i.e. large Ω) behavior of the imaginary part of the Lindhard
function can affect the real part in the IR (i.e. small Ω), we need
to ensure appropriate UV behavior of the fermionic propagators
in order that the effective semiholographic theory results hold in
the IR.
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Examining ReLFLðΩ; qÞ as a function of Ω for various

fixed values of q (see Fig. 9), we can readily see how it

correlates with ImLFLðΩ; qÞ (see Fig. 5).

(1) For fixed q < 2kF, ReL
FLðΩ=ϵFÞ is almost constant

and negative for Ω < ΩintðqÞ (see plots for

q=kF ¼ 0.1, 0.3, 0.6, 1.0 and 1.5 in Fig. 9). Note

that ΩintðqÞ attains its maximal value ϵF when

q=kF ¼ 1, so the (negative) plateau has the largest

extension for q ¼ kF. In the domain ΩintðqÞ < Ω <

ΩmaxðqÞ, ReLFLðΩ=ϵFÞ is monotonically increasing

for increasing values of Ω and changes sign at an

intermediate point. ReLFLðΩ=ϵFÞ peaks at Ω ¼
ΩmaxðqÞ. ForΩ > ΩmaxðqÞ, ReLFLðΩ=ϵFÞmonoton-

ically decreases to zero for increasing values of Ω

while staying positive definite in sign. Recall that

ImLðΩÞ vanishes in this domain.

(2) For fixed q > 2kF, ReL
FLðΩ=ϵFÞ does not have any

plateau-like flat region for small values of Ω (see

plots for q=kF ¼ 2.01 and 2.5 in Fig. 9). We recall

that for q > 2kF, there is noΩintðqÞ because the inner
core of the particle-hole continuum does not extend

here. Furthermore, ImLðΩ; qÞ is supported only

between ΩminðqÞ<Ω<ΩmaxðqÞ. For Ω < ΩminðqÞ,
ReLFLðΩ=ϵFÞ stays negative and decreases mono-

tonically reaching a minima at Ω ¼ ΩminðqÞ. In

the domain ΩminðqÞ<Ω<ΩmaxðqÞ, ReLFLðΩ=ϵFÞ
monotonically increases changing sign at an inter-

mediate point and reaching a maxima at Ω ¼
ΩmaxðqÞ. ReLFLðΩ=ϵFÞ again decreases monotoni-

cally to zero for Ω > ΩmaxðqÞ staying positive

definite in sign.

We study features of ReLðq;ΩÞ of the semiholographic

non-Fermi liquid as a function of Ω for fixed values of q.
The plots are presented in Fig. 10 for the same choices of

parameters as for ImLðq;ΩÞ in Fig. 7, i.e. for ν ¼ 2=3,
ϕ ¼ π=4, kF ¼ 0.4, m ¼ 0.5 and jζj ¼ 1.

(1) We note that for fixed q < 2kF (i.e. for q < 0.8)

there is a small flat region of ReLðΩÞ for small

values of Ω which is reminiscent of the Fermi liquid

features appearing when Ω < ΩintðqÞ corresponding
to the inner core of the particle-hole continuum. As

in the case of the Fermi liquid, when Ω < ΩmaxðqÞ,
ReLðΩÞ monotonically increases for increasing

values of Ω and changes sign at an intermediate

value of Ω. Furthermore, ∂2ReLðΩÞ=∂Ω2 varies

rapidly near the value Ω corresponding to where

ΩmaxðqÞ is supposed to be. However, instead of

peaking at Ω ¼ ΩmaxðqÞ and then decreasing for

increasing Ω as in the case of the Fermi liquid,

ReLðΩÞ increases and saturates to its maximal value

at the cut-off Ω ¼ ωc ≈ 1.

(2) For fixed q > 2kF (i.e. for q > 0.8), ReLðΩÞ has no
flat region for small values of Ω as in the case of the

Fermi liquid. The features corresponding to the

boundaries of the particle-hole continuum, i.e. Ω ¼
ΩminðqÞ and Ω ¼ ΩmaxðqÞ which are sharply visible

in the Fermi liquid case are also blurred out and

replaced by an approximate linear growth in the

entire regions 0 < Ω < ωc. Nevertheless, the change

in sign of ReLðΩÞ occurs at an intermediate point

between ΩminðqÞ and ΩmaxðqÞ as in the case of the

Fermi liquid.

As we have observed in the case of ImLðΩÞ for fixed
values of q, the comparisons between the Fermi liquid and

the semiholographic non-Fermi liquid are complicated by

the presence of the frequency cutoff ωc. Nevertheless, as in

the case of ImLðΩ; qÞ, we will find the comparisons with

the Fermi liquid are easier to do when we study ReLðΩ; qÞ
as a function of q for fixed values of Ω.

We can readily compare the Fermi liquid ReLFLðΩ; qÞ
(see Fig. 11) with ReLðΩ; qÞ of the semiholographic non-

Fermi liquid (see Fig. 12) as a function of q for various

fixed values of Ω. We set the values of all parameters of the

semiholographic non-Fermi liquid as just above.

