
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2014

Composable Scheduler Activations for Haskell Composable Scheduler Activations for Haskell

KC Sivaramakrishnan
Purdue University, chandras@cs.purdue.edu

Tim Harris
Oracle Labs, timothy.l.harris@oracle.com

Simon Marlow
Facebook UK Ltd., smarlow@fb.com

Simon Peyton Jones
Microsoft Research, Cambridge, simonpj@microsoft.com

Report Number:
14-004

Sivaramakrishnan, KC; Harris, Tim; Marlow, Simon; and Peyton Jones, Simon, "Composable Scheduler

Activations for Haskell" (2014). Department of Computer Science Technical Reports. Paper 1774.

https://docs.lib.purdue.edu/cstech/1774

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

Composable Scheduler Activations for Haskell

KC Sivaramakrishnan

Purdue University

chandras@cs.purdue.edu

Tim Harris1

Oracle Labs

timothy.l.harris@oracle.com

Simon Marlow1

Facebook UK Ltd.

smarlow@fb.com

Simon Peyton Jones

Microsoft Research, Cambridge

simonpj@microsoft.com

Abstract

The runtime for a modern, concurrent, garbage collected

language like Java or Haskell is like an operating system:

sophisticated, complex, performant, but alas very hard to

change. If more of the runtime system were in the high level

language, it would be far more modular and malleable. In

this paper, we describe a novel concurrency substrate design

for the Glasgow Haskell Compiler (GHC) that allows mul-

ticore schedulers for concurrent and parallel Haskell pro-

grams to be safely and modularly described as libraries in

Haskell. The approach relies on abstracting the interface to

the user-implemented schedulers through scheduler activa-

tions, together with the use of Software Transactional Mem-

ory (STM) to promote safety in a multicore context.

1. Introduction

High performance, multicore-capable runtime systems (RTS)

for garbage-collected languages have been in widespread

use for many years. Examples include virtual machines

for popular object-oriented languages such as Oracle’s Java

HotSpot VM [12], IBM’s Java VM [13], Microsoft’s Com-

mon Language Runtime (CLR) [19], as well as functional

language runtimes such as Manticore [22], MultiMLton [27]

and the Glasgow Haskell Compiler (GHC) [8].

These runtime systems tend to be complex monolithic

pieces of software, written not in the high-level source lan-

guage (Java, Haskell, etc), but in an unsafe, systems pro-

gramming language (usually C or C++). They are highly

concurrent, with extensive use of locks, condition variables,

timers, asynchronous I/O, thread pools, and other arcana. As

a result, they are extremely difficult to modify, even for their

own authors. Moreover, such modifications typically require

a rebuild of the runtime, so it is not an easy matter to make

changes on a program-by-program basis, let alone within a

single program.

1 This work was done at Microsoft Research, Cambridge.

[Copyright notice will appear here once ’preprint’ option is removed.]

This lack of malleability is particularly unfortunate for

the thread scheduler, which governs how the computational

resources of the multi-core are deployed to run zillions of

lightweight high-level language threads. A broad range of

strategies are possible, including ones using priorities, hi-

erarchical scheduling, gang scheduling, and work stealing.

Different strategies might suit different multi-cores, or dif-

ferent application programs or parts thereof. The goal of this

paper is, therefore, to allow programmers to write a User

Level Scheduler (ULS), as a library written the high level

language itself. Not only does this make the scheduler more

modular and changeable, but it can readily be varied between

programs, or even within a single program.

The difficulty is that the scheduler interacts intimately

with other aspects of the runtime such as transactional mem-

ory or blocking I/O. Our main contribution is the design

of an interface that allows expressive user-level schedulers

to interact cleanly with these low-level communication and

synchronisation primitives:

• We present a new concurrency substrate design for

Haskell that allows application programmers to write

schedulers for Concurrent Haskell programs in Haskell

(Section 3). These schedulers can then be plugged-in as

ordinary user libraries in the target program.

• By abstracting the interface to the ULS through scheduler

activations, our concurrency substrate seamlessly inte-

grates with the existing RTS concurrency support such as

MVars, asynchronous exceptions [16], safe foreign func-

tion interface [17], software transactional memory [10],

resumable black-holes [20], etc. The RTS makes upcalls

to the activations whenever it needs to interact with the

ULS. This design absolves the scheduler writer from hav-

ing to reason about the interaction between the ULS and

the RTS, and thus lowering the bar for writing new sched-

ulers.

• Concurrency primitives and their interaction with the

RTS are particularly tricky to specify and reason about.

An unusual feature of this paper is that we precisely

formalise not only the concurrency substrate primitives

(Section 5), but also their interaction with the RTS con-

currency primitives (Section 6).

• We present an implementation of our concurrency sub-

strate in GHC. Experimental evaluation indicate that the

1 2014/3/26

 Runtime System

MVar Safe FFI

GC

Scheduler

Async
Exception

STM

Concurrent Application

Written by: Written in:

Application
Developer

Language
Developer

Haskell

C

Figure 1. The anatomy of the Glasgow Haskell Compiler

runtime system

performance of ULS’s is comparable to the highly opti-

mised default scheduler of GHC (Section 7).

2. Background

To understand the design of the new concurrency substrate

for Haskell, we must first give some background on the

existing RTS support for concurrency in our target platform

– the Glasgow Haskell Compiler (GHC). We then articulate

the goals of our concurrency substrate.

2.1 The GHC runtime system

GHC has a sophisticated, highly tuned RTS that has a rich

support for concurrency with advanced features such as

software transactional memory [10], asynchronous excep-

tions [16], safe foreign function interface [17], and transpar-

ent scaling on multicores [9]. The Haskell programmer can

use very lightweight Haskell threads, which are executed

by a fixed number of Haskell execution contexts, or HECs.

Each HEC is in turn animated by an operating system thread;

in this paper we use the term tasks for these OS threads, to

distinguish them from Haskell threads. The choice of which

Haskell thread is executed by which HEC is made by the

scheduler.

GHC’s current scheduler is written in C, and is hard-

wired into the RTS (Figure 1). It uses a single run-queue

per processor, and has a single, fixed notion of work-sharing

to move work from one processor to another. There is no

notion of thread priority; nor is there support for advanced

scheduling policies such as gang or spatial scheduling. From

an application developer’s perspective, the lack of flexibility

hinders deployment of new programming models on top of

GHC such as data-parallel computations [4, 15], and appli-

cations such as virtual machines [7] and web-servers [11]

that can benefit from the ability to define custom scheduling

policies.

2.2 The challenge

Because there is such a rich design space for schedulers, our

goal is to allow a user-level scheduler (ULS) to be written

in Haskell, giving programmers the freedom to experiment

with different scheduling or work-stealing algorithms. In-

deed, we would like the ability to combine multiple ULS’s

in the same program. For example, in order to utilise the best

scheduling strategy, a program could dynamically switch

from a priority-based scheduler to gang scheduling when

switching from general purpose computation to data-parallel

computation. Applications might also combine the sched-

ulers in a hierarchical fashion; a scheduler receives compu-

tational resources from its parent, and divides them among

its children.

This goal is not not easy to achieve. The scheduler inter-

acts intimately with other RTS components including

• MVars and transactional memory [10] allow Haskell

threads to communicate and synchronise; they may cause

threads to block or unblock.

• The garbage collector must somehow know about the

run-queue on each HEC, so that it can use it as a root

for garbage collection.

• Lazy evaluation means that if a Haskell thread tries to

evaluate a thunk that is already under evaluation by an-

other thread (it is a “black hole”), the former must block

until the thunk’s evaluation is complete [9]. Matters are

made more complicated by asynchronous exceptions,

which may cause a thread to abandon evaluation of a

thunk, replacing the thunk with a “resumable black hole”.

• A foreign-function call may block (e.g. when doing I/O).

GHC’s RTS has can schedule a fresh task (OS thread)

to re-animate the HEC, blocking the in-flight Haskell

thread, and scheduling a new one [17].

All of these components do things like “block a thread”

or ”unblock a thread” that require interaction with the sched-

uler. One possible response, taken by Li et al [14] is to pro-

gram these components, too, into Haskell. The difficulty is

that all they are intricate and highly-optimised. Moreover,

unlike scheduling, there is no call from Haskell’s users for

them to be user-programmable.

Instead, our goal is to tease out the scheduler implemen-

tation from rest of the RTS, establishing a clear API between

the two, and leaving unchanged the existing implementation

of MVars, STM, black holes, FFI, and so on.

Lastly, schedulers are themselves concurrent programs,

and they are particularly devious ones. Using the facilities

available in C, they are extremely hard to get right. Given

that the ULS will be implemented in Haskell, we would like

to utilise the concurrency control abstractions provided by

Haskell (notably transactional memory) to simplify the task

of scheduler implementation.

3. Design

In this section, we describe the design of our concurrency

substrate and present the concurrency substrate API. Along

2 2014/3/26

the way, we will describe how our design achieves the goals

put forth in the previous section.

