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79Instituto de Fı́sica Teórica, University Estadual Paulista/ICTP South

American Institute for Fundamental Research, São Paulo SP 01140-070, Brazil



4

80University of Cambridge, Cambridge CB2 1TN, United Kingdom
81IISER-Kolkata, Mohanpur, West Bengal 741252, India

82Rutherford Appleton Laboratory, HSIC, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
83Whitman College, 280 Boyer Ave, Walla Walla, WA 9936, USA

84National Institute for Mathematical Sciences, Daejeon 305-390, Korea
85Hobart and William Smith Colleges, Geneva, NY 14456, USA

86Andrews University, Berrien Springs, MI 49104, USA
87Trinity University, San Antonio, TX 78212, USA

88University of Washington, Seattle, WA 98195, USA
89Kenyon College, Gambier, OH 43022, USA

90Abilene Christian University, Abilene, TX 79699, USA

In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger

GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an

estimate from each detector’s differential arm length control loop readout signals requires applying time domain

filters, which are designed from a frequency domain model of the detector’s gravitational-wave response. The

gravitational-wave response model is determined by the detector’s opto-mechanical response and the properties

of its feedback control system. The measurements used to validate the model and characterize its uncertainty are

derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and

radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent

gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detec-

tor data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914

and approximately 16 days of coincident data used to estimate the event false alarm probability. The calibration

uncertainty is less than 10% in magnitude and 10◦ in phase across the relevant frequency band, 20 Hz to 1 kHz.

PACS numbers: 04.30.-w, 04.80.Nn, 95.55.Ym

I. INTRODUCTION

On September 14, 2015 09:50:45 UTC, the two Advanced

LIGO detectors observed a gravitational-wave (GW) signal,

GW150914, originating from the merging of two stellar-mass

black holes [1]. The event was observed in coincident data

from the two LIGO detectors between September 12 to Oc-

tober 20, 2015. These detectors, H1 located on the Hanford

Reservation in Richland, Washington, and L1 located in Liv-

ingston Parish, Louisiana, are laser interferometers [2] that

use four mirrors (referred to as test masses) suspended from

multi-stage pendulums to form two perpendicular optical cav-

ities (arms) in a modified Michelson configuration, as shown

in Fig. 1. GW strain causes apparent differential variations

of the arm lengths which generate power fluctuations in the

interferometer’s GW readout port. These power fluctuations,

measured by photodiodes, serve as both the GW readout sig-

nal and an error signal for controlling the differential arm

length [3].

Feedback control of the differential arm length degree of

freedom (along with the interferometer’s other length and an-

gular degrees of freedom) is required for stable operation of

the instrument. This control is achieved by taking a digi-

tized version of the GW readout signal derr( f ), applying a

set of digital filters to produce a control signal dctrl( f ), then

sending the control signal to the test mass actuator systems

which displace the mirrors. Without this control system, dif-

ferential length variations arising from either displacement

noise or a passing GW would cause an unsuppressed (free-

running) change in differential length, ∆Lfree = Lx − Ly = hL,

∗ Corresponding Author: lsc-spokesperson@ligo.org

where L ≡ (Lx + Ly)/2 is the average length of each detec-

tor’s arms, with lengths Lx and Ly, and h is the sensed strain,

h ≡ ∆Lfree/L. In the presence of feedback control, how-

ever, this free-running displacement is suppressed to a smaller,

residual length change given by ∆Lres = ∆Lfree( f )/[1 +G( f )],

where G( f ) is the open loop transfer function of the differ-

ential arm length servo. Therefore, estimating the equivalent

GW strain sensed by the interferometer requires detailed char-

acterization of, and correction for, the effect of this loop. The

effects of other feedback loops associated with other degrees

of freedom are negligible across the relevant frequency band,

from 20 Hz to 1 kHz.

The differential arm length feedback loop is characterized

by a sensing function C( f ), a digital filter function D( f ), and

an actuation function A( f ), which together give the open loop

transfer function

G( f ) = A( f ) D( f ) C( f ) . (1)

The sensing function describes how residual arm length dis-

placements propagate to the digitized error signal, derr( f ) ≡

C( f )∆Lres( f ); the digital filter function describes how the dig-

ital control signal is generated from the digital error signal,

dctrl( f ) ≡ D( f ) derr( f ); and the actuation function describes

how the digital control signal produces a differential displace-

ment of the arm lengths, ∆Lctrl ≡ A( f ) dctrl( f ). These relation-

ships are shown schematically in Fig. 2.

Either the error signal, the control signal, or a combination

of the two can be used estimate the strain sensed by the detec-

tor [4]. For Advanced LIGO, a combination was chosen that

renders the estimate of the detector strain output insensitive

to changes in the digital filter function D, and makes applica-

tion of slow corrections to the sensing and actuation functions
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FIG. 1. Simplified diagram of an Advanced LIGO interferometer.

Four highly reflective test masses form two Fabry–Pérot arm cavities.

At lower left, a power recycling mirror placed between the laser and

the beamsplitter increases the power stored in the arms to 100 kW. A

signal recycling mirror, placed between the beamsplitter and the GW

readout photodetector, alters the frequency response of the interfer-

ometer to differential arm length fluctuations. For clarity, only the

lowest suspension stage is shown for the optics. Inset: one of the

dual-chain, quadruple pendulum suspension systems is shown.
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x
T
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Digital

Filter
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free

h

C

D

A

Realtime interferometer control Calibration pipeline

1/L

-1

1/C(model)

A(model)

FIG. 2. Block diagram of the differential arm length feedback con-

trol servo. The sensing function, digital filter function, and ac-

tuation function combine to form the open loop transfer function

G( f ) = A( f ) D( f ) C( f ). The signal x
(PC)

T
is the modulated displace-

ment of the test masses from the radiation pressure actuator described

in Section IV.

convenient:

h(t) =
1

L

[

C−1 ∗ derr(t) +A ∗ dctrl(t)
]

, (2)

where A and C−1 are time domain filters generated from fre-

quency domain models of A and C, and ∗ denotes convolution.

