# Characterization of Q-property for multiplicative transformations in semidefinite linear complementarity problems 

R. Balaji<br>Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati 781 039, India

## ARTICLE INFO

## Article history:

Received 5 May 2009
Accepted 9 December 2009
Available online 11 February 2010
Submitted by M. Tsatsomeros

## Keywords:

Multiplicative transformations
Complementarity
Inertia


#### Abstract

We characterize the Q-property of a multiplicative transformation in semidefinite linear complementarity problems.


© 2010 Elsevier Inc. All rights reserved.

## 1. Introduction

Let $V:=\mathcal{S}^{n \times n}$ be the vector space of real symmetric matrices of order $n$ and $\Sigma$ be the set of all positive semidefinite matrices in $V$. If $X \in \Sigma$, we will use the notation $X \succeq 0$. Suppose that $L: V \rightarrow V$ is a linear transformation. Given an element $Q \in V$, the semidefinite linear complementarity problem $\operatorname{SDLCP}(L, Q)$ is to find a matrix $X \in V$ such that

$$
X \succeq 0, \quad Y:=L(X)+Q \succeq 0 \text { and } X Y=0
$$

SDLCP is a mathematical programming problem introduced in [3]. It has several applications in matrix theory and optimization. We refer to [3] for details. SDLCP is a special case of variational inequality problems (VIPs). A wide literature of VIPs appears in [2]. Focussing specifically to SDLCP has many advantages. In this particular setting, many specialized results can be proved using the extra structure available for matrices. Thus, SDLCP is an useful tool in understanding variational inequality problems.

[^0]Let $A$ be a square matrix of order $n$. Then the multiplicative transformation $M_{A}: V \rightarrow V$ is defined by $M_{A}(X):=A X A^{T}$. It is known from [5] that invertible multiplicative transformations are the only linear transformations on $V$ that satisfy $L(\Sigma)=\Sigma$. The transformation $M_{A}$ is said to have the $Q$-property if $\operatorname{SDLCP}\left(M_{A}, Q\right)$ has a solution for all $Q \in V$. One of the unsolved problems in SDLCP is to prove the $Q$-property of $M_{A}$. Towards, this we prove the following result:

Theorem 1. Let $A \in R^{n \times n}$. Then the following are equivalent:

1. $A+A^{T}$ is either positive definite or negative definite.
2. For all $Q \in V, \operatorname{SDLCP}\left(M_{A}, Q\right)$ has a unique solution.
3. $\operatorname{SDLCP}\left(M_{A}, 0\right)$ has a unique solution.
4. $M_{A}$ has the Q-property.

The proof of $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4)$ in the above theorem is proved in [4]. If $A$ is of order 2 , then $(4) \Rightarrow(1)$ is proved in [4]. Our aim in this paper is to establish (4) $\Rightarrow$ (1) for any square matrix $A \in R^{n \times n}$.

## 2. Preliminaries

We make the following assumption throughout this paper:

$$
n \geqslant 3 .
$$

The following notations are used in this paper:

- Let $\alpha \subseteq\{1, \ldots, n\}$ and $\beta \subseteq\{1, \ldots, n\}$. Then for a matrix $M \in R^{n \times n}, M\langle\alpha, \beta\rangle$ will be the submatrix of $M$ obtained by deleting rows indexed by $\alpha$ and columns indexed by $\beta$.
- Let $X \succeq 0, \alpha=\{1, n\}$. Then $X^{\prime}:=X\langle\alpha, \alpha\rangle$. For example, if

$$
X=\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
2 & 4 & 0 & 0 \\
0 & 0 & 3 & 2 \\
0 & 0 & 2 & 6
\end{array}\right]
$$

then $X^{\prime}=\left[\begin{array}{ll}4 & 0 \\ 0 & 3\end{array}\right]$.

- Set of all solutions to $\operatorname{SDLCP}\left(M_{A}, Q\right)$ will be denoted by $\operatorname{SOL}\left(M_{A}, Q\right)$.
- Let $I_{k}$ denote the identity matrix of order $k$.
- We will use $\widetilde{Q}$ to denote the $n \times n$ matrix

$$
\widetilde{\mathrm{Q}}:=\left[\begin{array}{cccc}
0 & \ldots & 0 & 1 \\
0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 0 & 0 & 0
\end{array}\right] .
$$

We now introduce some definitions.
Definition 1. For a matrix $M \in R^{n \times n}$ with entries $m_{i j}$, we define the following:

- Let $\alpha=\{2, \ldots, n-2\}$. The corner of $M$ is the principal submatrix $M\langle\alpha, \alpha\rangle$. We denote the corner of $M$ by $\operatorname{cor}(M)$.
- The entry $m_{i j}$ is called a corner entry of $M$ if $m_{i j}$ is an entry in $\operatorname{cor}(M)$. Otherwise we say that $m_{i j}$ is a non-corner entry.
- $M$ is called a corner matrix if all the non-corner entries of $M$ are zero and $\operatorname{cor}(M)$ is a nonzero matrix.
- If $M$ is the sum of identity matrix and a skew-symmetric matrix, then we say that $M$ is a type(*) matrix.
- Let $n_{1}>0$ be any positive integer. Then $M$ is called $\operatorname{Form}\left(n_{1}\right)$ matrix if $M$ can be partitioned such that

$$
M=\left[\begin{array}{cc}
W & Q \\
-Q^{T} & R
\end{array}\right]
$$

where $W$ is a skew-symmetric matrix of order $m$ and $R$ is a type (*) matrix of order $n_{1}$. Here we assume $m+n_{1}=n$ and $m>0$.