3.1 Scheduler activation

Our key observation is that the interaction between the

scheduler and the rest of the RTS can be reduced to two

fundamental operations:

1. Block operation. The currently running thread blocks

on some event in the RTS. The execution proceeds by

switching to the next available thread from the scheduler.

2. Unblock operation. The RTS event that a blocked thread

is waiting on occurs. After this, the blocked thread is

resumed by adding it to the scheduler.

For example, in Haskell, a thread might encounter an

empty MVar while attempting to take the value from it2.

In this case, the thread performing the MVar read operation

should block. Eventually, the MVar might be filled by some

other thread (analogous to lock release), in which case, the

blocked thread is unblocked and resumed with the value

from the MVar. As we will see, all of the RTS interactions

(as well as the interaction with the concurrency libraries) fall

into this pattern.

Notice that the RTS blocking operations enqueue and

dequeue threads from the scheduler. But the scheduler is

now implemented as a Haskell library. So how does the RTS

find the scheduler? We could equip each HEC with a fixed

scheduler, but it is much more flexible to equip each Haskell

thread with its own scheduler. That way, different threads

(or groups thereof) can have different schedulers.

But what precisely is a “scheduler”? In our design, the

scheduler is represented by two function values, or sched-

uler activations3. Every user-level thread has a dequeue ac-

tivation and an enqueue activation. The activations provide

an abstract interface to the ULS to which the thread belongs

to. At the very least, the dequeue activation fetches the next

available thread from the ULS encapsulated in the activation,

and the enqueue activation adds the given thread to the en-

capsulated ULS. The activations are stored at known offsets

in the thread object so that the RTS may find it. The RTS

makes upcalls to the activations to perform the enqueue and

dequeue operations on a ULS.

Figure 2 illustrates the modified RTS design that supports

the implementation of ULS’s. The idea is to have a minimal

concurrency substrate which is implemented in C and is a

part of the RTS. The substrate not only allows the program-

mer to implement schedulers as Haskell libraries, but also

enables other RTS mechanisms to interface with the user-

level schedulers through upcalls to the activations.

Figure 3 illustrates the steps associated with blocking on

an RTS event. Since the scheduler is implemented in user-

2 This operation is analogous to attempting to take a lock that is currently

held by some other thread.
3 The term “activation” comes from the operating systems literature [1]

 Runtime System

MVar Safe FFI

GC

Conc
Substrate

Async
Exception

STM

Concurrent Application

Written by: Written in:

Application
Developer

Language
Developer

Haskell

C

User-level Scheduler
Application
Developer

HaskellActivation
Interface

Upcall

Figure 2. New GHC RTS design with Concurrency Sub-

strate.

User-level Scheduler

RTS

e t
wait

t.dequeueAct()

t' switchToThread(t')

current thread current thread

dequeue()

Figure 3. Blocking on an RTS event.

space, each HEC in the RTS is aware of only the currently

running thread, say t. Suppose thread t waits for an abstract

event e in the RTS, which is currently disabled. Since the

thread t cannot continue until e is enabled, the RTS adds t

to the queue of threads associated with e, which are currently

waiting for e to be enabled. Notice that the RTS “owns” t

at this point. The RTS now invokes the dequeue activation

associated with t, which returns the next runnable thread

from t’s scheduler queue, say t’. This HEC now switches

control to t’ and resumes execution. The overall effect of the

operation ensure that although the thread t is blocked, t’s

scheduler (and the threads that belong to it) is not blocked.

User-level Scheduler

RTS

e t
wait

t.enqueueAct()

current thread t'

()

current thread t'

enqueue(t)

Figure 4. Unblocking from an RTS event.

Figure 4 illustrates the steps involved in unblocking from

an RTS event. Eventually, the disabled event e can become

enabled. At this point, the RTS wakes up all of the threads

waiting on event e by invoking their enqueue activation.

Suppose we want to resume the thread t which is blocked

on e. The RTS invokes t’s enqueue activation to add t to

3 2014/3/26

its scheduler. Since t’s scheduler is already running, t will

eventually be scheduled again.

3.2 Software transactional memory

Since Haskell computations can run in parallel on different

HECs, the substrate must provide a method for safely coordi-

nating activities across multiple HECs. Similar to Li’s sub-

strate design [14], we adopt transactional memory (STM),

as the sole multiprocessor synchronisation mechanism ex-

posed by the substrate. Using transactional memory, rather

than locks and condition variables make complex concurrent

programs much more modular and less error-prone [10] –

and schedulers are prime candidates, because they are prone

to subtle concurrency bugs.

3.3 Concurrency substrate

Now that we have motivated our design decisions, we will

present the API for the concurrency substrate. The con-

currency substrate includes the primitives for instantiating

and switching between language level threads, manipulating

thread local state, and an abstraction for scheduler activa-

tions. The API is presented below:

data SCont
type DequeueAct = SCont -> STM SCont
type EnqueueAct = SCont -> STM ()

-- activation interface

dequeueAct :: DequeueAct
enqueueAct :: EnqueueAct

-- SCont manipulation

newSCont :: IO () -> IO SCont
switch :: (SCont -> STM SCont) -> IO ()
runOnIdleHEC :: SCont -> IO ()

-- Manipulating local state

setDequeueAct :: DequeueAct -> IO ()
setEnqueueAct :: EnqueueAct -> IO ()
getAux :: SCont -> STM Dynamic
setAux :: SCont -> Dynamic -> STM ()

3.3.1 Activation interface

Rather than directly exposing the notion of a “thread”, the

substrate offers one-shot continuations [3], which is of type

SCont. An SCont is a heap-allocated object representing the

current state of a Haskell computation. In the RTS, SConts

are represented quite conventionally by a heap-allocated

Thread Storage Object (TSO), which includes the compu-

tations stack and local state, saved registers, and program

counter. Unreachable SConts are garbage collected.

The call (dequeueAct s) invokes s’s dequeue activa-

tion, passing s to it like a “self” parameter. The return type

of dequeueAct indicates that the computation encapsulated

in the dequeueAct is transactional (under STM monad4),

which when discharged, returns an SCont. Similarly, the

call (enqueueAct s) invokes the enqueue activation trans-

actionally, which enqueues s to its ULS.

4 http://hackage.haskell.org/package/stm-2.1.1.0/docs/

Control-Concurrent-STM.html

Since the activations are under STM monad, we have the

assurance that the ULS’ cannot be built with low-level un-

safe components such as locks and condition variables. Such

low-level operations would be under IO monad, which can-

not be part of an STM transaction. Thus, our concurrency sub-

strate statically prevents the implementation of potentially

unsafe schedulers.

3.3.2 SCont management

The substrate offers primitives for creating, constructing and

transferring control between SConts. The call (newSContM)
creates a new SCont that, when scheduled, executes M . By

default, the newly created SCont is associated with the ULS

of the invoking thread. This is done by copying the invoking

SCont’s activations.

An SCont is scheduled (i.e. is given control of a HEC) by

the switch primitive. The call (switchM) applies M to the

current continuation s. Notice that (M s) is an STM compu-

tation. In a single atomic transaction switch performs the

computation (M s), yielding an SCont s′, and switches con-

trol to s′. Thus, the computation encapsulated by s′ becomes

the currently running computation on this HEC.

Since our continuations are one-shot, capturing a contin-

uation simply fetches the reference to the underlying TSO

object. Hence, continuation capture involves no copying, and

is cheap. Using the SCont interface, a cooperative scheduler

can be built as follows:

yield :: IO ()
yield = switch (\s -> enqueueAct s >> dequeueAct s)

3.4 Parallel SCont execution

When the program begins execution, a fixed number of

HECs (N) is provided to it by the environment. This sig-

nifies the maximum number of parallel computations in

the program. Of these, one of the HEC runs the main IO

computation. All other HECs are in idle state. The call

runOnIdleHEC s initiates parallel execution of SCont s on

an idle HEC. Once the SCont running on a HEC finishes

evaluation, the HEC moves back to the idle state.

Notice that the upcall from the RTS to the dequeue acti-

vation as well as the body of the switch primitive return an

SCont. This is the SCont to which the control would switch

to subsequently. But what if such an SCont cannot be found?

This situation can occur during multicore execution, when

the number of available threads is less than the number of

HECs. If a HEC does not have any work to do, it better be

put to sleep.

Notice that the result of the dequeue activation and the

body of the switch primitive are STM transactions. GHC

today supports blocking operations under STM. When the

programmer invokes retry inside a transaction, the RTS

blocks the thread until another thread writes to any of the

transactional variables read by the transaction; then the

thread is re-awoken, and retries the transaction [10]. This

4 2014/3/26

is entirely transparent to the programmer. Along the same

lines, we interpret the use of retry within a switch or de-

queue activation transaction as putting the whole HEC to

sleep. We use the existing RTS mechanism to resume the

thread when work becomes available on the scheduler.

