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1. Introduction

Let V := S
n×n be the vector space of real symmetric matrices of order n and Σ be the set of all

positive semidefinite matrices in V . If X ∈ Σ , we will use the notation X � 0. Suppose that L : V → V

is a linear transformation. Given an element Q ∈ V , the semidefinite linear complementarity problem
SDLCP(L, Q) is to find a matrix X ∈ V such that

X � 0, Y := L(X) + Q � 0 and XY = 0.

SDLCP is a mathematical programming problem introduced in [3]. It has several applications in
matrix theory andoptimization.We refer to [3] for details. SDLCP is a special caseof variational inequal-
ity problems (VIPs). A wide literature of VIPs appears in [2]. Focussing specifically to SDLCP has many
advantages. In this particular setting, many specialized results can be proved using the extra structure
available for matrices. Thus, SDLCP is an useful tool in understanding variational inequality problems.
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LetAbea squarematrixof ordern. Then themultiplicative transformationMA : V → V is definedby
MA(X) := AXAT . It is known from [5] that invertible multiplicative transformations are the only linear
transformations on V that satisfy L(Σ) = Σ . The transformation MA is said to have the Q-property
if SDLCP(MA, Q) has a solution for all Q ∈ V . One of the unsolved problems in SDLCP is to prove the
Q-property of MA. Towards, this we prove the following result:

Theorem 1. Let A ∈ Rn×n. Then the following are equivalent:

1. A + AT is either positive definite or negative definite.
2. For all Q ∈ V, SDLCP(MA, Q) has a unique solution.
3. SDLCP(MA, 0) has a unique solution.
4. MA has the Q-property.

The proof of (1) ⇒ (2) ⇒ (3) ⇒ (4) in the above theorem is proved in [4]. If A is of order 2,
then (4) ⇒ (1) is proved in [4]. Our aim in this paper is to establish (4) ⇒ (1) for any square matrix
A ∈ Rn×n.

2. Preliminaries

Wemake the following assumption throughout this paper:

n� 3.

The following notations are used in this paper:

• Let α ⊆ {1, . . . , n} and β ⊆ {1, . . . , n}. Then for a matrixM ∈ Rn×n,M〈α,β〉will be the subma-
trix ofM obtained by deleting rows indexed by α and columns indexed by β .

• Let X � 0, α = {1, n}. Then X′ := X〈α,α〉. For example, if

X =

⎡
⎢⎢⎣

1 2 0 0
2 4 0 0
0 0 3 2
0 0 2 6

⎤
⎥⎥⎦ ,

then X′ =

[
4 0
0 3

]
.

• Set of all solutions to SDLCP(MA, Q) will be denoted by SOL(MA, Q).
• Let Ik denote the identity matrix of order k.
• We will use Q̃ to denote the n × n matrix

Q̃ :=

⎡
⎢⎢⎢⎣

0 . . . 0 1
0 . . . 0 0
...

...
...

...
1 0 0 0

⎤
⎥⎥⎥⎦ .

We now introduce some definitions.

Definition 1. For a matrix M ∈ Rn×n with entries mij , we define the following:

• Letα = {2, . . . , n − 2}. The corner ofM is theprincipal submatrixM〈α,α〉.Wedenote the corner
of M by cor(M).

• The entrymij is called a corner entry ofM ifmij is an entry in cor(M). Otherwise we say thatmij

is a non-corner entry.
• M is called a corner matrix if all the non-corner entries of M are zero and cor(M) is a nonzero
matrix.

• IfM is the sum of identity matrix and a skew-symmetric matrix, then we say thatM is a type(∗)
matrix.
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• Let n1 > 0 be any positive integer. ThenM is called Form(n1)matrix ifM can be partitioned such
that

M =

[
W Q

−Q T R

]
,

where W is a skew-symmetric matrix of order m and R is a type(∗) matrix of order n1. Here we
assume m + n1 = n andm > 0.

• Let n1 and n2 be positive integers such that n1 + n2 = n. ThenM is called Form(n1, n2)matrix if
M can be partitioned such that

M =

[
P Q

−Q T −R

]
,

where P and R are type(∗) matrices of order n1 and n2 respectively.
• Let n1, n2 and n3 be positive integers such that n1 + n2 + n3 = n. ThenM is called Form(n1, n2,
n3) matrix if M has the partitioned form

M =

⎡
⎢⎣

P E S

−ET W Q

−ST −Q T −R

⎤
⎥⎦ ,

where W is a skew-symmetric matrix of order n3, P and R are type(∗) matrices of order n1 and
n2 respectively.