- Let $n_{1}$ and $n_{2}$ be positive integers such that $n_{1}+n_{2}=n$. Then $M$ is called Form $\left(n_{1}, n_{2}\right)$ matrix if $M$ can be partitioned such that

$$
M=\left[\begin{array}{cc}
P & Q \\
-Q^{T} & -R
\end{array}\right],
$$

where $P$ and $R$ are type ( $*$ ) matrices of order $n_{1}$ and $n_{2}$ respectively.

- Let $n_{1}, n_{2}$ and $n_{3}$ be positive integers such that $n_{1}+n_{2}+n_{3}=n$. Then $M$ is called Form ( $n_{1}, n_{2}$, $n_{3}$ ) matrix if $M$ has the partitioned form

$$
M=\left[\begin{array}{ccc}
P & E & S \\
-E^{T} & W & Q \\
-S^{T} & -Q^{T} & -R
\end{array}\right],
$$

where $W$ is a skew-symmetric matrix of order $n_{3}, P$ and $R$ are type $(*)$ matrices of order $n_{1}$ and $n_{2}$ respectively.

- Let $N \in R^{n \times n}$. Then we write $M \sim N$ if and only if there exists a nonsingular matrix $P$ such that $P M P^{T}=N$.


## 3. Result

To prove the main result we proceed as follows: Using the $Q$-property of $M_{A}$, we first show that there exists a corner matrix which solves $\operatorname{SDLCP}\left(M_{A}, A \widetilde{Q} A^{T}\right)$. This lemma is then used to show that if $A$ is either $\operatorname{Form}\left(n_{1}\right)$ or $\operatorname{Form}\left(n_{1}, n_{2}\right)$ or $\operatorname{Form}\left(n_{1}, n_{2}, n_{3}\right)$, then $M_{A}$ cannot have the Q-property. This will finally imply that $A$ should be either positive definite or negative definite.

We begin with the following lemma.
Lemma 1. Let $B \succeq 0$. Suppose that $P$ is a $k \times k$ principal submatrix of $B$. Let $\mathbf{r}_{1}, \ldots, \mathbf{r}_{k}$ be the rows of $B$ which contain $P$. Then $\operatorname{det} P=0$ if and only if $\mathbf{r}_{1}, \ldots, \mathbf{r}_{k}$ are linearly dependent vectors.

In particular, $\operatorname{rank}(P)$ is the number of linearly independent vectors in $\mathbf{r}_{1}, \ldots, \mathbf{r}_{k}$.
Proof. Without loss of generality, assume that $P$ is a leading principal submatrix of $B$. Let $B$ have the partitioned form

$$
B=\left[\begin{array}{cc}
P & Q \\
Q^{T} & R
\end{array}\right]
$$

Observe that $Q$ is of order $k \times(n-k)$. Now, it suffices to prove that $\operatorname{rank}([P Q])=\operatorname{rank}(P)$.
Let $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)^{T} \in R^{k}$ be a nonzero vector such that $P \mathbf{x}=0$. Define $\mathbf{v} \in R^{n}$ by

$$
\mathbf{v}:=\left[\begin{array}{c}
\mathbf{x} \\
0 \\
\vdots \\
0
\end{array}\right] .
$$

It can be verified that $\mathbf{v}^{T} B \mathbf{v}=\mathbf{x}^{T} P \mathbf{x}$. Then, $\mathbf{v}^{T} B \mathbf{v}=\mathbf{x}^{T} P \mathbf{x}=0$. Since $B$ is symmetric as well as positive semidefinite, $B \mathbf{v}=0$ and hence $Q^{T} \mathbf{x}=0$. This together with $P x=0$ implies that

$$
\sum_{i=1}^{k} x_{i} \mathbf{r}_{i}=0
$$

Thus the vectors $\mathbf{r}_{1}, \ldots, \mathbf{r}_{k}$ are linearly dependent. The converse as well as the rank equality are easily seen.

Lemma 2. Let $A \in R^{n \times n}$. Then the following statements are true:
(i) If the transformation $M_{A}$ has the $Q$-property, then $A$ is nonsingular and $M_{P A P T}$ will have the $Q$-property for all P nonsingular.
(ii) Let $M_{A}$ have the $Q$-property and $X \in \operatorname{SOL}\left(M_{A}, A \widetilde{Q} A^{T}\right)$. Then $\underset{\widetilde{Q}}{X}$ and $X+\widetilde{Q}$ are nonzero positive semidefinite matrices. Further, $\operatorname{rank}(X)<n-1$ or $\operatorname{rank}(X+\widetilde{Q})<n-1$.