3.5 SCont local state

The activations of an SCont can be read by dequeueAct

and enqueueAct primitives. In effect, they constitute the

SCont-local state. Local state is often convenient for other

purposes, so we also provide a single dynamically-typed5

field, the “aux-field”, for arbitrary user purposes. The aux-

field can be read from and written to using the primitives

getAux and setAux. The API additionally allows an SCont

to change its own scheduler through setDequeueAct and

setEnqueueAct primitives.

4. Developing concurrency libraries

In this section, we will utilise the concurrency substrate to

implement a multicore capable, round-robin, work-sharing

scheduler and a user-level MVar implementation.

4.1 User-level scheduler

The first step in designing a scheduler is to describe the

scheduler data structure. We utilise an array of runqueues,

with one queue per HEC. Each runqueue is represented by

a transactional variable (a TVar), which can hold a list of

SConts.

newtype Sched = Sched (Array Int (TVar[SCont]))

The next step is to provide an implementation for the

scheduler activations.

dequeueActivation :: Sched -> SCont -> STM SCont
dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number

l <- readTVar $ pa!cc
case l of

[] -> retry
x:tl -> do

writeTVar (pa!cc) tl
return x

enqueueActivation :: Sched -> SCont -> STM ()
enqueueActivation (Sched pa) sc = do

dyn <- getAux sc
let (hec::Int , _::TVar Int) = fromJust $

fromDynamic dyn
l <- readTVar $ pa!hec
writeTVar (pa!hec) $ l++[sc]

dequeueActivation either returns the SCont at the

front of the runqueue and updates the runqueue appro-

priately, or puts the HEC to sleep if the queue is empty.

Recall that performing retry within a dequeue activation

puts the HEC to sleep. The HEC will automatically be wo-

ken up when work becomes available i.e. queue becomes

non-empty. Although we ignore the SCont being blocked

5 http://hackage.haskell.org/package/base-4.6.0.1/docs/

Data-Dynamic.html

in this case, one could imagine manipulating the blocked

SCont’s aux state for accounting information such as time

slices consumed for fair-share scheduling. Enqueue activa-

tion (enqueueActivation) finds the SCont’s HEC number

by querying its stack-local state (the details of which is pre-

sented along with the next primitive). This HEC number

(hec) is used to fetch the correct runqueue, to which the

SCont is appended to.

The next step is to initialise the scheduler. This involves

two steps: (1) allocating the scheduler (newScheduler) and

initialising the main thread and (2) spinning up additional

HECs (newHEC). We assume that the Haskell program wish-

ing to utilise the ULS performs these two steps at the start

of the main IO computation. The implementation of these

primitives are given below:

newScheduler :: IO ()
newScheduler = do

-- Initialise Auxiliary state

switch $ \s -> do
counter <- newTVar (0:: Int)
setAux s $ toDyn $ (0::Int ,counter)
return s

-- Allocate scheduler

nc <- getNumHECs
sched <- (Sched . listArray (0,nc -1)) <$>

replicateM n (newTVar [])
-- Initialise activations

setDequeueAct s $ dequeueActivation sched
setEnqueueAct s $ enqueueActivation sched

newHEC :: IO ()
newHEC = do
-- Initial task

s <- newSCont $ switch dequeueAct
-- Run in parallel

runOnIdleHEC s

First we will focus on initialising a new ULS (newScheduler).

For load balancing purposes, we will spawn threads in a

round-robin fashion over the available HECs. For this pur-

pose, we initialise a TVar counter, and store into the auxil-

iary state a pair (c, t) where c is the SCont’s home HEC and

t is the counter for scheduling. Next, we allocate an empty

scheduler data structure (sched), and register the current

thread with the scheduler activations. This step binds the

current thread to participate in user-level scheduling.

All other HECs act as workers (newHEC), scheduling the

threads that become available on their runqueues. The initial

task created on the HEC simply waits for work to become

available on the runqueue, and switches to it. Recall that al-

locating a new SCont copies the current SCont’s activations

to the newly created SCont. In this case, the main SCont’s

activations, initialised in newScheduler, are copied to the

newly allocated SCont. As a result, the newly allocated

SCont shares the same ULS with the main SCont. Finally,

we run the new SCont on a free HEC. Notice that sched-

uler data structure is not directly accessed in newHEC, but

accessed through the activation interface.

The Haskell program only needs to prepend the follow-

ing snippet to the main IO computation to utilise the ULS

implementation.

5 2014/3/26

main = do
newScheduler
n <- getNumHECs
replicateM_ (n-1) newHEC
... -- rest of the main code

How do we create new user-level threads in this sched-

uler? For this purpose, we implement a forkIO primitive

that spawns a new user-level thread as follows:

forkIO :: IO () -> IO SCont
forkIO task = do

numHECs <- getNumHECs
-- epilogue: Switch to next thread

newSC <- newSCont (task >> switch dequeueAct)
-- Create and initialise new Aux state

switch $ \s -> do
dyn <- getAux s
let (_::Int , t::TVar Int) = fromJust $

fromDynamic dyn
nextHEC <- readTVar t
writeTVar t $ (nextHEC + 1) ‘mod ‘ numHECs
setAux newSC $ toDyn (nextHEC , t)
return s

-- Add new thread to scheduler

atomically $ enqueueAct newSC
return newSC

forkIO primitive spawns a new thread that runs concur-

rently with its parent thread. What should happen after such

a thread has run to completion? We must request the sched-

uler to provide us the next thread to run. This is captured in

the epilogue e, and is appended to the given IO computation

task. Next, we allocate a new SCont, which implicitly in-

herits the current SCont’s scheduler activations. In order to

spawn threads in a round-robin fashion, we create a new aux-

iliary state for the new SCont and prepare it such that when

unblocked, the new SCont is added to the runqueue on HEC

nextHEC. Finally, the newly created SCont is added to the

scheduler using its enqueue activation.

The key aspect of this forkIO primitive is that it does not

directly access the scheduler data structure, but does so only

through the activation interface. As a result, aside from the

auxiliary state manipulation, the rest of the code pretty much

can stay the same for any user-level forkIO primitive. Addi-

tionally, we can implement a yield primitive similar to the

one described in Section 3.3.2. Due to scheduler activations,

the interaction with the RTS concurrency mechanisms come

for free, and we are done!

4.2 Scheduler agnostic user-level MVars

Our scheduler activations abstracts the interface to the

ULS’s. This fact can be exploited to build scheduler agnostic

implementation of user-level concurrency libraries such as

MVars. The following snippet describes the structure of an

MVar implementation:

newtype MVar a = MVar (TVar (MVPState a))
data MVPState a = Full a [(a, SCont)]

| Empty [(IORef a, SCont)]

MVar is either empty with a list of pending takers, or full

with a value and a list of pending putters. An implementation

of takeMVar function is presented below:

takeMVar :: MVar a -> IO a
takeMVar (MVar ref) = do

h <- atomically $ newTVar undefined
switch $ \s -> do

st <- readTVar ref
case st of

Empty ts -> do
writeTVar ref $ Empty $ enqueue ts (h,s)
dequeueAct s

Full x ts -> do
writeTVar h x
case deque ts of

(_, Nothing) -> do
writeTVar ref $ Empty emptyQueue

(ts ’, Just (x’, s’)) -> do
writeTVar ref $ Full x’ ts ’
enqueueAct s’

return s
atomically $ readTVar h

If the MVar is empty, the SCont enqueues itself into the

queue of pending takers. If the MVar is full, SCont con-

sumes the value and unblocks the next waiting putter SCont,

if any. The implementation of putMVar is the dual of this

implementation. Notice that the implementation only uses

the activations to block and resume the SConts interacting

through the MVar. This allows threads from different ULS’s

to communicate over the same MVar, and hence the imple-

mentation is scheduler agnostic.

5. Semantics

In this section, we present the formal semantics of the con-

currency substrate primitives introduced in Section 3.3. We

will subsequently utilise the semantics to formally describe

the interaction of the ULS with the RTS in Section 6. Our se-

mantics closely follows the implementation. The aim of this

is to precisely describe the issues with respect to the interac-

tions between the ULS and the RTS, and have the language

to enunciate our solutions.

5.1 Syntax

Figure 5 shows the syntax of program states. The program

state P is a soup S of HECs, and a shared heap Θ. The

operator ‖ in the HEC soup is associative and commutative.

Each HEC is either idle (Idle) or a triple 〈s,M,D〉t where

s is a unique identifier of the currently executing SCont, M

is the currently executing term, D represents SCont-local

state. Each HEC has an optional subscript t representing its

current state, and the absence of the subscript represents a

HEC that is running. As mentioned in Section 3.4, when the

program begins execution, the HEC soup has the following

configuration:

Initial HEC Soup S = 〈s,M,D〉 ‖ Idle1 ‖ . . . ‖ IdleN−1

where M is the main computation, and all other HECs are

idle. We represent the stack local state D as a tuple with

two terms and a name (M,N, r). Here, M , N , and r are

the dequeue activation, enqueue activation, and a TVar rep-

resenting the auxiliary storage of the current SCont on this

HEC. For perspicuity, we define accessor functions as shown

below.