Let us first consider the case of Ω < ϵF (i.e. Ω < 0.16 in

the case of the semiholographic non-Fermi liquid). We

recall that when Ω < ϵF, a horizontal line corresponding to

a fixed value of Ω passing through the particle-hole

continuum has four special points, namely those which

hit the boundaries ΩminðqÞ and ΩmaxðqÞ at q1 and q4
respectively, and the two points q2 and q3 where it
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FIG. 9. Plots of ReLFLðΩÞ for various fixed values of q are

shown above.

0.2 0.4 0.6 0.8 1.0

Re[L( ,q)]

q=0.01

q=0.05

q=0.1

q=0.2

q=0.3

q=0.4

q=0.5

q=0.6

q=0.7

q=0.8

q=0.9

q=1.0

–15

–10

–5

0

5

10

FIG. 10. Plots of ReLðΩÞ for various fixed values of q are

shown above. We have made the same choices of parameters as

for ImLðq;ΩÞ in Fig. 7, i.e. for ν ¼ 2=3, ϕ ¼ π=4, kF ¼ 0.4,

m ¼ 0.5 and jζj ¼ 1.
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intersects the boundary of the inner core ΩintðqÞ such that

q1 < q2 < q3 < q4. In the domain Ω < ϵF, the compar-

isons between the Fermi liquid and the semiholographic

non-Fermi liquid can be based on the following points.
13

(1) In the range q < q1 at fixed Ω, ReLFLðqÞ increases
dramatically in the Fermi liquid case from zero to a

large positive value peaking sharply at q ¼ q1 (see

Fig. 11). In the semiholographic case, the behavior is

somewhat flat, however ∂2ReLðqÞ=∂q2 varies rap-

idly around q ¼ q1 as reflected by change in the

curvatures of the plots in Fig. 12. Furthermore, if we

increase ν keeping ϕ near-extremal and all other

parameters the same as in Fig. 8, even the semi-

holographic behaviour becomes more Fermi-liquid-

like. This is evident from Fig. 13 where we have

plotted ReLðqÞ for various values of ν at a fixed

representative value of Ω set to 0.01. For ν ¼ 5=6,
6=7 and 7=8 particularly, ReLðqÞ at Ω ¼ 0.01

increases sharply with q for q < q1 staying positive

definite in sign and at q ¼ q1 there is a peak as in the
Fermi liquid case, although it is slightly blurred by

the incoherent nature of the quasinormal mode

excitations.

(2) In the region q1 < q < q2, both in the cases of the

Fermi liquid and semiholographic non-Fermi liquid

ReLðqÞ is monotonically decreasing as we can find

from Figs. 11 and 12. Note that the point q ¼ q2 is
slightly blurred by the incoherent nature of the

quasinormal mode excitations in the semiholo-

graphic case. If we increase ν toward 1 keeping ϕ

near-extremal, ReLðqÞ also changes sign as in the

Fermi liquid case at an intermediate value of q as

evident from Fig. 13.

(3) In the inner core region q2 < q < q3, the behaviour
of ReLðqÞ is relatively flat as in the case of the

Fermi liquid ReLFLðqÞ. This flat behavior is also

conserved as we increase ν keeping ϕ near-extremal

as evident from Fig. 13. Note that at Ω ¼ 0, q2
coincides with q1 and q3 coincides with q4 making

the flat region prominent. As we increase Ω toward

ϵF (which equals 0.16 in the semiholographic case),

this flat region corresponding to the inner core

shrinks to zero.

(4) For q > q3, both ReLðqÞ and ReLFLðqÞ increase

monotonically with increasing q from a negative

value towards 0 (see Figs. 11 and 12). However, in

case of the Fermi liquid, there is a sharp kink at

q ¼ q4 corresponding to the other boundary of the

particle-hole continuum. This kink is replaced by a

region where ∂2ReLðqÞ=∂q2 varies rapidly in the

semiholographic case. This feature is also preserved

as we increase ν toward 1 keeping ϕ near-extremal

and all other parameters the same as evident

from Fig. 13.

To summarize, one can conclude that the features of the

Fermi liquid corresponding to the inner core region are

preserved in the semiholographic case but the boundaries of

the particle-hole continuum are blurred out with peaks/

kinks replaced by small regions where ∂2ReLðqÞ=∂q2
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FIG. 12. Plots of ReLðqÞ for various fixed values of Ω are

shown above. We have made the same choices of parameters as

for ImLðq;ΩÞ in Fig. 6, i.e. for ν ¼ 2=3, ϕ ¼ π=4, kF ¼ 0.4,

m ¼ 0.5 and jζj ¼ 1.

0.5 1.0 1.5 2.0 2.5 3.0 3.5

q

kF

–1

1

2

3

4

m
Re[L( 2 m

kF
2 ,

q

kF
)]

2 m

kF
2 =0.1

2 m

kF
2 =0.3

2 m

kF
2 =0.6

2 m

kF
2 =0.8

2 m

kF
2 =1.0

2 m

kF
2 =1.5

2 m

kF
2 =2.0

2 m

kF
2 =2.5

FIG. 11. Plots of ReLFLðqÞ for various fixed values of Ω are

shown above.
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FIG. 13. Plots of ReLðqÞ for Ω ¼ 0.01 for ν ¼ n=ðnþ 1Þ and
ϕ ¼ π=ðnþ 2Þ with n ¼ 4, 5, 6 and 7. The other parameters

are kept the same as in previous plots, i.e. kF ¼ 0.4, m ¼ 0.5

and jζj ¼ 1.