• Let N ∈ Rn×n. Then we write M ∼ N if and only if there exists a nonsingular matrix P such that
PMPT = N.

3. Result

To prove the main result we proceed as follows: Using the Q-property of MA, we first show that
there exists a corner matrix which solves SDLCP(MA, AQ̃AT ). This lemma is then used to show that if A
is either Form(n1) or Form(n1, n2) or Form(n1, n2, n3), then MA cannot have the Q-property. This will
finally imply that A should be either positive definite or negative definite.

We begin with the following lemma.

Lemma 1. Let B � 0. Suppose that P is a k × k principal submatrix of B. Let r1, . . . , rk be the rows of B

which contain P. Then det P = 0 if and only if r1, . . . , rk are linearly dependent vectors.
In particular, rank(P) is the number of linearly independent vectors in r1, . . . , rk.

Proof. Without loss of generality, assume that P is a leading principal submatrix of B. Let B have the
partitioned form

B =

[
P Q

Q T R

]
.

Observe that Q is of order k × (n − k). Now, it suffices to prove that rank([P Q ]) = rank(P).
Let x = (x1, . . . , xk)

T ∈ Rk be a nonzero vector such that Px = 0. Define v ∈ Rn by

v :=

⎡
⎢⎢⎢⎣

x

0
...
0

⎤
⎥⎥⎥⎦ .

It can be verified that vTBv = xTPx. Then, vTBv = xTPx = 0. Since B is symmetric as well as
positive semidefinite, Bv = 0 and hence Q Tx = 0. This together with Px = 0 implies that

k∑

i=1

xiri = 0.
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Thus the vectors r1, . . . , rk are linearly dependent. The converse as well as the rank equality are easily
seen. �

Lemma 2. Let A ∈ Rn×n. Then the following statements are true:

(i) If the transformationMA has theQ-property, thenA is nonsingular andMPAPT will have theQ-property

for all P nonsingular.
(ii) Let MA have the Q-property and X ∈ SOL(MA, AQ̃AT ). Then X and X + Q̃ are nonzero positive

semidefinite matrices. Further, rank(X) < n − 1 or rank(X + Q̃) < n − 1.

Proof. Wenowprove (i). Let X ∈ SOL(MA,−I), where I is the identitymatrix. Then AXAT − I � 0. This
implies that AXAT is a positive definitematrix and therefore A is nonsingular. Now, let P be nonsingular
and U := P−1. Then the following equivalence can be verified for any symmetric matrix Q of order n:

X ∈ SOL(MA, Q) ⇔ UXUT ∈ SOL(MPTAP , P
TQP).

Therefore,MA has the Q-property if and only ifMPAPT has the Q-property.
We now prove (ii). Since X ∈ SOL(MA, AQ̃AT ), we have

X � 0, Ỹ := AXAT + AQ̃AT � 0 and XỸ = 0. (1)

SinceMA has the Q-property, by (i) Amust be nonsingular. Let B := A−1. Then BỸBT � 0. This means
that X + Q̃ � 0. From (1), we see that

X � 0, Y := X + Q̃ � 0 and XAY = 0.

Since Q̃ is an indefinite matrix, from the conditions X � 0 and Y � 0, we see that X and Y are
nonzero. If rank(X) = n or rank(Y) = n, then XAY = 0 implies that Y = 0 or X = 0 which is not true.
So, rank(X) < n and rank(Y) < n.

If possible, suppose rank(X) = n − 1 and rank(Y) = n − 1. As A is nonsingular, rank(XA) =
rank(X) = n − 1. Now, by Frobenius inequality,

2(n − 1) = rank(XA) + rank(Y) � rank(XAY) + n = n,

which does not hold as n� 3. Therefore either rank(X) < n − 1 or rank(Y) < n − 1. This completes
the proof. �

Lemma 3. Let the transformationMA have theQ-property. If X ∈ SOL(MA, AQ̃AT ) and rank(X′) = k, then

(1) rank(X) > k,

(2) rank(X + Q̃) > k,

(3) det X′ = 0.