6 2014/3/26

x, y ∈ V ariable r, s, ∈ Name

Md ::= return M | M >>= N

Ex ::= throw M | catch M N | catchSTM M N

Stm ::= newTVar M | readTVar r | writeTVar r M

| atomically M | retry

Sc ::= newSCont M | switch M | runOnIdleHEC s

Sls ::= getAux s | setAux s M

Act ::= dequeueAct s | enqueueAct s

| setDequeueAct M | setEnqueueAct M

Term

M,N ::= r | x | λ.x −> M | M N | . . .

| Md | Ex | Stm | Sc | Sls | Act

Program state P ::= S; Θ
HEC soup S ::= ∅ | H ‖ S

HEC H ::= 〈s,M,D〉 | 〈s,M,D〉Sleeping

| 〈s,M,D〉Outcall | Idle

Heap Θ ::= r 7→ M ⊕ s 7→ (M,D)
SLS Store D ::= (M,N, r)

IO Context E ::= • | E >>= M | catch E M

STM Context P ::= • | P >>= M

Figure 5. Syntax of terms, states, contexts, and heaps

deq(M, ,) = M enq(,M,) = M aux(, , r) = r

Since the semantics of primitives that read and write

from SCont-local states (the ones under the terms Sls and

Act in Figure 5) is straight-forward, and do not deter the

understanding of the rest of the system, for want of space,

we discuss them in the Appendix.

The heap Θ is a disjoint finite map of:

• (r 7→ M), maps the identifier r of a transactional vari-

able, or TVar, to its value.

• (s 7→ (M,D)), maps the identifier s of an SCont to its

current state.

In a program state (S; Θ), an SCont with identifier s ap-

pears either as the running SCont in a HEC 〈s,M,D〉t ∈ S,

or as a binding s 7→ (M,D) in the heap Θ, but never in

both. The distinction has direct operational significance: an

SCont running in a HEC has part of its state loaded into ma-

chine registers, whereas one in the heap is entirely passive.

In both cases, however, the term M has type IO(), modelling

the fact that concurrent Haskell threads can perform I/O.

The number of HECs remains constant, and HEC runs

one, and only one SCont. The business of multiplexing mul-

tiple SConts onto a single HEC is what the scheduler is for,

and is organised by Haskell code using the primitives de-

scribed in this section.

5.2 Basic transitions

Some basic transitions are presented in Figure 6. The pro-

gram makes a transition from one state to another through

Top-level transitions S; Θ
a

==⇒ S′; Θ′

H; Θ
a

==⇒ H′; Θ′

H ‖ S; Θ
a

==⇒ H′ ‖ S; Θ′

(ONEHEC)

HEC transitions H; Θ =⇒ H′; Θ′

M → N

〈s,E[M], D〉; Θ =⇒ 〈s,E[N], D〉; Θ′
(PURESTEP)

Purely functional transitions M → N

return N >>= M → M N (BIND)

throw N >>= M → throw N (THROW)

retry >>= M → retry (RETRY)

catch (return M) N → return M (IOCATCH)

catch (throw M) N → N M (IOCATCHEXN)

Plus the usual rules for call-by-need λ-calculus, in small-step fashion

Figure 6. Operational semantics for basic transitions

the top-level program small-step transition relation: S; Θ
a

==⇒
S′; Θ′. This says that the program makes a transition from

S; Θ to S′; Θ′, possibly interacting with the underlying RTS

through action a. We return to these RTS interactions in

Section 6, and we omit a altogether if there is no interaction.

Rule OneHEC says that if one HEC H can take a step

with the single-HEC transition relation, then the whole ma-

chine can take a step. As usual, we assume that the soup S

is permuted to bring a runnable HEC to the left-hand end of

the soup, so that OneHEC can fire. Similarly, Rule PureStep

enables one of the HECs to perform a purely functional tran-

sition under the evaluation context E (defined in Figure 5).

There is no action a on the arrow because this step does

not interact with the RTS. Notice that PureStep transition

is only possible if the HEC is in running state (with no sub-

script). The purely functional transitions M → N include β-

reduction, arithmetic expressions, case expressions, monadic

operations return, bind, throw, catch, and so on according

to their standard definitions. Bind operation on the transac-

tional memory primitive retry simply reduces to retry (Fig-

ure 6). These primitives represent blocking actions under

transactional memory and will be dealt with in Section 6.2.

5.3 Transactional memory

Since the concurrency substrate primitives utilise STM as

the sole synchronisation mechanism, we will present the

formal semantics of basic STM operations in this section.

We will build upon the basic STM formalism to formally

describe the behaviour of concurrency substrate primitives

in the following sections.

Figure 7 presents the semantics of non-blocking STM

operations. The semantics of blocking operations is de-

7 2014/3/26

HEC transitions H; Θ =⇒ H′; Θ′

s;M ;D; Θ
∗

։ return N ; Θ′

〈s,E[atomically M], D〉; Θ =⇒
〈s,E[return N], D〉; Θ′

(TATOMIC)

s;M ;D; Θ
∗

։ throw N ; Θ′

〈s,E[atomically M], D〉; Θ =⇒
〈s,E[throw N], D〉; Θ ∪ (Θ′ \Θ)

(TTHROW)

STM transitions s,M,D; Θ; ։ M ′; Θ′

M → N

s;P[M];D; Θ ։ P[N]; Θ
(TPURESTEP)

s;M ;D; Θ
∗

։ return M ′; Θ′

s;P[catchSTM M N];D; Θ ։ P[return M ′]; Θ′
(TCATCH)

s;M ;D; Θ
∗

։ throw M ′; Θ′

s;P[catchSTM M N];D; Θ ։ P[N M ′]; Θ∪(Θ′\Θ)
(TCEXN)

s;M ;D; Θ
∗

։ retry; Θ′

s;P[catchSTM M N];D; Θ ։ P[retry]; Θ′
(TCRETRY)

r fresh

s;P[newTVar M];D; Θ ։ P[return r]; Θ[r 7→ M]
(TNEW)

s;P[readTVar r];D; Θ ։ P[return Θ(r)]; Θ (TREAD)

s;P[writeTVar r M];D; Θ ։ P[return()]; Θ[r 7→ M] (TWRITE)

Figure 7. Operational semantics for software transactional

memory

ferred until Section 6.2. A STM transition is of the form

s;M ;D; Θ ։ M ′; Θ′, where M is the current monadic

term under evaluation, and the heap Θ binds transactional

variables TVar locations r to their current values. The cur-

rent SCont s and its local state D are read-only, and are

not used at all in this section, but will be needed when ma-

nipulating SCont-local state. The reduction produces a new

term M ′ and a new heap Θ′. Rule TPURESTEP is similar to

PURESTEP rule in Figure 6. STM allows creating (TNEW),

reading (TREAD), and writing (TWRITE) to transactional

variables.

The most important rule is TATOMIC which combines

multiple STM transitions into a single program transition.

Thus, other HECs are not allowed to witness the interme-

diate effects of the transaction. The semantics of excep-

tion handling under STM is interesting (rules TCEXN and

TTHROW). Since an exception can carry a TVar allocated

in the aborted transaction, the effects of the current transac-

tion are undone except for the newly allocated TVars. Oth-

erwise, we would have dangling pointer corresponding to

such TVars. Rule TCRETRY simply propagates the request

to retry the transaction through the context. The act of block-

ing, wake up and undoing the effects of the transaction are

handled in Section 6.2.

5.4 SCont semantics

The semantics of SCont primitives are presented in Figure 8.

Each SCont has a distinct identifier s (concretely, its heap

address). An SCont’s state is represented by the pair (M,D)
where M is the term under evaluation and D is the local

state.

Rule NEWSCONT binds the given IO computation and a

new SCont-local state pair to a new SCont s′, and returns s′.

Notice that the newly created SCont inherits the activations

of the calling SCont. This implicitly associates the new

SCont with the invoking SCont’s scheduler.

The rules for switch (SWITCHSELF, SWITCH, and

SWITCHEXN) begin by atomically evaluating the body of

switch M applied to the current SCont s. If the resultant

SCont is the same as the current one (SWITCHSELF), then

we simply commit the transaction and there is nothing more

to be done. If the resultant SCont s′ is different from the

current SCont s (SWITCH), we transfer control to the new

SCont s′ by making it the running SCont and saving the

state of the original SCont s in the heap. If the switch primi-

tive happens to throw an exception, the updates by the trans-

action are discarded (SWITCHEXN).