The accuracy and precision of this estimated strain rely on

characterizing the sensing and actuation functions of each de-

tector, C and A. Each function is represented by a model, gen-

erated from measurements of control loop parameters, each

with associated statistical uncertainty and systematic error.

Uncertainty in the calibration model parameters directly im-

pacts the uncertainty in the reconstructed detector strain signal.

This uncertainty could limit the signal-to-noise ratios of GW

detection statistics, and could dominate uncertainties in esti-

mated astrophysical parameters, e.g., luminosity distance, sky

location, component masses, and spin. Calibration uncertainty

is thus crucial for GW searches and parameter estimation.

This paper describes the accuracy and precision of the

model parameters and of the estimated detector strain output

over the course of the 38 calendar days of observation during

which GW150914 was detected. Sec. II describes the actua-

tion and sensing function models in terms of their measured

parameters. Sec. III defines the treatment of uncertainty and

error for each of these parameters. In Sec. IV, a description

of the radiation pressure actuator is given. Secs. V and VI dis-

cuss the measurements used to determine the static statistical

uncertainties and systematic errors in the actuation and sens-

ing function models, respectively, and their results. Sec. VII

details the systematic errors in model parameters near the time

of the GW150914 event resulting from uncorrected, slow time

variations. Sec. VIII discusses each detector’s strain response

function that is used to estimate the overall amplitude and

phase uncertainties and systematic errors in the calibrated data

stream h(t). Sec. IX discusses the inter-site uncertainty in the

relative timing of each detector’s data stream. In Sec. X the

implications of these uncertainties on the detection and astro-

physical parameter estimation of GW150914 are summarized.

Finally, in Sec. XI we give an outlook on future calibration

and its role in GW detection and astrophysical parameter esti-

mation.

II. MODEL DESCRIPTION

We divide the differential arm length feedback loop into

two main functions, sensing and actuation. In this section,

these functions are described in detail. The interferometer re-

sponse function is also introduced; it is composed of these

functions and the digital control filter function (which is pre-

cisely known and carries no uncertainty), and is useful for es-

timating the overall uncertainty in the estimated strain.

A. Sensing function

The sensing function C converts residual test mass differen-

tial displacement ∆Lres to a digitized signal representing the

laser power fluctuation at the GW readout port, derr, sampled

at a rate of 16 384 Hz. It includes the interferometric response

converting displacement to laser power fluctuation at the GW

readout port, the response of the photodiodes and their analog

readout electronics, and effects from the digitization process.

The complete interferometric response is determined by the

arm cavity mirror (test mass) reflectivities, the reflectivity of

the signal recycling mirror (see Fig. 1), the length of the arm

cavities and the length of the signal recycling cavity [5, 6].
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FIG. 3. The magnitude and phase of the sensing function model

C( f ) for the L1 detector. Below 1 kHz the frequency dependence is

determined by fC, while above 1 kHz it is determined by the analog-

to-digital conversion process.

The response is approximated by a single-pole low-pass filter

with a gain and an additional time delay.

The sensing function is thus given by

C(model)( f ) =
KC

1 + i f / fC
CR( f ) exp(−2πi f τC) , (3)

where KC is combined gain of the interferometric response

and analog-to-digital converter (see Fig. 3). It describes, at a

reference time, how many digital counts are produced in derr

in response to differential arm length displacement. The pole

frequency, fC, is the characteristic frequency that describes the

attenuation of the interferometer response to high-frequency

length perturbations [5, 7]. Though each interferometer is de-

signed to have the same pole frequency, the exact value differs

as result of discrepant losses in their optical cavities: 341 Hz

and 388 Hz for H1 and L1, respectively. The time delay τC

includes the light travel time L/c along the length of the arms

(L = 3994.5 m), computational delay in the digital acquisition

system, and the delay introduced to approximate the complete

interferometric response as a single pole. Finally, the dimen-

sionless quantity CR( f ) accounts for additional frequency de-

pendence of the sensing function above 1 kHz, arising from

the properties of the photodiode electronics, as well as analog

and digital signal processing filters.

B. Actuation function

The interferometer differential arm length can be controlled

by actuating on the quadruple suspension system for any of

the four arm cavity test masses. Each of these systems con-

sists of four stages, suspended as cascading pendulums [8, 9],

which isolate the test mass from residual motion of the sup-

porting active isolation system [10]. Each suspension system

also includes an adjacent, nearly-identical, cascaded reaction

mass pendulum chain which can be used to independently gen-

erate reaction forces on each mass of the test mass pendulum

chain. A diagram of one of these suspension systems is shown

in Fig. 1.

For each of the three lowest stages of the suspension

system—the upper intermediate mass (U), the penultimate

mass (P), and the test mass (T)—digital-to-analog converters

and associated electronics drive a set of four actuators that

work in concert to displace each stage, and consequently the

test mass suspended at the bottom. The digital control sig-

nal dctrl is distributed to each stage and multiplied by a set of

dimensionless digital filters Fi( f ), where i = U, P, or T, so

that the lower stages are used for the highest frequency sig-

nal content and the upper stages are used for high-range, low-

frequency signal content.

While the differential arm length can be controlled using

any combination of the four test mass suspension systems,

only one, the Y-arm end test mass, is used to create ∆Lctrl.