Proof. We now prove (i). Let $X \in \operatorname{SOL}\left(M_{A},-I\right)$, where $I$ is the identity matrix. Then $A X A^{T}-I \succeq 0$. This implies that $A X A^{T}$ is a positive definite matrix and therefore $A$ is nonsingular. Now, let $P$ be nonsingular and $U:=P^{-1}$. Then the following equivalence can be verified for any symmetric matrix $Q$ of order $n$ :

$$
X \in \operatorname{SOL}\left(M_{A}, Q\right) \Leftrightarrow U X U^{T} \in \operatorname{SOL}\left(M_{P^{T} A P}, P^{T} Q P\right)
$$

Therefore, $M_{A}$ has the $Q$-property if and only if $M_{P A P^{T}}$ has the $Q$-property.
We now prove (ii). Since $X \in \operatorname{SOL}\left(M_{A}, A \widetilde{Q} A^{T}\right)$, we have

$$
\begin{equation*}
X \succeq 0, \quad \widetilde{Y}:=A X A^{T}+A \widetilde{Q} A^{T} \succeq 0 \text { and } X \widetilde{Y}=0 . \tag{1}
\end{equation*}
$$

Since $M_{A}$ has the $Q$-property, by (i) $A$ must be nonsingular. Let $B:=A^{-1}$. Then $B \widetilde{Y} B^{T} \succeq 0$. This means that $X+\widetilde{Q} \succeq 0$. From (1), we see that

$$
X \succeq 0, \quad Y:=X+\widetilde{Q} \succeq 0 \quad \text { and } \quad X A Y=0
$$

Since $\widetilde{Q}$ is an indefinite matrix, from the conditions $X \succeq 0$ and $Y \succeq 0$, we see that $X$ and $Y$ are nonzero. If $\operatorname{rank}(X)=n$ or $\operatorname{rank}(Y)=n$, then $X A Y=0$ implies that $Y=0$ or $X=0$ which is not true. So, $\operatorname{rank}(X)<n$ and $\operatorname{rank}(Y)<n$.

If possible, suppose $\operatorname{rank}(X)=n-1$ and $\operatorname{rank}(Y)=n-1$. As $A$ is nonsingular, $\operatorname{rank}(X A)=$ $\operatorname{rank}(X)=n-1$. Now, by Frobenius inequality,

$$
2(n-1)=\operatorname{rank}(X A)+\operatorname{rank}(Y) \leqslant \operatorname{rank}(X A Y)+n=n
$$

which does not hold as $n \geqslant 3$. Therefore either $\operatorname{rank}(X)<n-1$ or $\operatorname{rank}(Y)<n-1$. This completes the proof.

Lemma 3. Let the transformation $M_{A}$ have the $Q$-property. If $X \in \operatorname{SOL}\left(M_{A}, A \widetilde{Q} A^{T}\right)$ and $\operatorname{rank}\left(X^{\prime}\right)=k$, then
(1) $\operatorname{rank}(X)>k$,
(2) $\operatorname{rank}(X+\widetilde{Q})>k$,
(3) $\operatorname{det} X^{\prime}=0$.

Proof. We prove (1). By (ii) in Lemma 2, it follows that

$$
X \succeq 0, \quad Y:=X+\widetilde{Q} \succeq 0, \quad X \neq 0, Y \neq 0
$$

As $\operatorname{rank}\left(X^{\prime}\right) \leqslant \operatorname{rank}(X)$, suppose if possible, $\operatorname{rank}\left(X^{\prime}\right)=\operatorname{rank}(X)$. Since $X$ is nonzero, it suffices to assume that $k>0$. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ be the rows of $X$ and $x_{i j}$ be the ( $i, j$ )-entry of $X$.

Since $\operatorname{rank}\left(X^{\prime}\right)=k, X^{\prime}$ has $k$ linearly independent row vectors. Without any loss of generality, assume that $\mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}$ are linearly independent. Then by Lemma 1 , the leading principal submatrix of $X^{\prime}$ with order $k$ must be nonsingular. This means that the matrix

$$
G:=\left[\begin{array}{cccc}
x_{22} & x_{23} & \ldots & x_{2 k+1} \\
x_{32} & x_{33} & \ldots & x_{3 k+1} \\
\vdots & \vdots & \vdots & \vdots \\
x_{k+12} & x_{k+13} & \ldots & x_{k+1 k+1}
\end{array}\right]
$$

is nonsingular.

Let $H$ be the $(k+1) \times(k+1)$ leading principal submatrix of $X$. As we have $k=\operatorname{rank}(X)$, det $H=0$ and the vectors in the set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}\right\}$ must be linearly dependent. Observe that $H$ is also the leading $(k+1) \times(k+1)$ principal submatrix of $Y$. Suppose that $\mathbf{e}_{n} \in R^{n}$ is the vector $\mathbf{e}_{n}:=$ $(0, \ldots, 0,1)^{T}$. Now $\mathbf{u}_{1}+\mathbf{e}_{n}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}$ are the rows of $Y$ which contain $H$ and det $H=0$. Further $Y \succeq 0$. Using Lemma 1, we now deduce that $\mathbf{u}_{1}+\mathbf{e}_{n}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}$ must be linearly dependent.