The alert reader will notice that the rules for switch

duplicate much of the paraphernalia of an atomic transaction

(Figure 7), but that is unavoidable because the switch to a

new continuation must form part of the same transaction as

the argument computation.

6. Interaction with the RTS

The key aspect of our design is composability of ULS’s with

the existing RTS concurrency mechanisms (Section 3.1). In

this section, we will describe in detail the interaction of RTS

concurrency mechanisms and the ULS’s. The formalisation

brings out the tricky cases associated with the interaction

between the ULS and the RTS.

6.1 Timer interrupts

In GHC, concurrent threads are preemptively scheduled. The

RTS maintains a timer that ticks, by default, every 20ms. On

a tick, the current SCont needs to be de-scheduled and a

new SCont from the scheduler needs to be scheduled. The

semantics of handling timer interrupts is shown in Figure 9.

The Tick label on the transition arrow indicates an inter-

action with the RTS; we call such a label an RTS-interaction.

In this case the RTS-interaction Tick indicates that the RTS

wants to signal a timer tick6. The transition here injects

yield into the instruction stream of the SCont running on

6 Technically we should ensure that every HEC receives a tick, and of

course our implementation does just that, but we elide that here.

8 2014/3/26

HEC transitions H; Θ =⇒ H′; Θ′

(NEWSCONT)

s′ fresh r fresh D′ = (deq(D), enq(D), r)

〈s,E[newSCont M], D〉; Θ =⇒

〈s,E[return s′], D〉; Θ[s′ 7→ (M,D′)][r 7→ toDyn ()]

(SWITCHSELF)

s;M s;D; Θ
∗

։ return s; Θ′

〈s,E[switch M], D〉; Θ =⇒ 〈s,E[return ()], D〉; Θ′

(SWITCH)

s;M s;D; Θ
∗

։ return s′; Θ′[s′ 7→ (M ′, D′)]

〈s,E[switch M], D〉; Θ =⇒ 〈s′,M ′, D′〉; Θ′[s 7→ (E[return ()], D)]

(SWITCHEXN)

s;M s;D; Θ
∗

։ throw N ; Θ′

〈s,E[switch M], D〉; Θ =⇒ 〈s,E[throw N], D〉; Θ ∪ (Θ′ \Θ)

(RUNONIDLEHEC)

Idle ‖ 〈s,E[runOnIdleHEC s′], D〉; Θ[s′ 7→ (M ′, D′)] =⇒

〈s′,M ′, D′〉 ‖ 〈s,E[return ()], D〉; Θ

〈s, return (), D〉; Θ =⇒ Idle; Θ (DONEUNIT)

〈s, throw N,D〉; Θ =⇒ Idle; Θ (DONEEXN)

Figure 8. Operational semantics for SCont manipulation

HEC transitions H; Θ
a

==⇒ H′; Θ′

yield = switch (λs. enq(D) s >> deq(D) s)

〈s,M,D〉; Θ
Tick
==⇒ 〈s, yield >> M,D〉; Θ

(TICK)

Figure 9. Handling timer interrupts

this HEC, at a GC safe point, where yield behaves just like

the definition in Section 3.3.2.

6.2 STM blocking operations

As mentioned before (Section 3.4), STM supports blocking

operations through the retry primitive. Figure 10 gives the

semantics for STM retry operation.

6.2.1 Blocking the SCont

Rule TRETRYATOMIC is similar to TTHROW in Figure 7.

It runs the transaction body M ; if the latter terminates with

retry, it abandons the effects embodied in Θ′, reverting to

Θ. But, unlike TTHROW it then uses an auxiliary rule
deq
→֒ ,

defined in Figure 11, to fetch the next SCont to switch to.

The transition in TRETRYATOMIC is labelled with the RTS

interaction STMBlock s, indicating that the RTS assumes re-

sponsibility for s after the reduction.

The rules presented in Figure 11 are the key rules in

abstracting the interface between the ULS and the RTS, and

describe the invocation of upcalls. In the sequel, we will

often refer to these rules in describing the semantics of the

RTS interactions. Rule UPDEQUEUE in Figure 11 stashes

s (the SCont to be blocked) in the heap Θ, instantiates an

ephemeral SCont that fetches the dequeue activation b from

s’s local state D, and switches to the SCont returned by the

HEC transitions H; Θ
a

==⇒ H′; Θ′

(TRETRYATOMIC)

s;M ;D; Θ
∗

։ retry; Θ′

〈s,E[atomically M], D〉; Θ
deq
→֒ H′; Θ′′

〈s,E[atomically M], D〉; Θ
STMBlock s
======⇒ H′; Θ′′

(TRESUMERETRY)

H; Θ
enq s
→֒ H′; Θ′

H; Θ
RetrySTM s
======⇒ H′; Θ′

(TRETRYSWITCH)

s;M s;D; Θ
∗

։ retry; Θ′

〈s,E[switch M], D〉; Θ
STMBlock s
======⇒ 〈s,E[switch M], D〉Sleeping; Θ

(TWAKEUP)

〈s,E[M], D〉Sleeping; Θ
RetrySTM s
======⇒ 〈s,E[M], D〉; Θ

Figure 10. STM Retry

dequeue activation. s′ is made the running SCont on this

HEC.

It is necessary that the dequeue upcall be performed on

a new SCont s′, and not on the SCont s being blocked.

At the point of invocation of the dequeue upcall, the RTS

believes that the blocked SCont s is completely owned by

the RTS, not running, and available to be resumed. Invoking

the dequeue upcall on the blocked SCont s can lead to a race

on s between multiple HECs if s happens to be unblocked

and enqueued to the scheduler before the switch transaction

is completed.

9 2014/3/26

Dequeue upcall instantiation H; Θ
deq
→֒ H′; Θ′

(UPDEQUEUE)

s′ fresh r fresh D′ = (deq(D), enq(D), r)

M ′ = switch (λx. deq(D) s)

Θ′ = Θ[s 7→ (M,D)][r 7→ toDyn ()]

〈s,M,D〉; Θ
deq
→֒ 〈s′,M ′, D′〉; Θ′

Enqueue upcall instantiation H; Θ
enq s
→֒ H′; Θ′

(UPENQUEUEIDLE)

s′ fresh r fresh D′ = (deq(D), enq(D), r)

M ′ = atomically (enq(D) s)

Θ′ = Θ[s 7→ (M,D)][r 7→ toDyn ()]

Idle; Θ[s 7→ (M,D)]
enq s
→֒ 〈s′,M ′, D′〉; Θ′

(UPENQUEUERUNNING)

M ′′ = atomically (enq(D) s) >> M ′

〈s′,M ′,D′〉; Θ[s 7→ (M,D)]
enq s
→֒ 〈s′,M ′′,D′〉; Θ[s 7→ (M,D)]

Figure 11. Instantiating upcalls

6.2.2 Resuming the SCont

Some time later, the RTS will see that some thread has

written to one of the TVars read by s’s transaction, so it will

signal an RetrySTM s interaction (rule TRESUMERETRY).

Again, we use an auxiliary transition
enq s
→֒ to enqueue the

SCont to its scheduler (Figure 11).

Unlike
deq
→֒ transition, unblocking an SCont has nothing

to do with the computation currently running on any HEC.

If we find an idle HEC (rule UPENQUEUEIDLE), we instan-

tiate a new ephemeral SCont s′ to enqueue the SCont s.

The actual unblock operation is achieved by fetching SCont

s’s enqueue activation, applying it to s and atomically per-

forming the resultant STM computation. If we do not find

any idle HECs (rule UPENQUEUERUNNING), we pick one

of the running HECs, prepare it such that it first unblocks the

SCont s before resuming the original computation.

6.2.3 HEC sleep and wakeup

Recall that invoking retry within a switch transaction or

dequeue activation puts the HEC to sleep (Section 3.4).

Also, notice that the dequeue activation is always invoked

by the RTS from a switch transaction (Rule UPDEQUEUE).

This motivates rule TRETRYSWITCH: if a switch transac-

tion blocks, we put the whole HEC to sleep. Then, dual to

TRESUMERETRY, rule TWAKEUP wakes up the HEC when

the RTS sees that the transaction may now be able to make

progress.