Actuating a single test mass affects both the common and the

differential arm lengths. The common arm length change is

compensated, however, by high-bandwidth (∼14 kHz) feed-

back to the laser frequency.

The model of the actuation function A of the suspension

system comprises the mechanical dynamics, electronics, and

digital filtering, and is written as

A(model)( f ) =
[

FT( f )KT AT( f ) + FP( f )KP AP( f )

+ FU( f )KU AU( f )
]

exp(−2πi f τA) . (4)

Here Ki and Ai( f ) are the gain and the normalized frequency

dependence of the ith suspension stage actuator, measured at

a reference time, that define the actuation transfer function for

each suspension stage; τA is the computational delay in the

digital-to-analog conversion. The overall and individual stage

actuation functions are plotted as a function of frequency in

Fig. 4. The gain converts voltage applied at suspension stage

i to test mass displacement. The frequency response is pri-

marily determined by the mechanical dynamics of the suspen-

sion, but also includes minor frequency dependent terms from

digital-to-analog signal processing, analog electronics, and

mechanical interaction with the locally-controlled suspension

stage for the top mass (see Fig. 1). While opto-mechanical in-

teraction from radiation pressure can affect the actuation func-

tion [11], the laser power resonating in the arm cavities during

the observation period was low enough that radiation pressure

effects can be ignored. The H1 and L1 suspensions and elec-

tronics are identical by design, but there are slight differences,

mostly due to the digital filtering for each stage Fi, which are

precisely known and carry no uncertainty.
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FIG. 4. Overall actuation transfer function A( f ) and actuation func-

tions for each suspension stage Fi( f )Ki Ai( f ) for the L1 detector.

The mechanical response of the pendulums and Fi dictate the char-

acteristics of each stage. The strongest actuator, that for the upper

intermediate mass, is used below a few Hz. Above ∼30 Hz, only

the test mass actuator is used. At certain frequencies (e.g., 10, 14,

and 500 Hz), digital notch filters are implemented for high quality

factor features of the pendulum responses in order to avoid mechan-

ical instabilities. The H1 actuation function differs slightly in scale,

frequency dependence, and digital filter choice.

C. Response function

For uncertainty estimation, it is convenient to introduce

the response function R( f ) that relates the differential arm

length servo error signal to strain sensed by the interferom-

eter: h( f ) = (1/L) R( f ) derr( f ). As shown schematically in

Fig. 2, the response function is given by

R( f ) =
1 + A( f ) D( f ) C( f )

C( f )
=

1 +G( f )

C( f )
. (5)

We will use this response function to evaluate the overall accu-

racy and precision of the calibrated detector strain output. The

actuation function dominates at frequencies below the differ-

ential arm length servo unity gain frequency, 40 Hz and 56 Hz

for H1 and L1, respectively. Above the unity gain frequency,

the sensing function dominates (see Figs. 3 and 4).

III. DEFINITIONS OF PARAMETER UNCERTAINTY

From Eqs. (3) and (4), we identify the set Q(model) of param-

eters shown in Table I that define the model for each detec-

tor’s sensing and actuation functions. These model parameters

have both statistical uncertainty and systematic error. In this

TABLE I. The set of differential arm length control loop parameters,

Q(model) that must be characterized to define the sensing and actuation

functions.

Parameter Description

AT( f ) Normalized test mass actuation function

AP( f ) Normalized penultimate mass actuation function

AU( f ) Normalized upper intermediate mass actuation function

CR( f ) Residual sensing function frequency dependence

KC Sensing function gain

KT Test mass actuation function gain

KP Penultimate mass actuation function gain

KU Upper intermediate mass actuation function gain

fC Cavity pole frequency

τC Sensing function time delay

section, we outline how the uncertainty and error for each pa-

rameter are treated. Discussion of how these are propagated to

inform the total uncertainty and error in final estimated strain

h(t) is left to Section VIII.

Combinations of the model’s scalar parameters (KC , KT,

KP, KU, fC , and τC) and frequency-dependent functions

(AT( f ), AP( f ), AU( f ), and CR( f )) are constrained by a set of

directly measurable properties of the detector Q(meas):

Q(meas)( f ) =
{

KTAT( f ),

KPAP( f ),

KUAU( f ),

KCCR( f )/(1 + i f / fC) exp(−2πi f τC)
}

. (6)

The parameters in Q(model) not included in Table I, Fi( f ) and

τA, are part of the digital control system, known with negligi-

ble uncertainty, and are thus removed from the measured quan-

tities without consequence. Each quantity q
(meas)

i
∈ Q(meas)

is measured using sinusoidal excitations injected at various

points in the control loop while the detector is in its low-

est noise state. The measurements consist of excitations that

are injected consecutively at discrete frequencies, fk. Only

measurements made at a reference time t0 are used to deter-

mine the corresponding model parameters q
(model)

i
, however

the measurements are repeated periodically to inform and re-

duce uncertainty.

The frequency-dependent model parameters Q(model) de-

scribed in Table I do not completely describe the frequency-

dependent quantities in Q(meas) at the reference time. In addi-

tion, the scalar quantities in Q(meas) vary with time after the

reference measurement. Both discrepancies are systematic er-

rors, δqi. Albeit small, they are carried with each parameter

Q(model) through to inform the known systematic error in the

response function, and quantified in the following fashion.

Any discrepancy between Ai( f ) and CR( f ) and the measure-

ments exposes poorly modeled properties of the detector, and

thus are systematic errors in Eqs. (3) and (4); δqi = q
(meas)

i
−

q
(model)

i
. We find it convenient to quantify this systematic error

in terms of a multiplicative correction factor to Eqs. (3) and

(4), ζ
(fd)

i
≡ q

(meas)

i
/q

(model)

i
≡ 1 + (δqi/q

(model)

i
), instead of deal-

ing directly with the systematic error δqi. These frequency-
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dependent discrepancies are confirmed with repeated measure-

ments beyond the reference time.