Let $L$ be the rectangular matrix whose rows are $\mathbf{u}_{1}+\mathbf{e}_{n}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}$. Then $\operatorname{rank}(L)<k+1$. Now we define

$$
\widetilde{L}:=\left[\begin{array}{ccccc}
x_{12} & x_{13} & \ldots & x_{1 k+1} & x_{1 n}+1 \\
x_{22} & x_{23} & \ldots & x_{2 k+1} & x_{2 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_{k+12} & x_{k+13} & \ldots & x_{k+1 k+1} & x_{k+1 n}
\end{array}\right] .
$$

It can be verified that $\widetilde{L}$ is a $(k+1) \times(k+1)$ submatrix of $L$ and $\widetilde{L}\langle\{1\},\{n\}\rangle=G$. If $\operatorname{det} \widetilde{L} \neq 0$, then $\operatorname{rank}(L) \geqslant k+1$ which will be a contradiction. Thus $\operatorname{det} \tilde{L}=0$.

Also,

$$
\widehat{L}:=\left[\begin{array}{ccccc}
x_{12} & x_{13} & \ldots & x_{1 k+1} & x_{1 n} \\
x_{22} & x_{23} & \ldots & x_{2 k+1} & x_{2 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_{k+12} & x_{k+13} & \ldots & x_{k+1 k+1} & x_{k+1 n}
\end{array}\right]
$$

must be singular, as $\operatorname{rank}(X)=k$. Now, it follows that

$$
0=\operatorname{det} \widetilde{L}=\operatorname{det} \widehat{L}+\operatorname{det} \tilde{L}\langle\{1\},\{n\}\rangle=\operatorname{det} G .
$$

This contradicts that $G$ is nonsingular. This completes the proof of (1).
By repeating the same argument as above, we get (2).
We now prove (3). Suppose det $X^{\prime} \neq 0$. This implies $\operatorname{rank}\left(X^{\prime}\right)=n-2$. Now, by (1) and (2), we have $\operatorname{rank}(X)>n-2$ and $\operatorname{rank}(Y)>n-2$, which is a contradiction to item (ii) in Lemma 2. Hence the proof.

Lemma 4. Let $P \succeq 0, \operatorname{det} P^{\prime}=0$ and $\operatorname{rank}\left(P^{\prime}\right)<\operatorname{rank}(P)$. Then there is a corner matrix $T$ such that $P=S+T$, where $S \succeq 0$ and $T \succeq 0$. Further $S$ has the following properties:
(a) Non-corner entries of $S$ and $P$ are equal.
(b) $\operatorname{rank}(S)=\operatorname{rank}\left(P^{\prime}\right)$.

Proof. Let $U$ be a permutation matrix such that $P^{\prime}$ is the $(n-2) \times(n-2)$ leading principal submatrix of $U P U^{T}$. Define $Y:=U P U^{T}$. Let $Y$ have the partitioned form

$$
Y=\left[\begin{array}{ll}
P^{\prime} & B \\
B^{T} & C
\end{array}\right] .
$$

To prove the result, we will show that

$$
Y=\left[\begin{array}{ll}
P^{\prime} & B \\
B^{T} & N
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & L
\end{array}\right],
$$

where

$$
\operatorname{rank}\left(\left[\begin{array}{cc}
P^{\prime} & B \\
B^{T} & N
\end{array}\right]\right)=\operatorname{rank}\left(P^{\prime}\right),\left[\begin{array}{cc}
P^{\prime} & B \\
B^{T} & N
\end{array}\right] \succeq 0\left[\begin{array}{ll}
0 & 0 \\
0 & L
\end{array}\right] \succeq 0, \quad \text { and } L \neq 0
$$

Put $k:=\operatorname{rank}\left(P^{\prime}\right)$. Since $\operatorname{det} P^{\prime}=0, k<n-2$. Since $P^{\prime} \succeq 0, P^{\prime}$ is the sum of $k$ rank one positive semidefinite matrices. Let

$$
P^{\prime}=\sum_{\nu=1}^{k}\left[x_{i}^{\nu} x_{j}^{\nu}\right], \quad i=1, \ldots, n-2 \text { and } j=1, \ldots, n-2 .
$$

In view of Lemma 1, $\operatorname{rank}\left(\left[P^{\prime} B\right]\right)=k$. Therefore

$$
\left[P^{\prime} B\right]=\sum_{\nu=1}^{k}\left[x_{i}^{\nu} x_{j}^{\nu}\right] \quad i=1, \ldots, n-2 \text { and } j=1,2, \ldots, n .
$$

Let

$$
\tilde{S}:=\sum_{\nu=1}^{k}\left[x_{i}^{\nu} x_{j}^{\nu}\right], \quad i=1, \ldots, n \text { and } j=1, \ldots, n
$$