HEC transitions H; Θ
a

==⇒ H′; Θ′

〈s,E[outcall r], D〉; Θ
OC s
===⇒

〈s,E[outcall r], D〉Outcall; Θ
(OCBLOCK)

〈s,E[outcall r], D〉Outcall; Θ
OCRet s M
======⇒

〈s,E[M], D〉; Θ
(OCRETFAST)

〈s,M,D〉;Θ
deq
→֒ H′; Θ′

〈s,M,D〉Outcall; Θ
OCSteal s
=====⇒ H′; Θ′

(OCSTEAL)

H; Θ[s 7→ (E[M], D)]
enq s
→֒ H′; Θ′

H; Θ[s 7→ (E[outcall r], D)]
OCRet s M
======⇒ H′; Θ′

(OCRETSLOW)

Figure 12. Safe foreign call transitions

6.2.4 Implementation of upcalls

Notice that the rules UPDEQUEUE and UPENQUEUEIDLE in

Figure 11 instantiate a fresh SCont. The freshly instantiated

SCont performs just a single transaction; switch in UPDE-

QUEUE and atomically in UPENQUEUEIDLE, after which

it is garbage-collected. Since instantiating a fresh SCont for

every upcall is unwise, the RTS maintains a dynamic pool

of dedicated upcall SConts for performing the upcalls. It

is worth mentioning that we need an “upcall SCont pool”

rather than a single “upcall SCont” since the upcall trans-

actions can themselves get blocked synchronously on STM

retry as well as asynchronously due to optimizations for

lazy evaluation (Section 6.5).

6.3 Safe foreign function calls

Foreign calls in GHC are highly efficient but intricately

interact with the scheduler [17]. Much of it owes to the the

RTS’s task model. Each HEC is animated by one of a pool of

tasks (OS threads); the current task may become blocked in

a foreign call (e.g. a blocking I/O operation), in which case

another task takes over the HEC. However, at most only one

task ever has exclusive access to a HEC.

GHC’s task model ensures that a HEC performing a safe-

foreign call only blocks the Haskell thread (and the task)

making the call but not the other threads running on the

HEC’s scheduler. However, it would be unwise to switch the

thread (and the task) on every foreign call as most invoca-

tions are expected to return in a timely fashion. In this sec-

tion, we will discuss the interaction of safe-foreign function

calls and the ULS. In particular, we restrict the discussion to

outcalls — calls made from Haskell to C.

Our decision to preserve the task model in the RTS allows

us to delegate much of the work involved in safe foreign call

to the RTS. We only need to deal with the ULS interaction,

and not the creation and coordination of tasks. The semantics

of foreign call handling is presented in Figure 12. Rule

OCBLOCK illustrates that the HEC performing the foreign

10 2014/3/26

call moves into the Outcall state, where it is no longer

runnable. In the fast path (rule OCRETFAST), the foreign

call returns immediately with the result M , and the HEC

resumes execution with the result plugged into the context.

In the slow path, the RTS may decide to pay the cost of

task switching and resume the scheduler (rule OCSTEAL).

The scheduler is resumed using the dequeue upcall. Once the

foreign call eventually returns, the SCont s blocked on the

foreign call can be resumed. Since we have already resumed

the scheduler, the correct behaviour is to prepare the SCont

s with the result and add it to its ULS. Rule OCRETSLOW

achieves this through enqueue upcall.

6.4 Timer interrupts and transactions

What if a timer interrupt occurs during a transaction? The

(TICK) rule of Section 6.1 is restricted to HEC transitions,

and says nothing about STM transitions. One possibility

(Plan A) is that transactions should not be interrupted, and

ticks should only be delivered at the end. This is faithful to

the semantics expressed by the rule, but it does mean that a

rogue transaction could completely monopolise a HEC.

An alternative possibility (Plan B) is for the RTS to roll

the transaction back to the beginning, and then deliver the

tick using rule (TICK). That too is implementable, but this

time the risk is that a slightly-too-long transaction would

always be rolled back, so it would never make progress.

Our implementation behaves like Plan B, but gives better

progress guarantees, while respecting the same semantics.

Rather than rolling the transaction back, the RTS suspends

the transaction mid-flight. None of its effects are visible to

other SConts; they are confined to its SCont-local transac-

tion log. When the SCont is later resumed, the transaction

continues from where it left off, rather than starting from

scratch. Of course, time has gone by, so when it finally tries

to commit there is a higher chance of failure, but at least

uncontended access will go through.

That is fine for vanilla atomically transactions. But

what about the special transactions run by switch? If we

are in the middle of a switch transaction, and suspend it to

deliver a timer interrupt, rule (TICK) will initiate . . . a switch

transaction! And that transaction is likely to run the very

same code that has just been interrupted. It seems much sim-

pler to revert to Plan A: the RTS does not deliver timer inter-

rupts during a switch transaction. If the scheduler has rogue

code, then it will monopolise the HEC with no recourse.

6.5 Black holes

In a concurrent Haskell program, a thread A may attempt to

evaluate a thunk x that is already being evaluated by another

thread B. To avoid duplicate evaluation the RTS (in intimate

cooperation with the compiler) arranges for B to blackhole

the thunk when it starts to evaluate x. Then, when A attempts

to evaluate x, it finds a black hole, so the RTS enqueues

A to await its completion. When B finishes evaluating x it

updates the black hole with its value, and makes any queued

HEC transitions H; Θ
a

==⇒ H′; Θ′

〈s,M,D〉; Θ
deq
→֒ H′; Θ′

〈s,M,D〉; Θ
BlockBH s
======⇒ H′; Θ′

(BLOCKBH)

H; Θ
enq s
→֒ H′; Θ′

H; Θ
ResumeBH s
=======⇒ H′; Θ′

(RESUMEBH)

Figure 13. Black holes

threads runnable. This mechanism, and its implementation

on a multicore, is described in detail in earlier work [9].

Clearly this is another place where the RTS may initiate

blocking. We can describe the common case with rules simi-

lar to those of Figure 10, with rules shown in Figure 13. The

RTS initiates the process with a BlockBH s action, taking

ownership of the SCont s. Later, when the evaluation of the

thunk is complete, the RTS initiate an action ResumeBH s,

which returns ownership to s’s scheduler.

But these rules only apply to HEC transitions, outside

transactions. What if a black hole is encountered during an

STM transaction? We addressed this same question in the

context of timer interrupts, in Section 6.4, and we adopt the

same solution. The RTS behaves as if the black-hole suspen-

sion and resumption occurred just before the transaction, but

the implementation actually arranges to resume the transac-

tion from where it left off.

Just as in Section 6.4, we need to take particular care

with switch transactions. Suppose a switch transaction

encounters a black-holed thunk under evaluation by some

other SCont B; and suppose we try to suspend the transaction

(either mid-flight or with roll-back) using rule (BLOCKBH).

Then the very next thing we will do (courtesy of
deq
→֒) is a

switch transaction; and that is very likely to encounter the

very same thunk. Moreover, it is just possible that the thunk

is under evaluation by an SCont in this very scheduler’s run-

queue, so the black hole is preventing us from scheduling the

very SCont that is evaluating it. Deadlock beckons!

In the case of timer interrupts we solved the problem by

switching them off in switch transactions, and it turns out

that we can effectively do the same for thunks. Since we

cannot sensibly suspend the switch transaction, we must

find a way for it to make progress. Fortunately, GHC’s RTS

allows us to steal the thunk from the SCont that is evaluating

it, and that suffices. The details are beyond the scope of this

paper, but the key moving parts are already part of GHC’s

implementation of asynchronous exceptions [16, 20].

6.6 Interaction with RTS MVars

An added advantage of our scheduler activation interface is

that we are able to reuse the existing MVar implementation

in the RTS. Whenever an SCont s needs to block on or

11 2014/3/26

unblock from an MVar, the RTS invokes the
deq
→֒ or

enq s
→֒

upcall, respectively. This significantly reduces the burden of

migrating to a ULS implementation.

6.7 Asynchronous exceptions

GHC’s supports asynchronous exceptions in which one

thread can send an asynchronous interrupt to another [16].

This is a very tricky area; for example, if a thread is blocked

on a user-level MVar (Section 4.2), and receives an excep-

tion, it should wake up and do something — even though it is

linked onto an unknown queue of blocked threads. Our im-

plementation does in fact handle asynchronous exceptions,

but we are not yet happy with the details of the design, and

in any case space precludes presenting them here.

6.8 On the correctness of user-level schedulers

While the concurrency substrate exposes the ability to build

ULS’s, the onus is on the scheduler implementation to en-

sure that it is sensible. The invariants such as not switching

to a running thread, or a thread blocked in the RTS, are not

statically enforced by the concurrency substrate, and care

must be taken to preserve these invariants. Our implemen-

tation dynamically enforces such invariants through runtime

assertions. We also expect that the activations do not raise an

exception that escape the activation. Activations raising ex-

ceptions indicates an error in the ULS implementation, and

the substrate simply reports an error to the standard error

stream.

The fact that the scheduler itself is now implemented in

user-space complicates error recovery and reporting when

threads become unreachable. A thread suspended on an

ULS may become unreachable if the scheduler data struc-

ture holding it becomes unreachable. A thread indefinitely

blocked on an RTS MVar operation is raised with an ex-

ception and added to its ULS. This helps the correspond-

ing thread from recovering from indefinitely blocking on an

MVar operation.

However, the situation is worse if the ULS itself becomes

unreachable; there is no scheduler to run this thread! Hence,

salvaging such a thread is not possible. In this case, imme-

diately after garbage collection, our implementation logs an

error message to the standard error stream along with the

unreachable SCont (thread) identifier.