Proof. We prove (1). By (ii) in Lemma 2, it follows that

X � 0, Y := X + Q̃ � 0, X /= 0, Y /= 0.

As rank(X′) � rank(X), suppose if possible, rank(X′) = rank(X). Since X is nonzero, it suffices to
assume that k > 0. Let u1, . . . , un be the rows of X and xij be the (i, j)-entry of X .

Since rank(X′) = k, X′ has k linearly independent row vectors. Without any loss of generality,
assume that u2, u3, . . . , uk , uk+1 are linearly independent. Then by Lemma 1, the leading principal
submatrix of X′ with order k must be nonsingular. This means that the matrix

G :=

⎡
⎢⎢⎢⎣

x22 x23 . . . x2k+1

x32 x33 . . . x3k+1

...
...

...
...

xk+12 xk+13 . . . xk+1k+1

⎤
⎥⎥⎥⎦

is nonsingular.
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LetH be the (k + 1) × (k + 1) leadingprincipal submatrix ofX . Aswehave k = rank(X), det H = 0
and the vectors in the set {u1, u2, . . . , uk , uk+1} must be linearly dependent. Observe that H is also
the leading (k + 1) × (k + 1) principal submatrix of Y . Suppose that en ∈ Rn is the vector en :=
(0, . . . , 0, 1)T . Nowu1 + en, u2, . . . , uk , uk+1 are the rows of Y which containH and det H = 0. Further
Y � 0. Using Lemma 1, we now deduce that u1 + en, u2, . . . , uk , uk+1 must be linearly dependent.

Let L be the rectangular matrix whose rows are u1 + en, u2, . . . , uk , uk+1. Then rank(L) < k + 1.
Now we define

L̃ :=

⎡
⎢⎢⎢⎣

x12 x13 . . . x1k+1 x1n + 1
x22 x23 . . . x2k+1 x2n
...

...
...

...
...

xk+12 xk+13 . . . xk+1k+1 xk+1n

⎤
⎥⎥⎥⎦ .

It can be verified that L̃ is a (k + 1) × (k + 1) submatrix of L and L̃〈{1}, {n}〉 = G. If det L̃ /= 0, then
rank(L) � k + 1 which will be a contradiction. Thus det L̃ = 0.

Also,

L̂ :=

⎡
⎢⎢⎢⎣

x12 x13 . . . x1k+1 x1n
x22 x23 . . . x2k+1 x2n
...

...
...

...
...

xk+12 xk+13 . . . xk+1k+1 xk+1n

⎤
⎥⎥⎥⎦

must be singular, as rank(X) = k. Now, it follows that

0 = det L̃ = det L̂ + det L̃〈{1}, {n}〉 = det G.

This contradicts that G is nonsingular. This completes the proof of (1).
By repeating the same argument as above, we get (2).
We now prove (3). Suppose det X′ /= 0. This implies rank(X′) = n − 2. Now, by (1) and (2), we

have rank(X) > n − 2 and rank(Y) > n − 2, which is a contradiction to item (ii) in Lemma 2. Hence
the proof. �

Lemma 4. Let P � 0, det P′ = 0 and rank(P′) < rank(P). Then there is a corner matrix T such that

P = S + T, where S � 0 and T � 0. Further S has the following properties:

(a) Non-corner entries of S and P are equal.
(b) rank(S) = rank(P′).

Proof. LetU be apermutationmatrix such that P′ is the (n − 2) × (n − 2) leadingprincipal submatrix
of UPUT . Define Y := UPUT . Let Y have the partitioned form

Y =

[
P′ B

BT C

]
.

To prove the result, we will show that

Y =

[
P′ B

BT N

]
+

[
0 0
0 L

]
,

where

rank

([
P′ B

BT N

])
= rank(P′),

[
P′ B

BT N

]
� 0

[
0 0
0 L

]
� 0, and L /= 0.

Put k := rank(P′). Since det P′ = 0, k < n − 2. Since P′ � 0, P′ is the sum of k rank one positive
semidefinite matrices. Let

P′ =

k∑

ν=1

[xν
i x

ν
j ], i = 1, . . . , n − 2 and j = 1, . . . , n − 2.
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In view of Lemma 1, rank([P′ B]) = k. Therefore

[P′ B] =

k∑

ν=1

[xν
i x

ν
j ] i = 1, . . ., n − 2 and j = 1, 2, . . ., n.