13
We again remind the reader that the comparisons can only be

approximate because there is an inherent ambiguity in defining
q1, q2, q3 and q4 exactly in the case of the semiholographic non-
Fermi liquid.
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varies rapidly particularly for values of ν closer to 1=2
(eg:ν ¼ 2=3). Increasing ν keeping ϕ near-extremal and all

other parameters the same, makes the first boundary Ω ¼
Ωmaxðq1Þ more visible as a peak with a positive value as in

the Fermi liquid case, but the other boundaryΩ ¼ Ωminðq4Þ
remains blur in the above sense. These conclusions are thus

very similar to those we made for ImLðqÞ at fixed values

of Ω.

Finally, we can compare ReLFLðqÞ (see Fig. 11) with

ReLðqÞ of the semiholographic non-Fermi liquid (see

Fig. 12) for various fixed values of Ω > ϵF where the inner

core region is absent. In the case of the Fermi liquid, there are

two sharp kinks corresponding to values of q where Ω ¼
Ωmaxðq1Þ andΩ ¼ Ωminðq2Þ, i.e. where the horizontal line at
fixed Ω intersects the boundaries of the particle-hole

continuum (see Fig. 11). These sharp kinks are replaced

by regions where ∂2ReLðqÞ=∂q2 varies rapidly in the

semiholographic case (see Fig. 12) as near inflexion points.

However, ReLðqÞ changes sign at an intermediate value of q

like the Fermi liquid ReLFLðqÞ only if Ω is not much larger

than ϵF. ReLðqÞ stays positive definite for fixed Ω ≫ ϵF
retaining the features of the particle-hole continuum boun-

daries in the blurred form of small regions where

∂2ReLðqÞ=∂q2 varies rapidly. Once again, our conclusions
here agree with those we made for the case of ImLðqÞ at
fixed values of Ω > ϵF.

V. RANDOM PHASE APPROXIMATION FOR

EFFECTIVE COULOMB INTERACTIONS

The medium modifications of the Coulomb interactions

between the electrons can be understood via the random

phase approximation which actually stands for summing

over ring diagrams involving the bare Coulomb interaction.

The RPA has been extensively used in many-body physics

since the 1950s. In metals, it is justified by the long range

character of the bare Coulomb repulsion, which makes it

possible to treat the response of the electronic fluid to a slowly

varying perturbation by a self-consistent field approach. A

detailed discussion of RPA in this context can be found in

chapter 5 of the book by Pines and Nozières [41].

Two objects of interest here are (i) the improved

generalized Lindhard function which we will denote as

Limp and (ii) the dynamically screened Coulomb potential

which we will denote as Vs. Both of these objects can be

obtained by summing over ring diagrams shown in Figs. 14

and 15 respectively. The bubbles in these diagrams stand

for the one-loop generalized Lindhard function which we

have studied in the previous section and the wavy lines

denote the Coulomb potential.

It is clear from Figs. 14 and 15 that summing over the

ring diagrams we obtain

Limpðq;ΩÞ ¼ Lðq;ΩÞ
1 − VðqÞLðq;ΩÞ ; ð34Þ

Vsðq;ΩÞ ¼
VðqÞ

1 − VðqÞLðq;ΩÞ : ð35Þ

Since we are interested in particular in 2D non-Fermi

liquids, we consider a potential VðqÞ ¼ e2=ð2ϵbqÞ.14
In order to investigate collective response it will be

useful to define the retarded L
imp
R as below:

L
imp
R ðq;ΩÞ ¼ LRðq;ΩÞ

1 − VðqÞLRðq;ΩÞ
: ð36Þ

It follows that analogous to LR, L
imp
R also satisfies:

ReL
imp
R ðq;ΩÞ ¼ ReLimpðq;ΩÞ;

ImL
imp
R ðq;ΩÞ ¼ ImLimpðq;ΩÞsgnðΩÞ ð37Þ

at zero temperature. Once again given that

Lðq;ΩÞ¼Lðq;−ΩÞ, we obtain Limpðq;ΩÞ ¼ Limpðq;−ΩÞ,
ReL

imp
R ðq;ΩÞ ¼ ReL

imp
R ðq;−ΩÞ and ImL

imp
R ðq;ΩÞ ¼

−ImL
imp
R ðq;−ΩÞ.

Below we will study the effective electronic interactions

and collective behavior of our semiholographic model and

compare them to Fermi-liquid behavior. We will find

++

+ +  .. . .

FIG. 14. The ring diagrams summing which we obtain

Limpðq;ΩÞ.

+

+ +  .. . .

FIG. 15. The ring diagrams summing which we obtain

Vsðq;ΩÞ.

14
In the cuprates, for example, the electrons are mechanically

confined in a 2D plane. Although the electric field lines are not
confined to this plane, we need to do a 2D Fourier transform of
the Coulomb potential e2=ð4πϵbjrjÞ. This gives the 1=q potential
with a prefactor determined by the dielectric constant ϵb of the
material.
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striking and unexpected contrasts, and we will argue that

these contrasts result from the character of the continuum

outside of the inner core region.

