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In this paper, we report on the existence of the phenomenon of change of criticality in a horizontal

Rijke tube, a prototypical thermoacoustic system. In the experiments, the phenomenon is shown to

occur as the criticality of the Hopf bifurcation changes with varying air flow rates in the system. The

dynamics of a nonlinear system exhibiting Hopf bifurcation can be described using a Stuart-Landau

equation (SLE) in the vicinity of the bifurcation point. The criticality of Hopf bifurcations can be

determined by the Landau constant of the Stuart-Landau equation, which represents the effect of non-

linearities in the system. We propose an SLE to model the bifurcations seen in the horizontal Rijke

tube. We identify a rescaled version of Strouhal number as the Landau constant, which determines

the criticality of the bifurcation in the present study. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4975822]

The qualitative change in the dynamics of a system can
happen either gradually or abruptly through bifurca-
tions. Transitions into oscillations, in many natural sys-
tems, happen through Hopf bifurcation. The nature of
the transitions, being abrupt or smooth, is described sim-
ply by the criticality of the bifurcation. The criticality of
the Hopf bifurcations is decided by the stabilizing nature
of dominant nonlinearities in the system. Variations in
critical parameters in the system affect and alter the
nature of nonlinearites from stabilizing to de-stabilizing,
thus subjecting the criticality to change. In this paper, we
investigate the change in criticality of the Hopf bifurca-
tions leading to self-sustained oscillations in a thermoa-
coustic system. In a thermoacoustic system, oscillations
are established through positive feedback between the
heat release rate and sound waves. The oscillations are
often found to be detrimental, sometimes even causing
failure of systems such as gas turbine engines, rockets,
etc. We show that varying the flow rates can alter the
criticality of the bifurcations using a prototypical ther-
moacoustic system, a horizontal Rijke tube. Further, we
identify the Landau constant in the Stuart-Landau equa-
tion (SLE) that describes the dynamics of this system, as
the rescaled Stouhal number of the flow in the system to
describe the observed change in criticality. Identification
of Landau constant in a real-world system such as gas
turbine engines encountering thermoacoustic instabil-
ities, can be of practical importance in recognizing its
dynamical behavior.

I. INTRODUCTION

Many natural systems are nonlinear in nature and exhibit

transitions from one dynamical state to another through

bifurcations. A bifurcation is a qualitative change in the

dynamics of the system with a small change in the control

parameter.1 Some standard examples of bifurcations include

saddle-node or fold, pitchfork and Hopf bifurcations.1 Hopf

bifurcations are used to describe the dynamics of an oscilla-

tory system where the oscillations emerge as a result of

change in system parameters.

Oscillations are often established through a Hopf bifur-

cation in which a fixed point of a dynamical system loses sta-

bility, as a pair of complex conjugate eigenvalues crosses the

imaginary axis in the complex plane. As a result, a limit

cycle takes birth from the fixed point in the dynamical sys-

tem at the bifurcation point. This point at which bifurcation

occurs, is known as the Hopf point. When the control param-

eter is changed in a dynamical system, at the Hopf point, the

steady-state amplitude of the oscillations can change

abruptly, in which case the bifurcation is subcritical Hopf.1,2

In contrast, the case in which the amplitude of the oscilla-

tions changes continuously, the bifurcation is supercritical

Hopf.1,2 However, the criticality of a Hopf bifurcation, typi-

cally is decided by the stabilizing nature of the nonlinearities

present in the system.1,3

Hysteresis is observed in the case of subcritical Hopf

bifurcations, when the control parameter is decreased or

reversed. The oscillations cease to happen at a point other

than the Hopf point and the fixed point reappears through a

saddle-node bifurcation.1–6 This point at which saddle-node

bifurcation occurs is known as the fold point.1 Studying such

bifurcations is very essential in estimating the behavior of

the nonlinear system at hand and eventually understanding

the criticality of its bifurcations.1,7

In a physical system, the nature of nonlinearities changes

as one of the system parameters is varied, which can change

the criticality of a Hopf bifurcation. Recent research on the

existence of change of criticality includes studies that reported

its occurrence in nonlinear systems, across different areas

such as ecology,8–10 quantum-dot optoelectronic devices,11

and models related to dynamos in magneto-hydrodynamic tur-

bulence,12 phase transitions under the influence of external

agents,13 etc. Experimental studies include plate tectonic stud-

ies,14 jamming transition from a fluid to a disordered solid

state15 and bluff body wakes in turbulent systems.16,17
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In the present work, we study the change of criticality in