Let

S̃ :=

k∑

ν=1

[xν
i x

ν
j ], i = 1, . . ., n and j = 1, . . ., n.

Then S̃ � 0 and rank(̃S) = k. As S̃ � 0, Lemma 1 implies that at least one k × k principal submatrix
of S̃ must be nonsingular. Without any loss of generality, we assume that the k × k leading principal
submatrix of S̃ is nonsingular. Suppose the k × k leading principal submatrix of S̃ is denoted by Ŝ. Then
det Ŝ > 0. It can be noted that S̃ has the partitioned form

S̃ =

[
P′ B

BT N

]
.

Define

T̃ := Y − S̃.

Suppose T̃ = 0. Then rank(Y) = rank(̃S). This means that rank(Y) = k and hence rank(P) = kwhich
is a contradiction to our assumption rank(P) > rank(P′). Therefore T̃ is nonzero. Apparently, T̃ has the
partitioned form

T̃ =

[
0 0
0 L

]
,

where L =

[
a b

b c

]
.

It remains to show that T̃ � 0. We claim a� 0, c � 0 and det L � 0. Let E = [eij] be the (k + 1) ×
(k + 1) matrix defined by

eij =

{
1 (i, j) = (k + 1, k + 1),
0 else.

Let

V := S̃〈α,α〉, α = {k + 1, . . . , n − 2, n}.

ThenV + aE is aprincipal submatrixofY . Putβ = {k + 1}. ThenV〈β ,β〉 = Ŝ. SinceY � 0,det(V +
aE) � 0. As rank(̃S) = k, det V = 0.

Now we have

det(V + aE) = det V + a det V〈β ,β〉 = a det Ŝ � 0.

Since det Ŝ > 0, a� 0. Similarly it can be proved that c � 0.
Let G be the (k + 2) × (k + 2) principal submatrix of S̃ defined by

G = S̃〈α,α〉, α = {k + 1, . . . , n − 2}.

Suppose that F is the (k + 2) × (k + 2) matrix defined by

F :=

[
0 0
0 L

]
.

Now G + F is a principal submatrix of Y and therefore det(G + F) � 0. By an easy calculation we
find that

det(G + F) = det Ŝ det L,

and so det L � 0. Thus T̃ � 0. This completes the proof. �
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Lemma 5. Let R � 0, S � 0, rank(R) = rank(S) and rank(R′) = rank(R). Assume that the non-corner

entries of R and S are same. Then R = S.

Proof. Let R := [rij], S := [sij] and k := rank(R). We need to prove that r11 = s11, rnn = snn and r1n =
s1n.

Since R′ � 0, by Lemma 1, at least one k × k principal submatrix of R′ is nonsingular. Without any
loss of generality, let us assume that the leading k × k principal submatrix of R′, say F , is nonsingular.
Let E11 := [eij] be the (k + 1) × (k + 1) matrix defined as follows:

eij =

{
1 (i, j) = (1, 1),
0 else.

Now the (k + 1) × (k + 1) leading principal submatrix of S can be written as

V := [sij] = [rij] + αE11, i, j = 1, . . . , k + 1.

Set

X := [rij], i, j = 1, . . . , k + 1.

Let the columns of X be u1, . . . , uk+1 and f := (α, 0, . . . , 0)T . It can be noted that det X = det V = 0
and therefore we have

0 = det V = det[u1 + f , u2, . . . , uk+1]

= det[u1, u2, . . . , uk+1] + det[f , u2, . . . , uk+1]

= det[f , u2, . . . , uk+1]

= α det F.

Since det F > 0, α = 0. Thus, s11 = r11. By a similar argument it can be proved that snn = rnn and
s1n = r1n. �

Lemma 6. Assume that MA has the Q-property. Then there exists T ∈ SOL(MA, AQ̃AT ) such that T is a

corner matrix.