A. Plasma oscillations

In order to trigger plasma oscillations in an electronic

system, we consider a kick to the system with a

time-dependent inhomogeneous external electric potential

of the form:

ϕextðx; tÞ ¼ ð2πÞ2ϕ0 cosðq · xÞδðtÞ: ð38Þ

The above perturbation induces a time-dependent change in

the charge density δρðx; tÞ which can be obtained from:

δρðx; tÞ ¼ −e

Z

d2k

ð2πÞ2
Z

∞

−∞

dΩ

ð2πÞ e
iðk·x−ΩtÞLimp

R ðk;ΩÞϕextðk;ΩÞ

¼ −eϕ0ð2πÞ−1 cosðq · xÞ
Z

∞

−∞

dΩe−iΩtL
imp
R ðq;ΩÞ

¼ −eϕ0ð2πÞ−1 cosðq · xÞ
Z

∞

−∞

dΩðReLimp
R ðq;ΩÞ cosðΩtÞ − ImL

imp
R ðq;ΩÞ sinðΩtÞÞ

¼ −2eϕ0ð2πÞ−1 cosðq · xÞ
Z

∞

0

dΩðReLimpðq;ΩÞ cosðΩtÞ − ImLimpðq;ΩÞ sinðΩtÞÞ: ð39Þ

Due to the translational symmetry of the system, the spatial

variation of the response δρðx; tÞ at a fixed moment of time

t is the same as that of the external driving ϕext, i.e. of the

form cosðq · xÞ. Therefore, in order to study the time-

dependent response, we can set x ¼ 0 for any fixed value of

q and study

δρðx¼ 0; tÞ¼−2eϕ0ð2πÞ−1
Z

∞

0

dΩðReLimpðq;ΩÞcosðΩtÞ

− ImLimpðq;ΩÞsinðΩtÞÞ: ð40Þ

It is clear from the above expression that poles in L
imp
R ðΩÞ

at a fixed value of q will lead to a characteristic oscillation

in the induced δρðx ¼ 0; tÞ—this will be damped if the pole

lies far from the imaginary axis. Also it is clear from the

definition of Limp provided in Eq. (34) that a pole of Limp

can arise only from the vanishing of the denominator, i.e. at

ΩðqÞ ¼ Ωq − iγq where

1 ¼ VðqÞLRðq;Ωq − iγqÞ: ð41Þ

When γq ≪ Ωq, we will call the pole a proper pole. In this

case, the real and imaginary parts of the above equation can

be separated so that, expanding in γq, we can demand

1 ¼ VðqÞReLRðq;ΩqÞ ¼ VðqÞReLðq;ΩqÞ;

γq ¼
ImLRðq;ΩqÞ
∂ReLRðq;ΩÞ

∂Ω
jΩq

¼ sgnðΩqÞImLðq;ΩqÞ
∂ReLðq;ΩÞ

∂Ω
jΩq

: ð42Þ

A proper pole leads to an easily discernible oscillation

pattern of δρðx ¼ 0; tÞ with small damping. When γq ≠ 0,

Ωq can be identified numerically as the value of Ω at which

−ImLimpðΩÞ has a narrow (Lorentzian) peak that also

coincides with a zero of ReLimpðΩÞ at a fixed value of q.

When γq ¼ 0, ReLimpðΩÞ diverges at Ω ¼ Ωq while

ImLimpðΩÞ becomes a Delta function. For numerical pur-

poses however, ImLimpðΩÞ becomes a vanishing function.

Let us first study the case of the Fermi liquid. We set

e2=ð2ϵbÞ ¼ 1 for convenience so that for the case of

Coulombic interactions VðqÞ ¼ 1=q. To locate proper

poles, we need to study first the zeroes of XðqÞ ¼ q −

ReLimpðΩ; qÞ as clear from Eq. (42). As shown in Fig. 16,

we find that for q < qcrit ≈ 0.25kF, for each value of q there

exist two zeroes of XðqÞ.
However, at the smaller zero −ImLimpðΩÞ turns out to be

large giving a large γq > Ωq [note Eq. (42) then is strictly

not valid here], and at the larger zero ImLimpðΩÞ vanishes
so that γq ¼ 0 unless q is very near qcrit. Therefore, the

smaller zero of XðqÞ is not a proper pole, but the larger zero
of XðqÞ is one with γq ¼ 0 and lies mostly outside of the

particle-hole continuum except when q ≈ qcrit. This is also
vindicated in plots shown in Figs. 17 and 18 where one sees

that ReLimpðΩÞ diverges at Ωq corresponding to the second

zero of XðqÞ for each q ≪ qcrit. Furthermore, Ωq lies

outside the domain (the particle-hole continuum) where

−ImLimpðΩÞ has a support implying γq ¼ 0. Although

−ImLimpðΩÞ is a delta function at Ωq when γq ¼ 0,

numerically however it appears as a vanishing function

outside the continuum. This pole Ωq which is nondissipa-

tive (since γq ¼ 0) in the RPA approximation is also called

the plasmon pole and can be shown to have a dispersion

relation ∝
ffiffiffi

q
p

for small q. Near q ¼ qcrit, γq is nonzero and

leads to Landau damping. Here, however γq is not small

and therefore the corresponding peak in −ImLimpðΩÞ is

also non-Lorentzian.
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These features are expected at weak coupling where

typically the collective excitation pole does not coexist with

the continuum. The gapless on-shell particle-hole excita-

tions of the Fermi surface constituting the continuum lead

to significant broadening of the collective excitation whose

presence becomes hard to detect.