a thermoacoustic system. A thermoacoustic system is a non-

linear dynamical system which undergoes large amplitude

limit cycle oscillations as a result of the positive feedback

established between the heat release rate fluctuations and

sound waves.18–21 These large amplitude oscillations consti-

tute a self-sustained oscillatory state known as thermoacous-

tic instability, and are detrimental to the systems such as gas

turbine engines and rockets, sometimes even causing a cata-

strophic failure.4–6,19–25 The transition of a thermoacoustic

system into its harmful oscillatory state happens through a

Hopf bifurcation.4 Depending on the experimental system

and its parametric variation, the bifurcation can either be

subcritical or supercritical.4,20,24 In the case of practical engi-

neering systems undergoing subcritical bifurcations, avoid-

ing the bifurcation is difficult as it happens suddenly, and

large amplitude oscillations are established immediately.

When the parameter is reversed, the detrimental oscillations

sustain till the fold point due to hysteresis.

For a prototypical thermoacoustic system known as

Rijke tube, a model was developed by Balasubramanian and

Sujith19 to study the subcritical Hopf bifurcations. Further,

Subramanian et al.6 performed a weakly nonlinear analysis

of a thermoacoustic system to derive the Stuart-Landau

equation (SLE). The SLE is known to describe the weakly

nonlinear dynamics in the vicinity of bifurcation points in

systems displaying oscillations. The SLE represents the nor-

mal form of a homogenous system close to a Hopf bifurca-

tion. The criticality of the bifurcation is then determined by

the sign of the coefficient of the leading nonlinearities,

known as a Landau constant. Many physical systems such as

flows undergoing Taylor-Couette and shear flow instability,

bluff body wakes and their instabilities as a result of bifurca-

tion are studied using a SLE.26–29 The SLE has also been

used in modeling pertinent nonlinear phenomena such as fre-

quency lock-in30 and resonance in systems with flows.31

Experimentally, Hopf bifurcations of both criticalities

have been reported to occur in the same combustor at differ-

ent operating conditions by Lieuwen in 2002.4 It was

observed that supercritical bifurcations occurred for higher

inlet velocity and subcritical for low inlet velocity.4 Later in

2012, Illingworth et al.5 have found the criticality of bifurca-

tions changing with respect to variation in system control

parameters (Peclet number) in their study on a ducted diffu-

sion flame using numerical continuation. Although SLE

generically models both the criticalities, Subramanian et al.6

have shown SLE for subcritical bifurcations in a Rijke tube

model.19 However, there was not much attention paid so far

to change in criticality of the Hopf bifurcations in thermoa-

coustic systems. The present work is aimed at investigating

the change of criticality observed in a prototypical thermoa-

coustic system.

We investigate a Rijke tube, the prototypical thermoa-

coustic system with an electrical heater, experimentally.

From the experimental data, we observe a change in critical-

ity of the bifurcations at different air flow rates. A model is

constructed using a SLE, with coefficients that depend on the

system parameters, to capture the phenomena of crossover in

the criticality. Further, we find that the Landau constant of

the system is a linear function of Strouhal number of the

flow, which is a non-dimensional ratio of the flow time-scale

to the acoustic time-scale of the system.

II. EXPERIMENTAL SETUP

In the present study, a horizontal Rijke tube with an

electrically heated wire mesh, acting as a heat source, is used

to perform the experiments. The tube is 1m long with a

square cross-section. The cross-sectional area of the duct is

9.2 cm � 9.2 cm. The mean flow is established with the help

of a compressor. The flow rate of air provided by the com-

pressor is measured and also regulated with the help of a

mass flow controller (MFC) which is located downstream of

the compressor. The MFC can measure the flow rates with

an uncertainty of 60.01 standard litre per minute (SLPM).