Proof. Let X ∈ SOL(MA, AQ̃AT ). Then X � 0 and Y := X + Q̃ � 0. From Lemmas 3 and 4,

X = S + T and Y = R + T1, (2)

where S, R, T and T1 satisfy all the properties stated in Lemma 4. In particular T and T1 are corner.
Since Y ′ = X′, it follows from (b) of Lemma 4 that rank(R) = rank(S). Put k := rank(S). Now the

non-corner entries of R and S are same. Thus R and S satisfy all the conditions of Lemma 5. Hence
R = S. Equations in (2) thus imply Y = X + Q̃ = S + T + Q̃ = R + T + Q̃ = R + T1 and therefore
T + Q̃ = T1. Hence T + Q̃ � 0. As X ∈ SOL(MA, AQ̃AT ), we have

X(AXAT + AQ̃AT ) = (S + T)(AXAT + AQ̃AT ) = 0. (3)

Setting P = AXAT + AQ̃AT , we have

(S + T)P = 0. (4)

Since P � 0, S � 0 and T � 0, trace(SP) � 0 and trace(TP) � 0. Taking trace on both the sides in (4),
we obtain

trace(TP) = 0 and trace(SP) = 0.

Therefore TP = 0 and SP = 0. Thus we see that

T(AXAT + AQ̃AT ) = 0. (5)

PutX = S + T in (5). NowA(T + Q̃)AT � 0 and S � 0.Using a similar argument as above, it follows
that
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T(ATAT + AQ̃AT ) = 0. (6)

Thus, the corner matrix T solves SDLCP(MA, AQ̃AT ). This completes the proof. �

The proof of the following lemma is a direct verification and hence omitted.

Lemma 7. Suppose that X ∈ SOL(MA, AQ̃AT ). If X is a corner matrix, then cor(X) ∈ SOL(Mcor(A), cor(A)

cor(Q̃)cor(A)T ).

Lemma 8. If A is a Form(n1, n2)matrix or Form(n1, n2, n3)matrix, thenMA does not have the Q-property.

Proof. Suppose that A is a Form(n1, n2) matrix. Then A has the partitioned form

A =

[
B C

−CT −D

]
,

where B and D are type(∗) matrices of order n1 and n2 respectively. Let c be the last column of C.
As n� 3, it follows that either n1 > 1 or n2 > 1. Without any loss of generality, assume n1 > 1. As

c ∈ Rn1 and n1 > 1, there exists a unit vector u orthogonal to c. Now construct an orthogonal matrix
U of order n1 whose first row is uT .

Define

V :=

[
U 0
0 In2

]
.

Then V is orthogonal and

K := VAVT =

[
UBUT UC

−CTUT −D

]
.

Since B is a type(∗) matrix, so is UBUT . Thus, cor(K) = diag[1,−1].
If MA has the Q-property, then by item (i) in Lemma 2, MK will have the Q-property. By Lemma

6, there exists X ∈ SOL(MK , KQ̃KT ) such that X is corner. Setting S := diag[1,−1] it follows from
Lemma 7, that

cor(X) ∈ SOL(MS , Scor(Q̃)S).

This contradicts Lemma 11 (see Appendix). Thus, MA does not have the Q-property.
If A is a Form(n1, n2, n3) matrix, a similar argument can be repeated. �

Lemma 9. If A is a Form(n1) matrix or a skew-symmetric matrix, then MA does not have the Q-property.

Proof. If A is skew-symmetric (or more generally, normal), the result will follow from Lemma 2.15
in [1].

Assume that A is a Form(n1) matrix. Let MA have the Q-property. Suppose A has the partitioned
form

A =

[
W G

−GT D

]
,

where D is a type(∗) matrix of order n1 andW is skew-symmetric of orderm. It can be verified that A
is normal if and only if G = 0 and hence to prove the lemma we can assume that G /= 0. Then there
exists a permutation matrix

U =

[
P1 0
0 P2

]
,

where P1 and P2 are permutation matrices of order m and n1 respectively such that B := UAUT is a
Form(n1) matrix and det(cor(B)) /= 0. Without any loss of generality we can assume that
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cor(B) =

[
0 −b

b 1

]
, b > 0.

By Lemma 2,MB will have the Q-property. By Lemma 6, there is a corner matrix which is a solution

to SDLCP(MB, BQ̃BT ). Hence from Lemma 7, there is a solution to SDLCP(Mcor(B),

[
0 1
1 0

]
) which is a

contradiction to Lemma 11 (see Appendix). This completes the proof. �

The next lemma is a consequence of the following well known theorem for symmetric matrices.