Remarkably, the case of the semiholographic non-Fermi

liquid presents a somewhat different scenario. Naively,

since the spectral weight never vanishes for Ω ≠ 0 due to

presence of incoherent excitations, we do not expect any

sharply defined collective excitation of the system to exist.

Nevertheless, we have seen in the previous sections that
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FIG. 17. ReLimpðΩ; qÞ for the Fermi liquid as a function of Ω for various values of q.
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FIG. 18. −ImLimpðΩ; qÞ for the Fermi liquid as a function of Ω for various values of q. Note that −ImLimpðΩ; qÞ never diverges in the
continuum. The delta function peaks outside the continuum corresponding to the plasmonic poles where ReLimpðΩ; qÞ also diverges are
not shown in the above plots due to numerical limitations.
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FIG. 16. We see that in the case of the Fermi liquid, q − ReLimpðΩ; qÞ has two zeroes for each value of q < qcrit ≈ 0.25kF.
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although the continuum in the semiholographic non-Fermi

liquid cannot be thought of as particle-hole type excitations

outside of the inner core region, the kinematically deter-

mined boundaries denoted as ΩmaxðqÞ and ΩminðqÞ (see

Fig. 1) are preserved despite blurring of the sharp Fermi

liquid features. We will see below that the plasmonic

excitations arise in the semiholographic non-Fermi liquid

because both the real and imaginary parts of the generalized

Lindhard functions behave in the right way in the low

frequency tail of the continuum for q > 2kF.
Following our earlier discussion, we can readily identify

the proper poles of Limp in the three-dimensional plots of its

real and imaginary parts presented in Fig. 19 from the

Lorentzian peaks of −ImLimp which coincide with zeroes

of ReLimp. We have chosen e2=ð2ϵbÞ ¼ 1, ν ¼ 2=3,
kF ¼ 0.4, argðζÞ ¼ π=4 and all other parameters as in

the previous section. We find that we can clearly identify a

proper pole (with narrow width) for each value of q >
qcrit ≈ 1.4 which lies away from the inner core region.

For a better understanding of the plasmonic pole, we can

refer back to Fig. 12 where ReLðΩ; qÞ has been plotted as a
function of q respectively for various fixed values of

Ω < ωc. Firstly, it is not hard to see from Fig. 12 that

for Ω < 0.2, ReLðΩ; qÞ is not appreciably positive in a

sufficiently large range of q and that a solution for XðqÞ ¼
q − ReLðΩ; qÞ ¼ 0 cannot exist. However, for sufficiently

large Ω, it is also clear from Fig. 12 that ReLðΩ; qÞ is

positive definite and a solution toXðqÞ ¼ q − ReLðΩ; qÞ ¼
0 does exist.

15
The contour plot of−ImLimpðΩ; qÞwherewe

havemarked the peakswith black dots is shown in Fig. 20. It

is clear from this plot that well-defined plasmonic poles can

be found only above a threshold energy of about Ω ¼ 0.2

corresponding to what we have just inferred from Fig. 12.

Obviously this also implies that plasmonic poles exist only

for q > qcrit with qcrit ≈ 1.4.

We can also understandwhy the plasmonic poles arewell-

defined by referring back to Fig. 6 where ImLðΩ; qÞ has
been plotted as a function of q respectively for various fixed
values of Ω < ωc. First for a fixed Ω > 0.2, it is easy to

identify from Fig. 20 the value qpðΩÞ corresponding to

awell defined plasmonic polewhereΩ ¼ Ωqp
. As discussed

above qp > qcrit ≈ 1.4 for any Ω. One can verify from

Fig. 6 that ImLðΩ; qpðΩÞÞ is small, and furthermore

qpðΩÞ > qminðΩÞ, where qmin denotes the value of q for

which Ω ¼ ΩminðqminÞ, the (blurred) outer edge of the

kinematically determined continuum where ImLðqÞ

FIG. 19. Three-dimensional plots of real and imaginary parts ofLimpðq;ΩÞ for e2=ð2ϵbÞ ¼ 1, ν ¼ 2=3, kF ¼ 0.4, argðζÞ ¼ π=4 and all
other parameters as in the previous section.

FIG. 20. A contour plot of ImLimpðq;ΩÞ is shown with the

black dots indicating the maxima.