The scalar parameters, Ki and fC, are monitored continu-

ously during data taking to track small, slow temporal vari-

ations beyond the reference measurement time t0. Tracking

is achieved using a set of sinusoidal excitations at select fre-

quencies, typically referred to as calibration lines. The ob-

served time dependence is treated as an additional system-

atic error, δqi(t), also implemented as a correction factor,

ζ(td)

i
≡ δqi(t)/q

(model)

i
.

In order to quantify the statistical uncertainties in the

frequency-dependent parameters in Q(model), we divide the

measurements Q(meas) by the appropriate combination of ref-

erence model parameters q
(model)

i
, time-dependent scalar cor-

rection factors, ζ
(td)

i
, and a fit to any frequency-dependent cor-

rection factors, ζ
(fd,fit)

i
to form a statistical residual,

ξ(stat)

i
= q

(meas)

i
/(q(model)

i
ζ(td)

i
ζ(fd,fit)

i
) − 1. (7)

We assume this remaining residual reflects an estimate of the

complex, scalar (i.e. frequency independent), statistical un-

certainty, σqi q j
, randomly sampled over the measurement fre-

quency vector fk, and may be covariant between parameter

q
(meas)

i
and q

(meas)

j
. Thus, we estimate σqi q j

by computing the

standard deviation of the statistical residual, ξ(stat)

i
, across the

frequency band,

σqi q j
=

N
∑

k=1

(ξ
(stat)

i
( fk) − ξ

(stat)

i
)(ξ

(stat)

j
( fk) − ξ

(stat)

j
)

(N − 1)
(8)

where ξ
(stat)

i
=

∑

k ξ
(stat)

i
( fk)/N is the mean across the N points

in the frequency vector fk.

The time-dependent correction factor, ζ
(td)

i
, has associated

statistical uncertainty σζ(td)

i

that is governed by the signal-to-

noise ratio of the continuous excitation. Only a limited set

of lines were used to determine these time-dependent system-

atic errors, so their estimated statistical uncertainty is also, in

general covariant.

In Secs. V, VI, and VII, we describe the techniques for mea-

suring Q(meas) at the reference time t0, and discuss resulting

estimates of statistical uncertainty σqi q j
and systematic error

δqi, via correction factors ζi, for each detector. In Sec. VIII,

we describe how the uncertainty and error estimates for these

parameters are combined to estimate the overall accuracy and

precision of the calibrated detector strain output h(t).

IV. RADIATION PRESSURE ACTUATOR

The primary method for calibrating the actuation function

A and sensing function C is an independent radiation pressure

actuator called the photon calibrator (PC) [12]. A similar sys-

tem was also used for calibration of the initial LIGO detec-

tors [13].

Each detector is equipped with two photon calibrator sys-

tems, one for each end test mass, positioned outside the vac-

uum enclosure at the ends of the interferometer arms. For each

system, 1047 nm light from an auxiliary, power-modulated,

Nd3+:YLF laser is directed into the vacuum envelope and re-

flects from the front surface of the mirror (test mass). The

reflected light is directed to a power sensor located outside

the vacuum enclosure. This sensor is an InGaAs photodetec-

tor mounted on an integrating sphere and is calibrated using a

standard that is traceable to the National Institute of Standards

and Technology (NIST). Power modulation is accomplished

via an acousto-optic modulator that is part of an optical fol-

lower servo that ensures that the power modulation follows

the requested waveform. After modulation, the laser beam is

divided optically and projected onto the mirror in two diamet-

rically opposed positions. The spots are separated vertically,

±11.6 cm from the center of the optical surface, on the nodal

ring of the drumhead elastic body mode, to minimize errors at

high-frequency caused by bulk deformation [13–16].

The laser power modulation induces a modulated displace-

ment of the test mass that is given by [13]

x
(PC)

T
( f ) =

2P( f )

c
s( f ) cos θ

(

1 +
MT

IT

~a · ~b

)

. (9)

This modulated displacement is shown schematically on the

left of Fig. 2. The terms entering this formula are as fol-

lows: f is the frequency of the power modulation, P( f ) is the

power modulation amplitude, c is the speed of light, s( f ) is

the mechanical compliance of the suspended mirror, θ ≃ 8.8◦

is the angle of incidence on the mirror, MT = 39.6 kg and

IT = 0.415 kg m2 are the mass and rotational moment of iner-

tia of the mirror, and ~a and ~b are displacement vectors from the

center of the optical surface to the photon calibrator center of

force and the main interferometer beam, respectively. These

displacements determine the amount of unwanted induced ro-

tation of the mirror.

The compliance s( f ) of the suspended mirror can be ap-

proximated by treating the mirror as rigid body that is free

to move along the optical axis of the arm cavity: s( f ) ≃

−1/[MT(2π f )2]. Cross-couplings between other degrees of

freedom of the multi-stage suspension system, however, re-

quire that s( f ) be computed with a full, rigid-body model of

the quadruple suspension. This model has been validated by

previous measurements [17] and is assumed to have negligible

uncertainty.

Significant sources of photon calibrator uncertainty include

the NIST calibration of the reference standard (0.5%), self-

induced test mass rotation uncertainty (0.4%), and uncertainty

of the optical losses along the projection and reflection paths

(0.4%). The overall 1σ uncertainty in the displacement in-

duced by the photon calibrator, x
(PC)

T
( f ), is ≃ 0.8%.