Then $\widetilde{S} \succeq 0$ and $\operatorname{rank}(\widetilde{S})=k$. As $\widetilde{S} \succeq 0$, Lemma 1 implies that at least one $k \times k$ principal submatrix of $\tilde{S}$ must be nonsingular. Without any loss of generality, we assume that the $k \times k$ leading principal submatrix of $\widetilde{S}$ is nonsingular. Suppose the $k \times k$ leading principal submatrix of $\widetilde{S}$ is denoted by $\widehat{S}$. Then $\operatorname{det} \widehat{S}>0$. It can be noted that $\widetilde{S}$ has the partitioned form

$$
\widetilde{S}=\left[\begin{array}{cc}
P^{\prime} & B \\
B^{T} & N
\end{array}\right]
$$

Define

$$
\widetilde{T}:=Y-\widetilde{S}
$$

Suppose $\widetilde{T}=0$. Then $\operatorname{rank}(Y)=\operatorname{rank}(\widetilde{S})$. This means that $\operatorname{rank}(Y)=k$ and hence $\operatorname{rank}(P)=k$ which is a contradiction to our assumption $\operatorname{rank}(P)>\operatorname{rank}\left(P^{\prime}\right)$. Therefore $\widetilde{T}$ is nonzero. Apparently, $\widetilde{T}$ has the partitioned form

$$
\widetilde{T}=\left[\begin{array}{ll}
0 & 0 \\
0 & L
\end{array}\right],
$$

where $L=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$.
It remains to show that $\tilde{T} \succeq 0$. We claim $a \geqslant 0, c \geqslant 0$ and $\operatorname{det} L \geqslant 0$. Let $E=\left[e_{i j}\right]$ be the $(k+1) \times$ $(k+1)$ matrix defined by

$$
e_{i j}= \begin{cases}1 & (i, j)=(k+1, k+1) \\ 0 & \text { else. }\end{cases}
$$

Let

$$
V:=\tilde{S}\langle\alpha, \alpha\rangle, \quad \alpha=\{k+1, \ldots, n-2, n\} .
$$

Then $V+a E$ is a principal submatrix of $Y$. Put $\beta=\{k+1\}$. Then $V\langle\beta, \beta\rangle=\widehat{S}$. Since $Y \succeq 0, \operatorname{det}(V+$ $a E) \geqslant 0$. As $\operatorname{rank}(\widetilde{S})=k$, det $V=0$.

Now we have

$$
\operatorname{det}(V+a E)=\operatorname{det} V+a \operatorname{det} V\langle\beta, \beta\rangle=a \operatorname{det} \widehat{S} \geqslant 0
$$

Since $\operatorname{det} \widehat{S}>0, a \geqslant 0$. Similarly it can be proved that $c \geqslant 0$.
Let $G$ be the $(k+2) \times(k+2)$ principal submatrix of $\dot{\widetilde{S}}$ defined by

$$
G=\widetilde{S}\langle\alpha, \alpha\rangle, \quad \alpha=\{k+1, \ldots, n-2\} .
$$

Suppose that $F$ is the $(k+2) \times(k+2)$ matrix defined by

$$
F:=\left[\begin{array}{ll}
0 & 0 \\
0 & L
\end{array}\right]
$$

Now $G+F$ is a principal submatrix of $Y$ and therefore $\operatorname{det}(G+F) \geqslant 0$. By an easy calculation we find that

$$
\operatorname{det}(G+F)=\operatorname{det} \widehat{S} \operatorname{det} L
$$

and so $\operatorname{det} L \geqslant 0$. Thus $\widetilde{T} \succeq 0$. This completes the proof.

Lemma 5. Let $R \succeq 0, S \succeq 0, \operatorname{rank}(R)=\operatorname{rank}(S)$ and $\operatorname{rank}\left(R^{\prime}\right)=\operatorname{rank}(R)$. Assume that the non-corner entries of $R$ and $S$ are same. Then $R=S$.

Proof. Let $R:=\left[r_{i j}\right], S:=\left[s_{i j}\right]$ and $k:=\operatorname{rank}(R)$. We need to prove that $r_{11}=s_{11}, r_{n n}=s_{n n}$ and $r_{1 n}=$ $s_{1 n}$.

Since $R^{\prime} \succeq 0$, by Lemma 1 , at least one $k \times k$ principal submatrix of $R^{\prime}$ is nonsingular. Without any loss of generality, let us assume that the leading $k \times k$ principal submatrix of $R^{\prime}$, say $F$, is nonsingular. Let $E_{11}:=\left[e_{i j}\right]$ be the $(k+1) \times(k+1)$ matrix defined as follows:

$$
e_{i j}= \begin{cases}1 & (i, j)=(1,1) \\ 0 & \text { else. }\end{cases}
$$

Now the $(k+1) \times(k+1)$ leading principal submatrix of $S$ can be written as

$$
V:=\left[s_{i j}\right]=\left[r_{i j}\right]+\alpha E_{11}, \quad i, j=1, \ldots, k+1 .
$$