7. Results

Our implementation is a fork of GHC,7 and supports all of

the features discussed in the paper. We have been very par-

ticular not to compromise on any of the existing features in

GHC. As shown in Section 4, porting existing concurrent

Haskell program to utilise a ULS only involves few addi-

tional lines of code.

7 The development branch of LWC substrate is available at https://

github.com/ghc/ghc/tree/ghc-lwc2

Benchmark

Baseline Vanilla LWC

(1 proc) 1 HEC Fastest 1 HEC Fastest

(# HECs) (# HECs)

k-nucleotide 10.60 10.62 4.82 (8) 10.61 4.83 (8)

mandelbrot 85.30 90.83 3.21 (48) 87.06 2.19 (48)

spectral-norm 125.76 125.91 2.92 (48) 125.76 2.84 (48)

chameneos 4.62 5.71 5.71 (1) 18.25 12.35 (2)

primes-sieve 32.52 36.33 36.33 (1) 223 13.7 (48)

Figure 14. Benchmark results. All times are in seconds.

In order to evaluate the performance and quantify the

overheads of LWC substrate, we picked the following Haskell

concurrency benchmarks from The Computer Language

Benchmarks Game [24]: k-nucleotide, mandelbrot,

spectral-norm and chameneos. We also implemented

a concurrent prime number generator using sieve of Er-

atosthenes (primes-sieve), where the threads commu-

nicate over the MVars. For our experiments, we gener-

ated the first 10000 primes. The benchmarks offer vary-

ing degrees of parallelisation opportunity. k-nucleotide,

mandelbrot and spectral-norm are computation inten-

sive, while chameneos and primes-sieve are commu-

nication intensive and are specifically intended to test the

overheads of thread synchronisation.

The LWC version of the benchmarks utilised the sched-

uler and the MVar implementation described in Section 4.

For comparison, the benchmark programs were also im-

plemented using Control.Concurrent on a vanilla GHC

implementation. Experiments were performed on a 48-core

AMD Opteron server, and the GHC version was 7.7.20130523.

The results are presented in Figure 14. For each bench-

mark, the baseline is the non-threaded (not compiled with

-threaded) vanilla GHC version. The non-threaded version

does not support multi-processor execution of concurrent

programs, but also does not include the mechanisms nec-

essary for (and the overheads included in) multi-processor

synchronisation. Hence, the non-threaded version of a pro-

gram running on 1 processor is faster than the corresponding

threaded version.

For the vanilla and LWC versions (both compiled with

-threaded), we report the running times on 1 HEC as well

as the fastest running time observed with additional HECs.

Additionally, we report the HEC count corresponding to the

fastest configuration. All the times are reported in seconds.

In k-nucleotide and spectral-norm benchmarks, the

performance of LWC version was indistinguishable from

the vanilla version. The threaded versions of the bench-

mark programs were fastest on 8 HECs and 48 HECs

on k-nucleotide and spectral-norm, respectively. In

mandelbrot benchmark, LWC version was faster than the

vanilla version. While the vanilla version was 29× faster

than the baseline, LWC version was 38× faster. In the vanilla

GHC, the RTS thread scheduler by default spawns a thread

on the current HEC and only shares the thread with other

HECs if they are idle. The LWC scheduler (described in Sec-

12 2014/3/26

tion 4) spawns threads by default in a round-robin fashion

on all HECs. This simple scheme happens to work better in

mandelbrot since the program is embarrassingly parallel.

In chameneos benchmark, the LWC version was 3.9×
slower than the baseline on 1 HEC and 2.6× slower on 2

HECs, and slows down with additional HECs as chameneos

does not present much parallelisation opportunity. The

vanilla chameneos program was fastest on 1 HEC, and was

1.24× slower than the baseline. In primes-sieve bench-

mark, while the LWC version was 6.8× slower on one HEC,

the vanilla version was 1.3X slower, when compared to the

baseline.

In chameneos and primes-sieve, we observed that the

LWC implementation spends around half of its execution

running the transactions for invoking the activations or MVar

operations. Additionally, in these benchmarks, LWC version

performs 3X-8× more allocations than the vanilla version.

Most of these allocations are due to the data structure used in

the ULS and the MVar queues. In the vanilla primes-sieve

implementation, these overheads are negligible. This is an

unavoidable consequence of implementing concurrency li-

braries in Haskell.

Luckily, these overheads are parallelisable. In primes-

sieve benchmark, while the vanilla version was fastest on 1

HEC, LWC version scaled to 48 HECs, and was 2.37× faster

than the baseline program. This gives us the confidence that

with careful optimisations and application specific heuristics

for the ULS and the MVar implementation, much of the

overheads in the LWC version can be eliminated.

8. Related Work

Continuation based concurrency libraries have been well

studied [23, 25] and serve as the basis of several parallel and

concurrent programming language implementations [21, 22,

27]. Among these, ConcurrentML [21] implementations on

SML/NJ and MLton, and MultiMLton [27] do not expose the

ability to describe alternative ULS’s. Fluet et al. [5] propose

a scheduling framework for a strict parallel functional lan-

guage on Manticore [22]. However, unlike our system, the

schedulers are described in an external language of the com-

piler’s internal representation, and not the source language.

Of the meta-circular implementations of Java, Jikes

RVM [6] is perhaps the most mature. Jikes does not support

user-level threads, and maps each Java thread directly on to

a native thread, which are arbitrarily scheduled by the OS.

This decision is partly motivated to offer better compatibility

with Java Native Interface (JNI), the foreign function inter-

face in Java. Thread-processor mapping is also transparent to

the programmer. Jikes supports unsafe low-level operations

to block and synchronise threads in order to implement other

operations such as garbage collection. Compared to Jikes,

our concurrency substrate only permits safe interaction with

the scheduler through the STM interface. The ULS’s also

integrates well with GHC’s safe foreign-function interface

through the activation interface (Section 6.3).

While Manticore [22], and MultiMLton [27] utilise low-

level compare-and-swap operation as the core synchronisa-

tion primitive, Li et al.’s concurrency substrate [14] for GHC

was the first to utilise transactional memory for multiproces-

sor synchronisation for in the context of ULS’s. Our work

borrows the idea of using STM for synchronisation. Unlike

Li’s substrate, we retain the key components of the concur-

rency support in the runtime system. Not only does alleviate

the burden of implementing the ULS, but enables us to safely

handle the issue of blackholes that requires RTS support,

and perform blocking operations under STM. In addition,

Li’s substrate work uses explicit wake up calls for unblock-

ing sleeping HECs. This design has potential for bugs due

to forgotten wake up messages. Our HEC blocking mecha-

nism directly utilises STM blocking capability provided by

the runtime system, and by construction eliminates the pos-

sibility of forgotten wake up messages.

Scheduler activations [1] have successfully been demon-

strated to interface kernel with the user-level process sched-

uler [2, 26]. Similar to scheduler activations, Psyche [18] al-

lows user-level threads to install event handlers for scheduler

interrupts and implement the scheduling logic in user-space.

Unlike these works, our system utilises scheduler activations

in the language runtime rather than OS kernel. Moreover,

our activations being STM computations allow them to be

composed with other language level transactions in Haskell,

enabling scheduler-agnostic concurrency library implemen-

tations.

9. Conclusions and Future Work

We have presented a concurrency substrate design for Haskell

that lets programmers write schedulers for Haskell threads

as ordinary libraries in Haskell. Through an activation in-

terface, this design lets GHC’s runtime system to safely in-

teract with the user-level scheduler, and therefore temper-

ing the complexity of implementing full-fledged schedulers.

The fact that many of the RTS interactions such as timer

interrupts, STM blocking operation, safe foreign function

calls, etc,. can be captured through the activation interface

reaffirms the idea that we are on the right track with the

abstraction.

Our precise formalisation of the RTS interactions served

as a very good design tool and a validation mechanism, and

helped us gain insights into subtle interactions between the

ULS and the RTS. Through the formalisation, we realised

that the interaction of black holes and timer interrupts with

a scheduler transaction is particularly tricky, and must be

handled explicitly by the RTS in order to avoid livelock and

deadlock.

As the next step, we plan to improve upon our current

solution for handling asynchronous exceptions. A part of

this solution involves making the SCont reference a bona

13 2014/3/26

fide one-shot continuation, and not simply a reference to

the underlying TSO object. As a result, concurrency sub-

strate should be able to better handle erroneous scheduler be-

haviours rather than raising an error and terminating. As for

the implementation, we would like to explore the effective-

ness user-level gang scheduling for Data Parallel Haskell [4]

workloads, and priority scheduling for Haskell based web-

servers [11] and virtual machines [7].

References

[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.

Levy. Scheduler activations: effective kernel support for the

user-level management of parallelism. ACM Trans. Comput.

Syst., 10(1):53–79, Feb. 1992.