15
The reader can readily see that the line y ¼ q will intersect

the curves ReLðΩ; qÞ.
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changes its curvature rapidly and becomes a rapidly

decaying function. We can readily conclude from here that

the plasmonic poles Ωq should satisfy Ωq < ΩminðqÞ, i.e.
they must lie in the low frequency tail of the blurred outer

edge of the continuum (please refer to Fig. 1 for quick

visualisation). Since ΩminðqÞ exists only for q > 2kF,
clearly the threshold qcrit should also satisfy qcrit > 2kF
as indeed is the case

16

The plasmonic poles are thus a a relatively low frequency
and high momentum feature of the dynamics and our

arguments above indicate that they should exist in generic

semiholographic non-Fermi liquid models. This contrasts

with the 2D Fermi liquid case where the plasmons are low

momentum (but also low energy) features of the dynamics.

From Fig. 20, we also see that these poles (corresponding to

the well-defined peaks in this figure) satisfy an approx-

imately linear dispersion relation.

It is also clear from Fig. 20 that for q < 1.4, the peaks of

−ImLimpðΩÞ are very broad and reminiscent of Landau

damping features of the Fermi liquid. For q < 1.4, we

cannot really solve Eq. (41) but we identify the peaks by

minimising the modulus of the denominator of Limp, i.e.

jXðqÞj ¼ ðq − ReLRðq;ΩÞÞ2 þ ðImLRðq;ΩÞÞ2

We also note that for q < 1.4, the peaks of −ImLimp are

nondispersive meaning that ∂Ωq=∂q is small compared to

the average width of the peaks.

The corresponding plots for δρðtÞ in Fig. 21 at x ¼ 0

clearly demonstrate the behavior of the plasma oscillations

that result from these features of Limp; one can see that for

q < 1.4, the oscillation frequencies are nearly independent

of q (for q < 1 they appear to be decaying but this is a

cutoff dependent effect). For q > 1, the oscillations are

damped only slightly over the time-scale of oscillation with

the oscillation frequency growing with q approximately in a

linear fashion. It is to be noted that ImLimpðΩ; qÞ can be

measured separately via electron energy-loss spectroscopy

[42]. Therefore, one can also confirm the existence of the

unusual semiholographic plasmonic poles through this

method.

B. Dynamic screening and possible pairing instability

Dynamic screening can be studied via the effective

screened potential Vsðq;ΩÞ defined in (35). For a better

physical understanding, it is more useful to study VsðΩ; rÞ
defined as the 2-D Fourier transform of Vsðq;ΩÞ, i.e.

VsðΩ;rÞ¼ ð2πÞ−2
Z

2π

0

dθ

Z

∞

0

dqqeiqrcosðθÞVsðq;ΩÞ: ð43Þ

The plots in Fig. 22 and 23 present the real and

imaginary parts of VsðΩ; rÞ for ν ¼ 2=3 and other param-

eters exactly the same as in the above subsection. Note we

cannot trust the computations for small values of r because
of our semi-holographic effective model is an effective

infrared description.

The above plots show that for large values of Ω,

ReVsðΩ; rÞ develops substantially deep wells where it

becomes attractive—thesewells become deeper as the value
ofΩ increases. Note although ImVsðΩ; qÞ < 0 for all values

of Ω and q implying we cannot have a runaway linear

2 4 6 8 10 12
t

–0.6

–0.4

–0.2

0.2

0.4

0.6

(t,x=0)

q=0.1

q=0.5

q=1.0

q=1.5

q=2.0

q=2.5

FIG. 21. The response of the induced δρðtÞ at x ¼ 0 for the

semi-holographic non-Fermi liquid.
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FIG. 22. ReVsðΩ; rÞ shown as a function of r for various fixed
values of Ω.
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FIG. 23. ImVsðΩ; rÞ shown as a function of r for various fixed
values of Ω.

16
By looking at Fig. 13 we can see that there is some value of ν,

between 2=3 and 7=8, at which ReLðΩ ¼ 0.01; qÞ is close to zero
around q ¼ 0. In this cases there will be another solution to
XðqÞ ¼ 0 at small q and Ω, so there can be another plasmonic
mode at low frequency. However this is much more damped than
the one we have discussed.
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response of the system to the influence of externally

introduced moving charges, ImVsðΩ; rÞ also alternate in

sign not exactly in phase with ReVsðΩ; rÞ. The latter implies

that somepart of the attractive regions ofReVsðΩ; rÞmaynot

decay and can lead to production of sufficiently long-lived

pairs. Therefore, the system can have a nonlinear instability

particularly in the large Ω region, i.e. when the externally

introduced charges are subjected to oscillations at time-scales

comparable to those of the system. We will study the static

limit soon where we will find usual but suppressed Friedel

oscillations.

The above features of VsðΩ; rÞ are unexpected and they

also point towards a novel dynamical mechanism of pair

formation from pure effective electronic interactions (for

electrons living in a constrained environment imposed by

the lattice) without the need for mediation via phonons (i.e.

excitations of the lattice itself). Since the quasi-particle type

excitations in our semiholographic effective framework are

not sharply defined, they can have substantial spectral

weight in large Ω region for the stable attractive nature of

VsðΩ; rÞ to lead to pair formation with long lifetimes. For

this mechanism to work, there needs to be sufficient

spectral weight of each member in the pair in the large

Ω region whilst the attractive wells of VsðΩ; rÞ need to be

sufficiently deep. Therefore, to see whether this mechanism

can lead to an unconventional superconducting instability

of the system, we need to first examine the dynamical pair

susceptibility and then how it is modified by the effective

dynamical Coulomb interactions as examined carefully in

[35] in the context of Fermi liquid. We leave this study for

the future. At this point, we merely observe that just as in

case of induced plasma oscillations via Limp, the break-

down of quasiparticle picture and the presence of particle-

hole asymmetry can together contribute to a novel mecha-

nism of pair formation which cannot exist in a weakly

coupled system. A similar argument for a mid-infrared
scenario where the plasmonic pole can play an important

dynamical role has been presented by Leggett earlier in

order to explain experimental data [36].