Set

$$
X:=\left[r_{i j}\right], \quad i, j=1, \ldots, k+1 .
$$

Let the columns of $X$ be $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k+1}$ and $\mathbf{f}:=(\alpha, 0, \ldots, 0)^{T}$. It can be noted that $\operatorname{det} X=\operatorname{det} V=0$ and therefore we have

$$
\begin{aligned}
0 & =\operatorname{det} V=\operatorname{det}\left[\mathbf{u}_{1}+\mathbf{f}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k+1}\right] \\
& =\operatorname{det}\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k+1}\right]+\operatorname{det}\left[\mathbf{f}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k+1}\right] \\
& =\operatorname{det}\left[\mathbf{f}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k+1}\right] \\
& =\alpha \operatorname{det} F
\end{aligned}
$$

Since $\operatorname{det} F>0, \alpha=0$. Thus, $s_{11}=r_{11}$. By a similar argument it can be proved that $s_{n n}=r_{n n}$ and $s_{1 n}=r_{1 n}$.

Lemma 6. Assume that $M_{A}$ has the $Q$-property. Then there exists $T \in \operatorname{SOL}\left(M_{A}, A \widetilde{Q} A^{T}\right)$ such that $T$ is a corner matrix.

Proof. Let $X \in \operatorname{SOL}\left(M_{A}, A \widetilde{Q} A^{T}\right)$. Then $X \succeq 0$ and $Y:=X+\widetilde{Q} \succeq 0$. From Lemmas 3 and 4 ,

$$
\begin{equation*}
X=S+T \text { and } Y=R+T_{1} \tag{2}
\end{equation*}
$$

where $S, R, T$ and $T_{1}$ satisfy all the properties stated in Lemma 4. In particular $T$ and $T_{1}$ are corner.
Since $Y^{\prime}=X^{\prime}$, it follows from (b) of Lemma 4 that $\operatorname{rank}(R)=\operatorname{rank}(S)$. Put $k:=\operatorname{rank}(S)$. Now the non-corner entries of $R$ and $S$ are same. Thus $R$ and $S$ satisfy all the conditions of Lemma 5 . Hence $R=S$. Equations in (2) thus imply $Y=X+\widetilde{Q}=S+T+\widetilde{Q}=R+T+\widetilde{Q}=R+T_{1}$ and therefore $T+\widetilde{Q}=T_{1}$. Hence $T+\widetilde{Q} \succeq 0$. As $X \in \operatorname{SOL}\left(M_{A}, A \widetilde{Q} A^{T}\right)$, we have

$$
\begin{equation*}
X\left(A X A^{T}+A \widetilde{Q} A^{T}\right)=(S+T)\left(A X A^{T}+A \widetilde{Q} A^{T}\right)=0 \tag{3}
\end{equation*}
$$

Setting $P=A X A^{T}+A \widetilde{Q} A^{T}$, we have

$$
\begin{equation*}
(S+T) P=0 \tag{4}
\end{equation*}
$$

Since $P \succeq 0, S \succeq 0$ and $T \succeq 0$, trace $(S P) \geqslant 0$ and trace $(T P) \geqslant 0$. Taking trace on both the sides in (4), we obtain

$$
\operatorname{trace}(T P)=0 \text { and } \operatorname{trace}(S P)=0
$$

Therefore $T P=0$ and $S P=0$. Thus we see that

$$
\begin{equation*}
T\left(A X A^{T}+A \widetilde{Q} A^{T}\right)=0 \tag{5}
\end{equation*}
$$

Put $X=S+T$ in (5). Now $A(T+\widetilde{Q}) A^{T} \succeq 0$ and $S \succeq 0$. Using a similar argument as above, it follows that

$$
\begin{equation*}
T\left(A T A^{T}+A \widetilde{Q} A^{T}\right)=0 . \tag{6}
\end{equation*}
$$

Thus, the corner matrix $T$ solves $\operatorname{SDLCP}\left(M_{A}, A \widetilde{Q} A^{T}\right)$. This completes the proof.
The proof of the following lemma is a direct verification and hence omitted.
Lemma 7. Suppose that $X \in \operatorname{SOL}\left(M_{A}, A \widetilde{Q} A^{T}\right)$. If $X$ is a corner matrix, then $\operatorname{cor}(X) \in \operatorname{SOL}\left(M_{\operatorname{cor}(A)}, \operatorname{cor}(A)\right.$ $\left.\operatorname{cor}(\widetilde{\mathbb{Q}}) \operatorname{cor}(A)^{T}\right)$.

Lemma 8. If A is a Form $\left(n_{1}, n_{2}\right)$ matrix or Form $\left(n_{1}, n_{2}, n_{3}\right)$ matrix, then $M_{A}$ does not have the $Q$-property.
Proof. Suppose that $A$ is a Form $\left(n_{1}, n_{2}\right)$ matrix. Then $A$ has the partitioned form

$$
A=\left[\begin{array}{cc}
B & C \\
-C^{T} & -D
\end{array}\right],
$$

where $B$ and $D$ are type $(*)$ matrices of order $n_{1}$ and $n_{2}$ respectively. Let $\mathbf{c}$ be the last column of $C$.
As $n \geqslant 3$, it follows that either $n_{1}>1$ or $n_{2}>1$. Without any loss of generality, assume $n_{1}>1$. As $\mathbf{c} \in R^{n_{1}}$ and $n_{1}>1$, there exists a unit vector $\mathbf{u}$ orthogonal to $\mathbf{c}$. Now construct an orthogonal matrix $U$ of order $n_{1}$ whose first row is $\mathbf{u}^{T}$.