The outlet of the compressor is connected to one end of the

Rijke tube, via a rectangular chamber (120 cm � 45 cm �
45 cm), referred to as a decoupler. The decoupler acts as a

silencer and eliminates the sound produced due to interac-

tions between the compressor and the duct inlet. A program-

mable DC power supply (TDK-Lambda, GEN8–400, 0–8V,

0–400A) is used to power the mesh type heater. The mesh

type heater used for the experiments presented in this study

is similar to the one used by Matveev20 and Gopalakrishnan

and Sujith.32 The uncertainty associated with heater power

measurement is 0.4W. In order to avoid electrical contact

with the walls of the tube and also to prevent heat loss to the

walls of the tube, a ceramic housing is provided around the

mesh. The heater location is fixed throughout the study, at

25 cm from the end connected to the decoupler.

A piezoelectric transducer (PCB 103B02) mounted

30 cm from the open end is used to measure the acoustic

pressure. The sensitivity of this transducer is 217.5mV/kPa;

the uncertainty in the measurements is 0.2 Pa. Data is

acquired with the help of a National Instruments make PCI

6221 data acquisition card. The data was acquired at a sam-

pling frequency of 10 kHz for 3 s. To ensure uniform condi-

tions, the initial temperature was maintained at 196 3 �C.

The experiments were conducted only when the cold decay

rate was 18.5 (65%) s�1 for the fundamental frequency. The

decay rate resulting out of the acoustic damping of the duct

is maintained within bounds to ensure repeatability.25 We

provided a sound in the duct, using a loud speaker (Ahuja

AU60) mounted at 62.5 cm from the inlet, at the first eigen-

mode frequency (157Hz) for a short duration of time. Once

the loud speaker is switched off, the acoustic pressure decays

down. The cold decay rate is determined by performing the

Hilbert transform of the pressure signal and by calculating

the logarithmic decay of its amplitude.21

In all the experiments, the heater power is varied as the

bifurcation parameter till the system attains its oscillatory

state from the non-oscillatory steady state. When the heater

power is changed, other parameters of the system such as the

flow rate and the heater location are maintained constant dur-

ing a single experiment. Experiments are conducted by vary-

ing the heater power for a range of flow rates ( _v) starting

with 105 SLPM to 45 SLPM in steps of 5 SLPM.
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We preheat the system for about 20 min before starting

the experiments to minimize temperature variations as the

heater power is changed. Systems with subcritical bifurca-

tions, when operated in non-oscillatory state can go into their

oscillatory states at values other than Hopf point if the con-

trol parameter is changed abruptly or discontinuously.24 The

heater power is changed in a quasi-steady manner to avoid

this phenomenon. Here, the system is allowed to stay at a

particular value for an adequate amount of time, 120 s for

the system configuration used in this study, and reach the

steady state asymptotically. The asymptotic state is con-

firmed by observing the steadiness in the temperature

reached by the system and a duration of 120 s was found to

be ideal for Rijke tube, used in this study (Figure 1).

III. RESULTS

A. Subcritical Hopf bifurcation

We begin our experimental study with a flow rate, where

we obtain a subcritical Hopf bifurcation that enables us to

study the hysteresis behavior. We have conducted experi-

ments on the Rijke tube for an air flow rate ( _v) of 100 SLPM

indicating the Strouhal number being 0.22. Strouhal number

is a non-dimensional ratio of the flow time-scale to the

acoustic time-scale of the system. The Strouhal number can

be calculated from the system parameters as St ¼ dwA= _v
2L=c0

,

where, c0 is the speed of sound at ambient temperature, dw is

diameter of the heater wire, and A and L are the area and

length of the duct respectively. A detailed account on the cal-

culation of Strouhal number can be found in Gopalakrishnan

and Sujith.32

As we gradually increase the heater power, the system

goes from a non-oscillatory steady state to a self-excited

oscillatory state through a Hopf bifurcation. Corresponding

to every value of the heater power, we acquire the time series

of acoustic pressure and plot the root mean square (RMS)

value of the signal. This results in a bifurcation diagram as

shown in Figure 2.

The onset of the self-sustained oscillations occurs at a

value of heater power, KH ¼ 614.3W, to be called as a Hopf

point. The bifurcation at this point leads to a sudden appear-

ance of limit cycle oscillations with a frequency of 155Hz.