V. ACTUATION FUNCTION CALIBRATION

The actuation strength for the ith suspension stage,

[KiAi( f )](meas), can be determined by comparing the interfer-

ometer’s response, derr( f ), to an excitation from that suspen-

sion stage’s actuator, exci( f ), with one from the photon cali-
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FIG. 5. Measured frequency-dependent correction factors, ζ(fd)

i
, for

the actuators of the lower three stages of the H1 suspension (symbols)

and corresponding fits, ζ(fd,fit)

i
(solid lines). Only data up to 100 Hz

for the bottom two stages were collected because the sensing func-

tion dominates the actuation function above ∼45 Hz. Data for the

upper intermediate mass is presented only up to 30 Hz because the

actuation function for this stage is attenuated sharply above ∼5 Hz.

brator, x
(PC)

T
( f ),

[KiAi( f )](meas) =
x

(PC)

T
( f )

derr( f )
×

derr( f )

exci( f )
. (10)

Figs. 5 and 6 show the collection of these measurements for

the H1 and L1 interferometers in the form of correction fac-

tors, ζ(fd)

i
= [KiAi( f )](meas)/[KiAi( f )](model). The collection

includes the reference measurement and subsequent measure-

ments normalized by any scalar, time-dependent correction

factors, ζ
(td)

i
. These data are used to create the fit, ζ

(fd,fit)

i
,

and estimate the actuation components of the statistical un-

certainty σqi q j
.

As described in Sec. II, the actuation function, and therefore

its uncertainty and error, only contribute significantly to the

uncertainty estimate for h below ∼45 Hz, which is the unity

gain frequency for the differential arm length servo. While

there are no data at frequencies above 100 Hz for H1, the

L1 high-frequency data confirm that above 100 Hz, frequency-

dependent deviations from the model are small.

There are larger frequency-dependent errors in the models

for the upper intermediate stages KUAU for both detectors.

Additional measurements, not explicitly included in this pa-

per, have shown that these result from unmodeled mechani-

cal resonances as well as the non-negligible inductance of the

electromagnetic coil actuators. As shown in Fig. 4, however,

the actuation strength of the upper intermediate mass is atten-

uated sharply above ∼5 Hz by FU. It therefore does not sub-
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FIG. 6. Measured frequency-dependent correction factors, ζ(fd)

i
, for

the actuators of the lower three stages of the L1 suspension (sym-

bols) and corresponding fits, ζ(fd,fit)

i
(solid lines). Data collected up to

1.2 kHz confirms the expected frequency dependence of the correc-

tion factors for the bottom two stages. Data for the upper intermedi-

ate mass is presented up to 30 Hz because the actuation function for

this stage is attenuated sharply above ∼5 Hz.

stantially impact the overall actuation model in the relevant

GW frequency band.

A systematic photon calibrator error would result in an over-

all error in the calibrated detector strain output. To investi-

gate the possibility of such unknown systematic errors, two

alternative calibration methods were employed. This is sim-

ilar to what was done during initial LIGO [18]. One alter-

native method uses a radio-frequency oscillator reference and

532 nm laser light resonating in the interferometer arm cavi-

ties to calibrate the suspension actuators. The other method,

which was also used during initial LIGO, uses the wavelength

of the 1064 nm main laser light as a length reference. Their

comparison with the photon calibrator is discussed in Ap-

pendix A. No large systematic errors were identified, but the

accuracy of the alternate measurements is currently limited to

∼10%.

VI. SENSING FUNCTION CALIBRATION

The sensing function, C(meas)( f ), can be measured directly

by compensating the interferometer response to photon cali-

brator displacement, derr( f )/x(PC)

T
( f ), for the differential arm

length control suppression, [1 +G( f )],

C(meas)( f ) =
[

1 +G( f )
]

×
derr( f )

x
(PC)

T
( f )
, (11)
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FIG. 7. Measured frequency-dependent sensing function correction

factors, ζ(fd)

i
, for L1 (blue crosses) and H1 (red circles) and their fits,

ζ(fd,fit)

i
.

where G( f ) is measured independently with the calibrated ac-

tuator.

Figure 7 shows the collection of these measurements

for H1 and L1 in the form of correction factors, ζ(fd)

C
=

C(meas)( f )/C(model)( f ), appropriately normalized with time-

dependent correction factors, ζ(td)

i
. Corresponding fits to

the frequency-dependent correction factors, ζ
(fd,fit)

C
, are also

shown. Together, these are used to establish the sensing com-

ponents of the statistical uncertainty, σqi q j
.

The frequency-dependent correction factor seen in H1 ex-

poses detuning of its signal recycling cavity [7], resulting

from undesired optical losses. Such detuning modifies the in-

terferometric response but is not included in the sensing func-

tion model (Eq. 11). The sensing function contribution to the

response function, R( f ), only dominates above the unity gain

frequency of the differential arm length servo ( f > 45 Hz). As

such, this correction factor becomes negligible when folded

into the overall systematic error.

VII. TIME-DEPENDENT SYSTEMATIC ERRORS

The scalar calibration parametersKC, fC, andKT have been

found to vary slowly as a function of time [19]. Changes in

these parameters are continuously monitored from the calibra-

tion lines observed in derr; these lines are injected via the pho-

ton calibrator and suspension system actuators. The ampli-

tude of each calibration line is tuned to have a signal-to-noise

ratio (SNR) of ∼100 for a ten-second Fourier transform of

derr. The calibration lines are demodulated, and their complex

ratios are stored at a rate of 16 Hz. Running means of the com-

plex ratios are computed over 128 s of this data, and are used

to compute the scalar parameter as a function of time. The

length of the running mean was chosen to reduce statistical

uncertainty while still maintaining signal integrity for the cho-

sen amplitudes, and to reduce the effect of non-Gaussian noise

transients in the interferometer.