C. Static limit and Friedel-like oscillation

Consider the introduction of a static impurity charge

−Ze into the system. The change in the electronic density

induced by this charge is given by:

δρðrÞ ¼ −ð2πÞ−2Z
Z

∞

0

dq

×

Z

2π

0

dθqeiqr cosðθÞLimpðq;Ω ¼ 0Þ e2

2ϵbq

¼ −ð8π2ϵbÞ−1Ze2
Z

∞

0

dq

×

Z

2π

0

dθeiqr cosðθÞLimpðq;Ω ¼ 0Þ; ð44Þ

where r denotes the radial distance from the external static

charge impurity. We have plotted δρðrÞ n Fig. 24 in the case
of the semiholographic non-Fermi liquid with ν ¼ 2=3
kF ¼ 0.4, Z ¼ 1 and all other parameters the same as in the

previous subsections.

It is clear that δρðrÞ shows a Friedel type oscilla-

tion although we do not have a Kohn singularity in

Lðq;Ω ¼ 0Þ or Limpðq;Ω ¼ 0Þ at q ¼ 2kF—in our case

the q-derivative of Lðq;Ω ¼ 0Þ is large but not diver-

gent. However, the reasonably sharp transition in

Lðq;Ω ¼ 0Þ at q ¼ 2kF as visible clearly in Fig. 12

does lead to oscillations in δρðrÞ as in a Fermi liquid

although these are very suppressed. It is worthwhile to

note that δρðrÞ is always greater than zero signifying

that the oscillations in sign in Vsðq;Ω ¼ 0Þ shown in

Fig. 22 do not have sufficiently high amplitude to

change the sign of δρðrÞ in the static limit.

VI. CONCLUSIONS AND OUTLOOK

To conclude, we find that although the semiholo-

graphic non-Fermi liquids retain many features of the

Fermi liquid particularly in the inner core of the con-

tinuum, the phenomenological manifestations are differ-

ent. The most unexpected finding is the appearance of a

well-defined plasmonic collective excitation above a

energy (and momentum) threshold set by the boundary

of the inner core region and the universal character of the

continuum. Furthermore, it has an approximately linear

dispersion relation. Such a type of behavior can arise

from a fundamentally new nature of the continuum

outside of the inner core region.

We have also observed that at higher frequencies the

dynamic screened potential can lead to formation of pairs

with long lifetimes and therefore trigger a superconducting

instability. We plan to investigate this in detail in a

forthcoming publication.

Our calculation of the generalized Lindhard function has

some similarities with the computation of the DC and
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FIG. 24. The induced charge density as a result of the

introduction of static charge shows suppressed Friedel oscillation.
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optical conductivities presented in [43]. In this work, the

authors have used a purely holographic model and have

considered the effect of the bulk fermionic loop with bulk

fermionic propagators that produce non-Fermi-liquid like

spectral functions in the dual theory. Even though the bulk

loop contribution is 1=N2 suppressed compared to the tree

level contribution (given by a single photon propagator in

the bulk), it turns out that it is responsible for the leading

low temperature and low frequency behavior which is

nonanalytic and also of a non-Fermi-liquid type. There are

several technical differences with our calculations never-

theless: first of all, our computation is at zero temperature

and finite momentum, whereas the computation of [43] has

been performed at finite temperature and zero momentum.

Furthermore, not only the fermionic propagators but also

the bulk vertex plays a crucial role in determining the low

temperature and low frequency behavior in the computa-

tion of [43]. In our case, the result has been obtained

without including the vertex corrections as discussed

before. Finally, a certain ad-hoc prescription for the

analytic continuation from the Euclidean signature has

been utilized in order to derive the real-time bulk loop

contribution since it is not known how to compute the bulk

loop in the Lorentzian signature directly. In our case we

have been able to perform the loop computation employing

standard techniques without any need for a specific

prescription. Despite all these differences, it would be

interesting to see if the subleading 1=N2 effects in our

semiholographic models arising from bulk loops and

vertices can give significant contributions at low temper-

atures and low frequencies as in case of the holographic

computation of [43].

Another interesting subject for future investigations is

the nonequilibrium spectral function and statistical func-

tion of the fermionic excitations particularly because the

time-evolution of these following a global quench/energy

injection can be measured experimentally via a variety of

methods. In a recent work, it has been found that the gross

features of the non-equilibrium evolution of the holo-

graphic spectral function are universal being determined

just by the difference between the final and initial

temperatures and the quenching/energy-injection time

[44]. This leads to the exciting possibility that one can

construct a very general quantum kinetic theory of the

generalized quasiparticles of the semiholographic non-

Fermi liquid which are stable from interactions at the

Fermi surface.
17
This quantum kinetic theory can readily

include the nonequilibrium evolution of the background

geometry representing the holographic IR-CFT degrees of

freedom.