[2] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,

S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The

multikernel: a new os architecture for scalable multicore sys-

tems. In SOSP, pages 29–44, 2009.

[3] C. Bruggeman, O. Waddell, and R. K. Dybvig. Representing

control in the presence of one-shot continuations. In PLDI,

pages 99–107, 1996.

[4] M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones,

G. Keller, and S. Marlow. Data parallel haskell: a status re-

port. In DAMP, pages 10–18, 2007.

[5] M. Fluet, M. Rainey, and J. Reppy. A scheduling framework

for general-purpose parallel languages. In ICFP, pages 241–

252, 2008.

[6] D. Frampton, S. M. Blackburn, P. Cheng, R. J. Garner,

D. Grove, J. E. B. Moss, and S. I. Salishev. Demystifying

magic: high-level low-level programming. In VEE, pages 81–

90, 2009.

[7] Galois. Haskell Lightweight Virtual Machine (HaLVM),

2014. http://corp.galois.com/halvm.

[8] GHC. Glasgow Haskell Compiler, 2014.

http://www.haskell.org/ghc.

[9] T. Harris, S. Marlow, and S. Peyton Jones. Haskell on

a shared-memory multiprocessor. In ACM Workshop on

Haskell, Tallin, Estonia, 2005.

[10] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Com-

posable memory transactions. In PPoPP, pages 48–60, 2005.

[11] Haskell. Haskell Web Development, 2014.

http://www.haskell.org/haskellwiki/Web/Servers.

[12] HotSpotVM. Java SE HotSpot at a Glance, 2014.

http://www.oracle.com/technetwork/java/javase

/tech/index-jsp-137187.html.

[13] IBM. Java Platform Standard Edition (Java SE), 2014.

http://www.ibm.com/developerworks/java/jdk/.

[14] P. Li, S. Marlow, S. Peyton Jones, and A. Tolmach.

Lightweight concurrency primitives for ghc. In Haskell, pages

107–118, 2007.

[15] B. Lippmeier, M. Chakravarty, G. Keller, and S. Peyton Jones.

Guiding parallel array fusion with indexed types. In Haskell,

pages 25–36, 2012.

[16] S. Marlow, S. P. Jones, A. Moran, and J. Reppy. Asynchronous

exceptions in haskell. In PLDI, pages 274–285, 2001.

[17] S. Marlow, S. P. Jones, and W. Thaller. Extending the haskell

foreign function interface with concurrency. In Haskell, pages

22–32, 2004.

[18] B. D. Marsh, M. L. Scott, T. J. Leblanc, and E. P. Markatos.

First-class user-level threads. In OSDI, pages 110–121, 1991.

[19] Microsoft Corp. Common Language Runtime (CLR),

2014. http://msdn.microsoft.com/en-us/library

/8bs2ecf4(v=vs.110).aspx.

[20] A. Reid. Putting the spine back in the spineless tagless g-

machine: An implementation of resumable black-holes. In

IFL, pages 186–199, 1999.

[21] J. Reppy. Concurrent Programming in ML. Cambridge Uni-

versity Press, 2007.

[22] J. Reppy, C. V. Russo, and Y. Xiao. Parallel concurrent ml. In

ICFP, pages 257–268, 2009.

[23] O. Shivers. Continuations and Threads: Expressing Machine

Concurrency Directly in Advanced Languages. In Continua-

tions Workshop, 1997.

[24] Shootout. The Computer Language Benchmarks Game, 2014.

http://benchmarksgame.alioth.debian.org/.

[25] M. Wand. Continuation-based multiprocessing. In LFP, pages

19–28, 1980.

[26] N. J. Williams. An Implementation of Scheduler Activations

on the NetBSD Operating System. In Usenix ATC, pages 99–

108, 2002.

[27] L. Ziarek, K. Sivaramakrishnan, and S. Jagannathan. Compos-

able Asynchronous Events. In PLDI, pages 628–639, 2011.

14 2014/3/26

Appendix

Semantics of local state manipulation

HEC transitions H; Θ =⇒ H′; Θ′

(SETDEQUEUEACT)

〈s,E[setDequeueAct M], (b,u,r)〉; Θ =⇒

〈s,E[return()], (M,u,r)〉; Θ

(SETENQUEUEACT)

〈s,E[setEnqueueAct M], (b,u,r)〉; Θ =⇒

〈s,E[return()], (b,M,r)〉; Θ

STM transitions s;M ;D; Θ ։ M ′; Θ′

(GETAUXSELF)

s;P[getAux s];D; Θ ։ P[return aux(D)]; Θ

(SETAUXSELF)

s;E[setAux s M];D; Θ ։ E[return()]; Θ[aux(D) 7→ M]

(INVOKEDEQUEUEACTSELF)

s;P[dequeueAct s];D; Θ ։ P[deq(D) s]; Θ

(INVOKEENQUEUEACTSELF)

s;P[enqueueAct s];D; Θ ։ P[enq(D) s]; Θ

(GETAUXOTHER)

s;P[getAux s′];D; Θ[s′ 7→ (M ′, D′)] ։

P[return aux(D′)]; Θ[s′ 7→ (M ′, D′)]

(SETAUXOTHER)

s;E[setAux s′ M];D; Θ[s′ 7→ (M ′, D′)] ։

E[return()]; Θ[s′ 7→ (M ′, D′)][aux(D′) 7→ M]

(INVOKEDEQUEUEACTOTHER)

s;P[dequeueAct s′];D; Θ[s′ 7→(M ′, D′)] ։

P[deq(D′) s′]; Θ[s′ 7→ (M ′, D′)]

(INVOKEENQUEUEACTOTHER)

s;P[enqueueAct s′];D; Θ[s′ 7→ (M ′, D′)] ։

P[enq(D′) s′]; Θ[s′ 7→ (M ′, D′)]

Figure 15. Operational semantics for manipulating activa-

tions and auxiliary state.

In our formalisation, we represent local state D as a tuple

with two terms and a name (M,N, r) (Figure 5), where

M , N and r are dequeue activation, enqueue activation,

and a TVar representing auxiliary storage, respectively. For

perspicuity, we define accessor functions as shown below.
deq(M, ,) = M enq(,M,) = M aux(, , r) = r

The precise semantics of activations and stack-local state

manipulation is given in Figure 15. Our semantics models

the auxiliary field in the SCont-local state as a TVar. It

is initialised to a dynamic unit value toDyn () when an

new SCont is created (rule NEWSCONT in Figure 8). The

rules SETAUXSELF and SETAUXOTHER update the aux

state of a SCont by writing to the TVar. There are two cases,

depending on whether the SCont is running in the current

HEC, or is passive in the heap. The aux-state is typically

used to store scheduler accounting information, and is most

likely to be updated in the activations, being invoked by

some other SCont or the RTS. This is the reason why we

model aux-state as a TVar and allow it to be modified by

some other SCont. If the target of the setAux is running

in another HEC, no rule applies, and we raise a runtime

exception. This is reasonable: one HEC should not be poking

into another running HEC’s state. The rules for getAux also

have two cases.

An SCont’s activations can be invoked using the dequeueAct

and enqueueAct primitives. Invoking an SCont’s own ac-

tivation is straight-forward; the activation is fetched from

the local state and applied to the current SCont (rules

INVOKEDEQUEUEACTSELF and INVOKEDEQUEUEAC-

TOTHER). We do allow activations of an SCont other than

the current SCont to be invoked (rule INVOKEDEQUEUE-

ACTOTHER and INOKEENQUEUEACTOTHER). Notice that

in order to invoke the activations of other SConts, the SCont

must be passive on the heap, and currently not running.

We allow an SCont to modify its own activations, and

potentially migrate to another ULS. In addition, updating

own activations allows initial thread evaluating the main

IO computation to initialise its activations, and participate

in user-level scheduling. In the common use case, once an

SCont’s activations are initialised, we don’t expect it to

change. Hence, we do not store the activations in a TVar,

but rather directly in the underlying TSO object field. The

avoids the overheads of transactional access of activations.

15 2014/3/26

	Composable Scheduler Activations for Haskell
	Report Number:
	

	Introduction
	Background
	The GHC runtime system
	The challenge

	Design
	Scheduler activation
	Software transactional memory
	Concurrency substrate
	Activation interface
	SCont management

	Parallel SCont execution
	SCont local state

	Developing concurrency libraries
	User-level scheduler
	Scheduler agnostic user-level MVars

	Semantics
	Syntax
	Basic transitions
	Transactional memory
	SCont semantics

	Interaction with the RTS
	Timer interrupts
	STM blocking operations
	Blocking the SCont
	Resuming the SCont
	HEC sleep and wakeup
	Implementation of upcalls

	Safe foreign function calls
	Timer interrupts and transactions
	Black holes
	Interaction with RTS MVars
	Asynchronous exceptions
	On the correctness of user-level schedulers

	Results
	Related Work
	Conclusions and Future Work