The optical parameters KC and fC change in response to

variations in the alignment or the thermal state of the inter-

ferometer optics. The most dramatic changes occur over the

course of the few minutes immediately after the interferome-

ter achieves resonance, when the interferometer’s angular con-

trol system is settling and the optics are coming into thermal

equilibrium.

Variations in KT occur due to the slow accumulation of

stray ions onto the fused silica test mass [20, 21]. Test mass

charging thus creates a slow change in the actuation gain,

which takes several days to cause an observable change. The

upper stage actuation gains, KP and KU, are also monitored,

but the measurements do not show time-dependent variations

that are larger than the precision of the tracking measure-

ments.

Changes in the gainsKi are represented by time-dependent

correction factors, κi(t) = 1+δKi(t)/Ki ∈ ζ
(td)

i
. Changes in the

pole frequency, however, are reported as an absolute change:

fC(t) = fC + δ fC. Time-dependence in fC results in a time-

dependent, frequency-dependent correction factor ζ
(td)

fC
( f ), de-

termined by taking the ratio of two normalized, single-pole

transfer functions, one with fC at the reference time and the

other with fC at the time of relevant observational data. All

time-dependent correction factors also have statistical uncer-

tainty, which is included in σqi q j
.

Measurements to be used as references for the interfer-

ometer models were made 3 days prior and 1 day prior to

GW150914 at H1 and L1, respectively. Since the charge

accumulation on the test mass actuators is slow, any charge-

induced changes in the test mass actuation function parame-

ters during these few days was less than 1%. At the time of

GW150914, H1 had been observing for 2 hours and L1 had

been observing for 48 minutes, so both detectors had achieved

stable alignment and thermal conditions. We thus expect that

sensing function errors were also very small, though they fluc-

tuate by a few percent around the mean value during normal

operation. This level of variation is consistent with the varia-

tion measured during the September 12 to October 20 obser-

vation period. The correction factors measured at the time of

GW150914 are shown in Table II.

VIII. ESTIMATE OF TOTAL UNCERTAINTY

The statistical uncertainty of all model parameters are com-

bined to form the total statistical uncertainty of the response

function,

σ2
R( f ) =

∑

qi

∑

q j

(

∂R( f )

∂qi

) (

∂R( f )

∂q j

)

σqi q j
, (12)
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TABLE II. Dimensionless correction factors κi and systematic error

in cavity pole frequency, and their associated statistical uncertainties

(in parenthesis) during GW150914.

H1 L1

Mag. Phase (deg.) Mag. Phase (deg.)

κT 1.041(2) −0.7(1) 1.012(2) −1.2(1)

κPU 1.022(2) −1.3(2) 1.005(3) −1.5(2)

κC 1.001(3) N/A 1.007(3) N/A

δ fC (Hz) −8.1(1.4) N/A 0.5(1.9) N/A

where ∂R( f )/∂qi is the partial derivative of R with respect to

a given parameter qi.

The total systematic error in the response function, δR, rep-

resented as a correction factor, 1+ δR/R, is evaluated by com-

puting the ratio of the response function with its parameters

evaluated with and without time- and frequency-dependent ac-

tuation and sensing correction factors

1+
δR( f , t)

R( f )
=

R( f ; q1, q2, . . . , qn)

R( f , t ; q1 + δq1, q2 + δq2, . . . , qn + δqn)
. (13)

Therefore, the response function correction factor quantifies

the systematic error of the calibrated detector strain output at

the time of GW150914.

Measurements made during and after the observation pe-

riod revealed that the estimate of x
(PC)

T
also includes system-

atic errors δx
(PC)

T
, resulting in frequency-independent correc-

tion factors of 1.013 and 1.002 for H1 and L1, respectively.

These errors affect both the actuation and sensing function,

and are included accordingly with other known systematic er-

rors in the response function.

Figure 8 shows the total statistical uncertainty and correc-

tion factors for each interferometer’s response function, R( f ),

at the time of GW150914 and defines the 68% confidence in-

terval on the accuracy and precision of h(t). Systematic errors

at low frequency are dominated by the systematic errors in

the actuation function, whereas at high frequencies, the sys-

tematic error is dominated by the sensing function systematic

error. The frequency dependence of the sensing and actuation

models, and of the uncertainties presented here, is expected

to be smoothly varying in the 20 Hz to 1 kHz band. For all

frequencies relevant to GW150914, between 20 Hz and 1 kHz,

the uncertainty is less than 10% in magnitude and 10◦ in phase.

The comparison of measurements with models presented in

Sec. V and Sec. VI of this paper are consistent with that ex-

pectation.

IX. INTER-SITE TIMING ACCURACY

Digital signals derr and dctrl are derived from signals cap-

tured by analog-to-digital converters as a part of the LIGO

data acquisition system [22] and are stored in a mass data

storage system which records these signals for later analysis.

The LIGO timing system [23] provides the reference timing

information for the data acquisition system, which records the
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FIG. 8. Known systematic error and uncertainty for the response

function R( f ) at the time of GW150914, expressed as a complex cor-

rection factor 1+δR( f , t)/R( f ) (dashed lines) with surrounding uncer-

tainty ± σR( f ) (solid lines). The upper panel shows the magnitude,

and the lower panel shows the phase. The solid lines define the 68%

confidence interval of the precision and accuracy of our estimate of

h(t).

data with an associated Global Positioning System (GPS) time

stamp.

Each detector’s timing system uses a single Trimble Thun-

derbolt E GPS receiver as the timing reference. Additional

GPS receivers and one cesium atomic clock serve as wit-

ness clocks independently monitoring the functionality of the

main GPS reference. Once a second, timing comparators

monitor the clock edge differences (modulo one second) be-

tween the main GPS receiver and the witness clocks with sub-

microsecond accuracy. We did not observe any anomaly at the

time of GW150914.