The main message of our work is that semiholographic

systems have remarkable features which cannot be

obtained purely from a weak coupling kinetic picture or

from a strong coupling holographic picture exclusively.

Furthermore, these features are robust, generic and surpris-

ing. In the context of non-Fermi liquids, we hope that the

semiholographic picture with suitable modifications dis-

cussed here can be subjected to experimental confrontation

in the near future.
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APPENDIX: SPECTRAL REPRESENTATION

In this appendix we consider some issues that arise

because of the lack of integrability of the spectral function;

these issues can make the model sensitive to the UV

completion, but we could not perform a complete analysis;

for this reason we mostly restricted our investigation to the

case ν > 1=2.
In Sec. III we derived the representation (15) for

the imaginary part of the Lindhard function as a convo-

lution of spectral functions; the textbook derivation of this

relation starts from the spectral representation of the

propagator:

GRðω; ϵÞ ¼
Z

AðE; ϵÞ
ω − Eþ iη

dE; ðA1aÞ

AðE; ϵÞ ¼ −ImGR ¼ jEj1=2
�

θðEÞ ζ2

ðζ1E1=2 − ϵÞ2 þ ζ22EÞ

þ θð−EÞ ζ1

ðζ2jEj1=2 þ ϵÞ2 þ ζ21jEjÞ

�

: ðA1bÞ

Inserting this expression in the loop integral, and

performing the integration over ω first, one finds again

(15). However, the exchange of the ω and the E integral is

not always legitimate; in the case ν ¼ 1=2, one can perform
the ω integration analytically and the difference can be seen

explicitly.

It is simplest to consider the case Ω ¼ 0; the loop

integral gives (notice that ~ζ ¼ iζ�)

17
Note at strong coupling the statistical and spectral func-

tions evolve in a nontrivial fashion. The evolution of both of
these have to be evaluated separately. For this we need to find
a general prescription for obtaining the nonequilibrium stat-
istical function too—some of the authors are working in this
direction.
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Z

dωGFðω; ϵ1ÞGFðω; ϵ2Þ ¼ −2i

Z

∞

0

dω

�

1

ðζ ffiffiffiffi

ω
p

− ϵ1Þðζ
ffiffiffiffi

ω
p

− ϵ2Þ
þ 1

ðiζ� ffiffiffiffi

ω
p þ ϵ1Þðiζ�

ffiffiffiffi

ω
p þ ϵ2Þ

�

¼ −
4i

ϵ1 − ϵ2

Z

∞

0

du

�

u

ζu − ϵ1
−

u

ζu − ϵ2
−

u

iζ�uþ ϵ1
þ u

iζ�uþ ϵ2

�

¼ −
4

ϵ1 − ϵ2
ðϵ1fðϵ1Þ − ϵ2fðϵ2ÞÞ ðA2Þ

where in the middle line we changed the integration

variable to u ¼ ffiffiffiffi

ω
p

, and we have defined in the last line

fðϵÞ ¼ 1

jζj2
Z

∞

0

du

�

iζ�

ζu − ϵ
þ ζ

iζ�uþ ϵ

�

: ðA3Þ

The divergence of the integral in fðϵÞ is purely real. The

imaginary part is convergent and well-defined, and one

can easily see that it is in fact independent of ϵ, so that

the energy dependence cancels in (A2). It can be

evaluated:

Imf ¼
Z

∞

0

du
ðζ1 − ζ2Þðζ21 þ 4ζ1ζ2 þ ζ22Þu2 − 4ζ1ζ2u − ðζ1 − ζ2Þ

jζj2ðjζj2u2 − 2ζ1uþ 1Þðjζj2u2 þ 2ζ2uþ 1Þ ¼ π

2jζj2 sinð2ϕÞ:

Clearly this constant will create an infrared divergence

when inserted in the momentum integral, whereas there is

no divergence if the ω integral is exchanged with the E
integral.

This problem appears only for ν ≤ 1=2; given

the simplicity of the result, it is possible that for

ν ¼ 1=2 case one could devise a simple subtraction

procedure, but it is not clear if it possible to deal with

the ν < 1=2 case.

The problem disappears if we regularize the high-

frequency behavior by taking a crossover to a normal

Fermi liquid. This is achieved by taking the retarded

propagator as follows:

GRðω;kÞ ¼
1

ζω
1
2 þ ω − ϵk

: ðA4Þ

In this case, again at Ω ¼ 0 we find an expression like

(A2) but with f replaced by

FðϵÞ ¼
Z

∞

0

du

�

iu

ζuþ u2 − ϵ
−

iu

iζ�uþ u2 þ ϵ

�

¼ −
π

2
þ 2Re

Z

∞

0

du
iu

ζuþ u2 − ϵ
; ðA5Þ

This is finite, and the imaginary part is zero, as evident from

the last expression. The same considerations apply at

Ω ≠ 0, we refrain from giving the expressions that do

not add any new insight.
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