Define

$$
V:=\left[\begin{array}{cc}
U & 0 \\
0 & I_{n_{2}}
\end{array}\right] .
$$

Then $V$ is orthogonal and

$$
K:=V A V^{T}=\left[\begin{array}{cc}
U B U^{T} & U C \\
-C^{T} U^{T} & -D
\end{array}\right] .
$$

Since $B$ is a type $(*)$ matrix, so is $U B U^{T}$. Thus, $\operatorname{cor}(K)=\operatorname{diag}[1,-1]$.
If $M_{A}$ has the $Q$-property, then by item (i) in Lemma $2, M_{K}$ will have the $Q$-property. By Lemma 6 , there exists $X \in \operatorname{SOL}\left(M_{K}, K \widetilde{Q} K^{T}\right)$ such that $X$ is corner. Setting $S:=\operatorname{diag}[1,-1]$ it follows from Lemma 7, that

$$
\operatorname{cor}(X) \in \operatorname{SOL}\left(M_{S}, S \operatorname{cor}(\widetilde{Q}) S\right) .
$$

This contradicts Lemma 11 (see Appendix). Thus, $M_{A}$ does not have the Q-property.
If $A$ is a $\operatorname{Form}\left(n_{1}, n_{2}, n_{3}\right)$ matrix, a similar argument can be repeated.
Lemma 9. If $A$ is a Form $\left(n_{1}\right)$ matrix or a skew-symmetric matrix, then $M_{A}$ does not have the $Q$-property.
Proof. If $A$ is skew-symmetric (or more generally, normal), the result will follow from Lemma 2.15 in [1].

Assume that $A$ is a $\operatorname{Form}\left(n_{1}\right)$ matrix. Let $M_{A}$ have the $Q$-property. Suppose $A$ has the partitioned form

$$
A=\left[\begin{array}{cc}
W & G \\
-G^{T} & D
\end{array}\right]
$$

where $D$ is a type $(*)$ matrix of order $n_{1}$ and $W$ is skew-symmetric of order $m$. It can be verified that $A$ is normal if and only if $G=0$ and hence to prove the lemma we can assume that $G \neq 0$. Then there exists a permutation matrix

$$
U=\left[\begin{array}{cc}
P_{1} & 0 \\
0 & P_{2}
\end{array}\right]
$$

where $P_{1}$ and $P_{2}$ are permutation matrices of order $m$ and $n_{1}$ respectively such that $B:=U A U^{T}$ is a Form $\left(n_{1}\right)$ matrix and $\operatorname{det}(\operatorname{cor}(B)) \neq 0$. Without any loss of generality we can assume that

$$
\operatorname{cor}(B)=\left[\begin{array}{cc}
0 & -b \\
b & 1
\end{array}\right], \quad b>0
$$

By Lemma 2, $M_{B}$ will have the Q-property. By Lemma 6 , there is a corner matrix which is a solution to $\operatorname{SDLCP}\left(M_{B}, B \widetilde{Q} B^{T}\right)$. Hence from Lemma 7, there is a solution to $\operatorname{SDLCP}\left(M_{\operatorname{cor}(B)},\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right)$ which is a contradiction to Lemma 11 (see Appendix). This completes the proof.

The next lemma is a consequence of the following well known theorem for symmetric matrices.
Theorem 2 (Sylvester's inertia theorem). Let $Q$ and $R$ be symmetric matrices of order $n$ with $\nu_{1}$ zero eigenvalues, $\nu_{2}$ positive eigenvalues and $\nu_{3}$ negative eigenvalues. Then there is a nonsingular matrix $P$ such that $P Q P^{T}=R$.

Lemma 10. Let $A \in R^{n \times n}$. Assume that $A$ is neither positive definite nor negative definite. Then we have the following.

1. If $A+A^{T}$ is a nonsingular matrix, then there is a Form $\left(n_{1}, n_{2}\right)$ matrix $B$ such that $A \sim B$.
2. Suppose $A+A^{T}$ is singular and nonzero. Then either there is a Form $\left(n_{1}, n_{2}, n_{3}\right)$ matrix $B$ such that $A \sim B$ or there is a Form $\left(n_{1}\right)$ matrix $C$ such that $A \sim \pm C$.