Till Hopf point, the system is in its non-oscillatory state. The

RMS values of the inherent noise levels in the system are

measured and found to be in the range of 4–10 Pa. This

results in a non-zero value for RMS of the measured pressure

till the bifurcation point as shown in Figure 2. There is a sud-

den increase in the RMS value of acoustic pressure by 80 Pa

at the Hopf point, as seen from the figure. The difference is

at least 15 times the average of noise levels measured from

the experiments. Thus, a subcritical Hopf bifurcation is

found at 100 SLPM. These observations are consistent with

the previous findings.20,22,24,32

Once established, the limit cycle oscillations persist for

values higher than the value corresponding to the Hopf point.

The experimental results are presented till a heater power of

630W in Figure 2. We observe a marginal increase in the

amplitudes of oscillations, maintaining the same frequency,

which is close to the duct acoustic mode. We have studied

the behavior of the system on the reverse path, by plotting

the RMS values of the time series of acoustic pressure

acquired while decreasing the heater power. For a flow rate

of 100 SLPM, the presence of hysteresis is evident from the

figure.

Upon decrement in heater power, the system returns to

its non-oscillatory steady state through a saddle-node bifur-

cation, at the fold point KF ¼ 573.1W, with a value differ-

ent from that of the Hopf point. Hysteresis observed in this

subcritical bifurcation can be seen in Figure 2 by noting the

change in heater power value where there is an abrupt

change in the amplitude of the oscillations with respect to

the direction of variation in heater power. This enables the

system to exist in either of the two stable states in the hys-

teresis zone depending on whether the heater power is

increased or decreased. This property of the system is

known as bistability. In Rijke tube, hysteresis has been

reported and explained by Matveev20 and Mariappan and

Sujith.22 They have also established that the hysteresis is

more prominent for higher flow rates. This brings us to

question naturally about what happens to the hysteresis

properties of the prototypical thermoacoustic system at low

air flow rates.

FIG. 1. Schematic diagram of the horizontal Rijke tube setup used in the

present study. A pressure transducer (PCB 103B02) is used to measure the

pressure fluctuations in the system. A thermocouple is used to monitor

the temperature of the duct. Loud speakers are used to provide sound that is

used to obtain the decay rates, related to damping of the system. A mass

flow controller (MFC) is used to maintain and control the flow rates. For this

study, the heater is fixed at 25 cm into the tube from the decoupler.

FIG. 2. Bifurcation diagram at a Strouhal number of 0.22 corresponding to

an air flow rate of 100 SLPM. The figure shows variation in RMS values of

acoustic pressure, Prms when the heater power is changed. The sudden

appearance of high amplitude oscillations in the Rijke tube shows that the

transition is subcritical. The forward and backward paths are indicated by

filled upward (�) and hollow downward facing triangles (r) respectively.
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B. Supercritical Hopf bifurcation

The results of the experiments conducted at a lower flow

rate of air ( _v¼ 60 SLPM) corresponding to a Strouhal num-

ber of 0.36 are presented in Figure 3. The initiation of limit

cycle oscillations happens at a heater power value of KH

¼ 335.2W. There are two interesting aspects to note about

the Hopf bifurcation at K ¼ KH in Figure 3. First, the limit

cycle oscillations constitute an RMS value of about 7 Pa

which is only 2 Pa more than the average noise levels mea-

sured from these set of experiments. Second, the fold point

corresponding to the loss of oscillations in the reverse path is

found to be at a heater power value of KF ¼ 335.8W. From

a visual inspection of the bifurcation diagram, there is no

hysteresis. This is again a strong indication of the supercriti-

cal nature of the bifurcation. We remark that the step size

chosen for varying the heater power is small enough to con-

firm the absence of hysteresis zone.

In systems undergoing supercritical bifurcations, the

amplitude of pressure oscillations increases and decreases

continuously in the same manner. Thus amplitudes obtained

while decreasing, retrace the path followed by the ampli-

tudes obtained while increasing ensuring no hysteresis. The

amplitudes vary as square root of the control parameter, as

expected from the solutions of a supercritical bifurcation.1

This is illustrated in the inset of Figure 3 showing the para-

bolic fit for Prms in both directions, post the Hopf point. The

fit accounts for the noise floor. Thus, we observe a continu-

ous change in Prms values in supercritical as opposed to the

case of a subcritical bifurcation.