Large absolute timing offsets must also be ruled out with the

GPS units at each site, which may be out of range of the tim-

ing comparators. The GPS units produce IRIG-B time code

signals which can be recorded by the data acquisition system.

The IRIG-B time code provides a map from the acquisition

system’s GPS time to Coordinated Universal Time (UTC). At

the time of GW150914, IRIG-B signals generated by the wit-

ness GPS receivers were recorded at H1. At L1, IRIG-B sig-

nals generated by the reference GPS receiver were recorded

as a self-consistency check. Throughout all 38 days of obser-

vation, no large offset was observed between any witness or

reference IRIG-B signals and UTC at either site. Witness re-

ceivers were added at L1 after the initial 38 days, and their

IRIG-B codes showed no inconsistency. We expect the uncer-

tainty in this comparison to be smaller than the 1 µs specifica-

tions of typical GPS systems [24–26].

Additional monitoring is performed to measure any poten-
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tial timing offset which may occur internally between the tim-

ing system and the analog-to-digital and digital-to-analog con-

verters. This monitoring system is described in detail in [23],

but summarized here. Two analog, sinusoidal diagnostic sig-

nals at 960 and 961 Hz are generated by each data acquisition

unit. The beat note of these two sine waves and all ADCs and

DACs in the unit itself are synchronized with a one-pulse-per-

second signal sent from the reference GPS receiver via optical

fiber with accuracy at the micro-second level. Within a given

converter, the channel-to-channel synchronization is well be-

low this uncertainty [27, 28]. The known diagnostic waveform

is also injected into a subset of analog-to-digital converters in

each data acquisition unit. The recorded waveform can then

be compared against the acquisition time stamp, accounting

for the expected delay. Any discrepancy would reveal that

data acquisition unit’s timing is offset relative to the timing

reference. The diagnostic signals on units directly related to

the estimated detector strain h(t)—the GW readout and photon

calibrator photodetectors—are recorded permanently. These

signals were examined over a 10-minute window centered

on the time of GW150914. In both detectors, these offsets

were between 0.6 and 0.7 µs depending on the unit, with the

standard deviation smaller than 1 ns in each given unit. Al-

though potential timing offsets between different channels on

the same analog-to-digital-converterboard were not measured,

there is no reason to believe that there were any timing offsets

larger than a few microseconds.

Based on these observations we conclude that the LIGO

timing systems at both sites were working as designed and in-

ternally consistent over all 38 days of observation. Even if the

most conservative estimate is used as a measure of caution,

the absolute timing discrepancy from UTC, and therefore be-

tween detectors, was no larger than 10 µs. The impact of this

level of timing uncertainty is discussed in Section X.

X. IMPACT OF CALIBRATION UNCERTAINTIES ON

GW150914

The total uncertainty in h(t) reported in Section VIII is less

than 10% in magnitude and 10◦ in phase from 20 Hz to 1 kHz

for the entire 38 calendar days of observational data during

which GW150914 was observed. The astrophysical searches

used for detecting events like GW150914 are not limited by

this level of calibration uncertainty [29, 30].

Calibration uncertainties directly affect the estimation of

the source parameters associated with events like GW150914.

The amplitude of the gravitational wave depends on both the

luminosity distance and the orbital inclination of the source,

so uncertainty in the magnitude of the calibration, determined

by the photon calibrator, directly affects the estimation of

the luminosity distance. The luminosity distance also de-

pends strongly, however, on the orbital inclination of the bi-

nary source, which is poorly constrained by the two nearly

co-aligned Advanced LIGO detectors. Thus, the 10% uncer-

tainty in magnitude does not significantly degrade the accu-

racy of the luminosity distance for GW150914 [31]. The ab-

solute scale is cross-checked with two additional calibration

methods, one referenced to the main laser wavelength and an-

other referenced to a radio-frequency oscillator (Appendix A).

Each method is able to confirm the scale at the 10% level in

both detectors, comparable to the estimate of total uncertainty

in absolute scale.

An uncertainty of 10% in the absolute strain calibration re-

sults in a ∼30% uncertainty on the inference of coalescence

rate for similar astrophysical systems [32]. Since the count-

ing uncertainty inherent in the rate estimation surrounding

GW150914 is larger than the 30% uncertainty in rates induced

by the calibration uncertainty, the latter does not yet limit the

rate estimate.

Estimating the sky-location parameters depends partially

on the inter-site accuracy of the detectors’ timing systems [33].

These systems, and the consistency checks that were per-

formed on data containing GW150914, are described briefly

in Section VI. The absolute time of detectors’ data streams is

accurate to within 10 µs, which does not limit the uncertainty

in sky-location parameters for GW150914 [31, 34]. Further,

the phase uncertainty of the response function as shown in

Section VIII is much larger than the corresponding phase un-

certainty arising from intra-site timing in the detection band (a

±10 µs timing uncertainty corresponds to a phase uncertainty

of 0.36◦ at 100 Hz).

All other astrophysical parameters rely on the accuracy of

each detector’s output calibration as a function of frequency.

The physical model of the frequency dependence underlying

this uncertainty was not directly available to the parameter es-

timation procedure at the time of detection and analysis of

GW150914. Instead, a preliminary model of the uncertainty’s

frequency dependence was used, the output of which was a

smooth, parameterized shape over the detection band [31, 35].

The parameters of the preliminary model were given Gaussian

prior distributions such that its output was consistent with the

uncertainties described in this paper. Comparison between the

preliminary model and the physical model presented in this

paper have shown that the preliminary model is sufficiently

representative of the frequency dependence. In addition, its

uncertainty has been shown not to limit the estimation of as-

trophysical parameters for GW150914 [31].