Proof. Define $\widetilde{A}:=A+A^{T}$. If $\widetilde{A}$ is nonsingular, then $\widetilde{A}$ will have $n_{1}$ positive eigenvalues and $n_{2}$ negative eigenvalues. Now by Theorem 2 , there exists a nonsingular matrix $P$ such that

$$
P \widetilde{A} P^{T}=\left[\begin{array}{cc}
2 I_{n_{1}} & 0 \\
0 & -2 I_{n_{2}}
\end{array}\right] .
$$

Put $B:=P A P^{T}$. We then see that $A \sim B$, where $B$ is a Form $\left(n_{1}, n_{2}\right)$ matrix.
Let $\tilde{A}$ be singular and nonzero. Now at least one of the eigenvalues of $\widetilde{A}$ must be zero. Suppose that $\widetilde{A}$ has $n_{1}$ positive eigenvalues and $n_{2}$ negative eigenvalues. Then by the above theorem, there exists a nonsingular matrix $P$ such that

$$
P \widetilde{A} P^{T}=\left[\begin{array}{ccc}
2 I_{n_{1}} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -2 I_{n_{2}}
\end{array}\right]
$$

Therefore $\operatorname{PAP}{ }_{\sim}^{T}$ must be a Form $\left(n_{1}, n_{2}, n_{3}\right)$ matrix.
Suppose that $\widetilde{A}$ is singular, nonzero and has $n_{1}$ positive eigenvalues. Now we can find a nonsingular matrix $P$ such that

$$
P \widetilde{A} P^{T}=\left[\begin{array}{cc}
0 & 0 \\
0 & 2 I_{n_{1}}
\end{array}\right]
$$

This implies that PAP ${ }^{T}$ must be a $\operatorname{Form}\left(n_{1}\right)$ matrix.
If $\widetilde{A}$ is singular, nonzero and has $n_{1}$ negative eigenvalues then $-A \sim B$, where $B$ is a $\operatorname{Form}\left(n_{1}\right)$ matrix. Thus, $A \sim-B$. This completes the proof.

As a consequence of the above lemmas, we have the following theorem.
Theorem 3. Let $A \in R^{n \times n}$. Then the following are equivalent.

1. $A+A^{T}$ is either positive definite or negative definite.
2. If $Q$ is a symmetric matrix, then $\operatorname{SDLCP}\left(M_{A}, Q\right)$ has a solution.

## Acknowledgments

I thank Professor Seetharama Gowda for his comments and suggestions. I would also like to express my thanks to Professor T. Parthasarathy, with whom I had several discussions about the problem for
the past few years. This work is funded by Indian Institute of Technology Guwahati under the start up grant math/pb/RB/1.

## Appendix

We now prove a result which is used in Lemmas 8 and 9 . As we have assumed that $n \geqslant 3$ throughout the paper, we present this result here.

Lemma 11. Let $Q:=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Let $S$ denote either $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ or $\left[\begin{array}{cc}0 & -b \\ b & 1\end{array}\right]$, where $b>0$. Then $\operatorname{SDLCP}\left(M_{S}\right.$, SQS) has no solution.

Proof. In both cases, $S$ is nonsingular and $S Q S$ is indefinite. Let $X:=\left[\begin{array}{ll}d & e \\ e & r\end{array}\right]$ be a solution to $\operatorname{SDLCP}\left(M_{S}\right.$, SQS). Then

$$
X \succeq 0, \quad Y:=S X S+S Q S \succeq 0 \text { and } X Y=0
$$

Since $S$ is nonsingular, the condition $X(S X S+S Q S)=0$ implies $X S(X+Q)=0$. Suppose $X=0$. Then the condition $Y \succeq 0$ will mean that $S Q S \succeq 0$ which is a contradiction as $\operatorname{det}(S Q S)<0$. So, $X \neq 0$. Suppose $Y=0$. Then, $Y \succeq 0$ implies that $-S Q S=S X S$. Since $X \succeq 0, S X S \succeq 0$ and therefore, $-S Q S \succeq 0$ which is again a contradiction. Hence $X$ and $Y$ are nonzero. Suppose that $\operatorname{rank}(X)=2$. Then from the condition $X Y=0$, we see that $Y=0$. This is not possible. So, $\operatorname{rank}(X)=1$. Similarly, $\operatorname{rank}(Y)=1$. Now $\operatorname{rank}\left(S^{-1} Y S^{-1}\right)=1$ and therefore, $\operatorname{rank}(X+Q)=1$. Hence $\operatorname{det} X=0$ and $\operatorname{det}(X+Q)=0$. Using these equations, we obtain $e=-\frac{1}{2}$. Now putting this in $X S(X+Q)=0$, and noting $d \geqslant 0$ and $r \geqslant 0$, we get a contradiction in both the instances of $S$. This completes the proof.

## References

[1] R. Balaji, T. Parthasrathy, The Q-property of a multiplicative transfomation in semidefinite linear complementarity problems, Electron. J. Linear Algebra 16 (2007) 419-428.
[2] F. Facchinei, J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer-Verlag, New York, 2003.
[3] M.S. Gowda, Y. Song, On semidefinite linear complementarity problems, Math. Program. A 88 (2000) 575-587.
[4] D. Sampangi Raman, Some Contributions to Semidefinite Linear Complementarity Problems, Ph.D Thesis, Indian Statistical Institute Kolkata, 2002.
[5] H. Schneider, Positive operators and an inertia theorem, Numer. Math. 7 (1965) 11-17.


[^0]:    Email-address: balaji5@iitg.ernet.in