C. The crossover of bifurcations

In order to understand the change in criticality observed

from the experiments at two different flow rates so far, we

have conducted experiments over a range of flow rates of air.

The results corresponding to the bifurcations undergone by

the system at various flow rates are plotted using a surface in

Figure 4.

The change of criticality is seen when the system under-

goes a supercritical bifurcation for flow rates upto 65 SLPM

and subcritical starting at 70 SLPM and higher. The hystere-

sis zone, acting as a visual signature of subcritical bifurca-

tion from the figure, is very small at 70 SLPM. The

hysteresis zone grows gradually gaining area as we increase

the air flow rate and is represented using grey area in the fig-

ure. Hysteresis becomes significant at higher flow rates as

expected from earlier studies.24

The increment in the hysteresis zone with varying flow

rates can be quantified by tracking the width of the bistable

zone. There is a power law dependence observed for the hys-

teresis width v ¼ ðKH � KFÞ=KH from the experiments of

subcritical bifurcations. The variation of v with the non-

dimensional Strouhal number (St) is plotted in Figure 5. The

power law interpreted from the experimental data is found to

have an exponent of �5.86. The exponent found here is in

agreement with that found in earlier experimental studies32

with heater power and heater location as control parameters

indicating its robustness.

A typical thermoacoustic system such as the Rijke tube

has many degrees of freedom. However, a common feature

FIG. 3. Bifurcation diagram at a Strouhal number of 0.36 corresponding to

the flow rate of 60 SLPM. The figure shows variation in RMS values of acous-

tic pressure with respect to heater power. The gradual birth of stable limit

cycle oscillations in Rijke tube shows that the transition is supercritical. In the

inset, a parabolic fit is shown inherent to capture the continuous increase in

the RMS values of the pressure data. The intercept on the axis of Prms corre-

sponds to the noise levels in the experimental setup. There is no hysteresis

zone as the increase and decrease of Prms with heater power follow the same

trend. Note that the heater power is rescaled to ~K ¼ ðK � KHÞ=KH in the

inset.

FIG. 4. Results from the experiments conducted over a range of air flow

rates and their corresponding bifurcation. The bistable region is shaded gray.

The magnitudes of the RMS are color coded respectively. The surface repre-

sents both the criticalities of the system such as (a) supercritical at 60 SLPM

(Fig. 3) and (b) subcritical at 100 SLPM (Fig. 2). Dotted lines are used to

indicate the sections (a) and (b). The hysteresis appears gradually beyond a

certain flow rate of 65 SLPM. From 70 SLPM and higher rates, the width of

the bistable region increases for the subcritical bifurcations.

FIG. 5. Bistable region in the bifurcations is characterized by its width.

Variation of the non-dimensional hysteresis width is plotted against the

Strouhal number in a log-log scale. We observe that the Rijke tube undergoes

a supercritical transition beyond St¼ 0.36. Results from analytical analysis

are also presented using hollow squares. The change in hysteresis width is

shown with respect to rescaled coefficient b, that is analogic to the Strouhal

number. The dotted line is plotted as an indication of the power law.

023106-4 S. Etikyala and R. I. Sujith Chaos 27, 023106 (2017)



in all such systems is that the large-scale modes dominate

near a transition, where an amplitude equation such as an

SLE would suffice to capture the system dynamics.7 In

Section IV, we propose an SLE for our thermoacoustic sys-

tem that captures the aforementioned features.

IV. STUART-LANDAU EQUATION FOR RIJKE TUBE

Any oscillatory system undergoing Hopf bifurcation can

be studied using a Stuart-Landau equation (SLE) near the

onset of the oscillations.7,27–29,33 SLE can generically

describe the dynamics of systems exhibiting oscillations in

terms of a differential equation with system specific coeffi-

cients. For a complex amplitude W ¼ R expðiuÞ of the oscil-
lations of any general oscillator, the Stuart-Landau equation

is given by7

_W ¼ fW � gjWj2W; (1)

where f and g are functions of system parameters. In the

case of weak nonlinearities, after some algebra, we can

reduce Equation (1) to the following equations for real

amplitude r and the phase h of the oscillations with coeffi-

cients a and b depending on f and g

_r ¼ ar þ br3; (2)

_h ¼ constant: (3)

Equation (2), exhibits both supercritical and subcritical

bifurcations depending on the sign of the coefficient b,

known as the Landau constant. In other words, Landau con-

stant represents the stabilizing effect of the leading nonli-

nearities in the system. We address the change in criticality

of the bifurcation by studying both types of Hopf bifurca-

tions with the SLE.