Theorem 2 (Sylvester’s inertia theorem). Let Q and R be symmetric matrices of order n with ν1 zero

eigenvalues, ν2 positive eigenvalues and ν3 negative eigenvalues. Then there is a nonsingular matrix P such

that PQPT = R.

Lemma 10. Let A ∈ Rn×n. Assume that A is neither positive definite nor negative definite. Then we have

the following.

1. If A + AT is a nonsingular matrix, then there is a Form (n1, n2) matrix B such that A ∼ B.
2. Suppose A + AT is singular and nonzero. Then either there is a Form(n1, n2, n3) matrix B such that

A ∼ B or there is a Form(n1) matrix C such that A ∼ ±C.

Proof. Define Ã := A + AT . If Ã is nonsingular, then Ãwill have n1 positive eigenvalues and n2 negative
eigenvalues. Now by Theorem 2, there exists a nonsingular matrix P such that

PÃPT =

[
2In1 0
0 −2In2

]
.

Put B := PAPT . We then see that A ∼ B, where B is a Form(n1, n2) matrix.
Let Ã be singular and nonzero. Now at least one of the eigenvalues of Ãmust be zero. Suppose that

Ã has n1 positive eigenvalues and n2 negative eigenvalues. Then by the above theorem, there exists a
nonsingular matrix P such that

PÃPT =

⎡
⎣
2In1 0 0
0 0 0
0 0 −2In2

⎤
⎦ .

Therefore PAPT must be a Form(n1, n2, n3) matrix.
Suppose that Ã is singular, nonzero and has n1 positive eigenvalues. Nowwe can find a nonsingular

matrix P such that

PÃPT =

[
0 0
0 2In1

]
.

This implies that PAPT must be a Form(n1) matrix.
If Ã is singular, nonzero and has n1 negative eigenvalues then−A ∼ B, where B is a Form(n1)matrix.

Thus, A ∼ −B. This completes the proof. �

As a consequence of the above lemmas, we have the following theorem.

Theorem 3. Let A ∈ Rn×n. Then the following are equivalent.

1. A + AT is either positive definite or negative definite.
2. If Q is a symmetric matrix, then SDLCP(MA, Q) has a solution.

Acknowledgments

I thank Professor SeetharamaGowda for his comments and suggestions. I would also like to express
my thanks to Professor T. Parthasarathy, with whom I had several discussions about the problem for



R. Balaji / Linear Algebra and its Applications 432 (2010) 2754–2763 2763

the past few years. This work is funded by Indian Institute of Technology Guwahati under the start up
grant math/pb/RB/1.

Appendix

Wenowprove a result which is used in Lemmas 8 and 9. Aswe have assumed that n� 3 throughout
the paper, we present this result here.

Lemma 11. Let Q :=

[
0 1
1 0

]
. Let S denote either

[
1 0
0 −1

]
or

[
0 −b

b 1

]
, where b > 0. Then SDLCP(MS ,

SQS) has no solution.

Proof. In both cases, S is nonsingular and SQS is indefinite. LetX :=

[
d e

e r

]
be a solution to SDLCP(MS ,

SQS). Then

X � 0, Y := SXS + SQS � 0 and XY = 0.

Since S is nonsingular, the condition X(SXS + SQS) = 0 implies XS(X + Q) = 0. Suppose X = 0. Then
the condition Y � 0 will mean that SQS � 0 which is a contradiction as det(SQS) < 0. So, X /= 0.
Suppose Y = 0. Then, Y � 0 implies that−SQS = SXS. Since X � 0, SXS � 0 and therefore,−SQS � 0
which is again a contradiction. Hence X and Y are nonzero. Suppose that rank(X) = 2. Then from the
conditionXY = 0,wesee thatY = 0. This is notpossible. So, rank(X) = 1. Similarly, rank(Y) = 1.Now
rank(S−1YS−1) = 1 and therefore, rank(X + Q) = 1. Hence det X = 0 and det(X + Q) = 0. Using
these equations, we obtain e = − 1

2
. Now putting this in XS(X + Q) = 0, and noting d � 0 and r � 0,

we get a contradiction in both the instances of S. This completes the proof. �
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