Clearly, Equations (2) and (3) represent a supercritical

Hopf bifurcation for b < 0 and subcritical Hopf bifurcation

for b > 0 at a ¼ 0. When a > 0 and b > 0, the model has

unstable limit cycles as solutions representing a subcritical

bifurcation. To analytically obtain the values of stable limit

cycles, a stabilizing higher order nonlinearity, a fifth order

term with a negative coefficient, is added to the model as

_r ¼ ar þ br3 þ cr5: (4)

A subcritical transition is observed when b > 0 for

c < 0 in Equation (4). The cr5 term stabilizes the system for

large r7. The system undergoes a subcritical bifurcation at

a ¼ aH ¼ 0 and a saddle-node (fold) bifurcation at a ¼ aF
¼ b2=ð4cÞ. A hysteresis zone results due to the aforemen-

tioned bifurcations, as we observe in experiments.

The solutions of _r ¼ 0 at the fold point, where a ¼ aF
can be analytically evaluated as r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�b=2c
p

. The subcriti-

cal bifurcation occurs at a ¼ aH, the width of the hysteresis

region indicated here depends on b as

v ¼ jaH � aFj ¼ b2=ð4cÞ; (5)

where aH and aF are the values of a at Hopf and fold points

respectively. We observe from experiments, as shown in

Figure 5, that the change in criticality occurs as we vary flow

rates, in turn, the Strouhal number, St. The Landau constant

(b), the coefficient of cubic nonlinearity in Equation (4), is

chosen to be directly proportional to St as

b / Stc � St; (6)

where Stc corresponds to the Strouhal number of the system

at which the crossover of criticality occurs. In other words,

this number corresponds to the case when the hysteresis

width becomes completely negligible and is close to be zero.

From the experiments, we found Stc ¼ 0:36 for this configu-

ration of the Rijke tube.

Substituting Equation (6) into Equation (4), we establish

a SLE for the horizontal Rijke tube. The proportionality con-

stant is chosen to be 60 for computation of b in Equation (6),

the coefficient c to be �5 and a is calculated from a ¼ �br2

� cr4, to capture the experimental results in a qualitative

sense. Solutions of SLE also capture the behavior of hystere-

sis width, which is summarized in Figure 5 for both experi-

ments and the model.

The above one-dimensional model thus captures the

salient features of supercritical and subcritical transitions

exhibited by the prototypical thermoacoustic system. Here,

the criticality of the bifurcation is essentially decided by the

governing nonlinearities in the form of a Landau constant.

From the relationship between Landau constant and the

Strouhal number established in the model, we can conclude

that Strouhal number itself is the Landau constant deciding

the nature of criticality of the bifurcation. The study gains

significance as the nature of criticality becomes important to

be determined in developing strategies to prevent the onset

of instabilities in systems such as gas turbine engines.

V. CONCLUSIONS

The criticality of a bifurcation changes in a nonlinear

dynamical system with the variation in the influence of its

dominant parameters. We report on the existence of change

of criticality in a prototypical thermoacoustic system from

experiments. The behavior of the thermoacoustic system is

qualitatively described using a SLE that best describes the

bifurcation behavior of the system governed by its nonlinear-

ities. We show that change in criticality of the Hopf bifurca-

tions occurs as the Strouhal number is changed in our

experiments. Landau constant, which decides the criticality

of the bifurcation is modeled to be a linear function of

Strouhal number.

An analysis of the variation of hysteresis width over the

range of flow rates has shown that the width follows a power

law with the Strouhal number associated with the oscillations

observed in the Rijke tube. The study shows that the critical-

ity of bifurcations in an oscillatory system such as Rijke tube

is decided by the Strouhal number. The presented model is

simple and used specifically to capture the qualitative fea-

tures of the prototypical system. Thus, the work establishes

scope for identification of Landau constant in real-world sys-

tems encountering thermoacoustic instabilities, which can be

of practical importance in recognizing the dynamical behav-

ior of the system.
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