XI. SUMMARY AND CONCLUSIONS

In this paper, we have described how the calibrated strain

estimate h(t) is produced from the differential arm length

readout of the Advanced LIGO detectors. The estimate is

formed from models of the detectors’ actuation and sensing

systems and verified with calibrated, frequency-dependent ex-

citations via radiation pressure actuators at reference times.

This radiation pressure actuator relies on a NIST-traceable

laser power standard and knowledge of the test mass suspen-

sion dynamics, which are both known at the 1% level. The

reference and subsequent confirmation measurements inform

the static, frequency-dependent systematic error and statistical

uncertainty in the estimate of h(t). Time-dependent correction

factors to certain model parameters are monitored with single-

frequency excitations during the entire observation period. We
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report that the value and statistical uncertainty of these time-

dependent factors are small enough that they do not impact

astrophysical results throughout the period from September

12 to October 20, 2015.

The reference measurements and time-dependent correc-

tion factors are used to estimate the total uncertainty in h(t),

which is less than 10% in magnitude and 10◦ in phase from

20 Hz to 1 kHz for the entire 38 calendar days of observation

during which GW150914 was observed. This level of uncer-

tainty does not significantly limit the estimation of source pa-

rameters associated with GW150914. We expect these uncer-

tainties to remain valid up to 2 kHz once the forthcoming cali-

bration for the full LIGO observing run is complete.

Though not yet the dominant source of error, based on the

expected sensitivity improvement of Advanced LIGO [36],

calibration uncertainties may limit astrophysical measure-

ments in future observing runs. In the coming era of numerous

detections of gravitational waves from diverse sources, accu-

rate estimation of source populations and properties will de-

pend critically on the accuracy of the calibrated detector out-

puts of the advanced detector network. In the future, the cali-

bration physical model and its uncertainty will be directly em-

ployed in the astrophysical parameter estimation procedure,

which will reduce the impact of this uncertainty on the estima-

tion of source parameters. We will continue to improve on the

calibration accuracy and precision reported here, with the goal

of ensuring that future astrophysical results are not limited by

calibration uncertainties as the detector sensitivity improves

and new sources are observed.
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Appendix A: Photon calibrator cross-check

It is essential to rule out large systematic errors in the pho-

ton calibrator by comparing it against fundamentally differ-

ent calibration methods. For Advanced LIGO, two alternative

methods have been implemented. One is based on a radio-

frequency oscillator and the other based on the laser wave-

length. Each of them is described below.

1. Calibration via radio-frequency oscillator

As part of the control sequence to bring the interferome-

ter to resonance, the differential arm length is measured and

controlled using two auxiliary green lasers with a wavelength

of 532 nm [2, 37, 38]. Although designed as part of the in-

terferometer controls, this system can provide an independent

measure of the differential arm length.

The two green lasers are offset from each other in frequency

by 158 MHz. The frequency of each is independently locked

to one of the arm cavities with a control bandwidth of several

kilohertz. Therefore, the frequency fluctuations of each green

laser are proportional to the length fluctuations of the corre-

sponding arm cavity through the relation ∆νg/νg ≈ ∆L/L,

where νg is the frequency of either of the auxiliary lasers [39].

Beams from these two lasers are interfered and measured

on a photodetector, producing a beat-note close to 158 MHz.

As the differential arm length varies, the beat-note frequency

shifts by the amount defined by the above relation. This shift

in the beat-note frequency is converted to voltage by a fre-

quency discriminator based on a voltage controlled oscillator

at a radio frequency. Therefore the differential arm length can

be calibrated into physical displacement by calibrating the re-

sponse of the frequency discriminator.

A complicating factor with this method is the limited avail-

ability. This method is only practical for calibration in a high

noise interferometer configuration because sensing noise is

too high. Another set of measurements is thus required to

relate the high noise actuators to the ones configured for low

noise observation. These extra measurements are conducted

in low noise interferometer state where both high and low

noise actuators are excited. Since both excitations are iden-

tically suppressed by the control system, simply comparing
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FIG. 9. Comparison between radiation pressure, radio frequency os-

cillator, and laser wavelength calibration techniques, displayed as

[KTAT( f )](method)/[KTAT( f )]
(model), for the test mass stage of the H1

interferometer. Only statistical uncertainty is shown; systematic er-

rors for individual methods are not shown.

their responses using the readout signal derr allows for prop-

agation of the calibration. In summary, one can provide an

independent calibration of every stage of the low noise actua-

tor by three sets of measurements:

[KiAi( f )](rf) =

(

∆L

excHR( f )

)

×

(

excHR( f )

derr( f )

)

×

(

derr( f )

exci( f )

)

, (A1)

where excHR is digital counts applied to excite a high noise

actuator. The first term on the right hand side represents the

absolute calibration of the high noise actuator, and the final

two ratios represent the propagation of the calibration in low

noise interferometer state.

2. Calibration via laser wavelength

The suspension actuators can be calibrated against the main

laser wavelength (λr = 1064 nm) using a series of different

optical topologies. The procedure is essentially the same as

the procedure for initial gravitational wave detectors [40, 41].

First, the input test masses and the beamsplitter are used

to form a simple Michelson topology, which allows the in-

put test mass suspension actuators to be calibrated against the

main laser wavelength. Then, a laser (either main or auxiliary

green) is locked to the Fabry–Pérot cavity formed by the X-

arm input and end test masses. This allows the end test mass

actuators to be calibrated against the corresponding input test

mass actuators. Finally, in the full optical configuration, the

low noise suspension actuators (of the Y-arm end test mass)

are calibrated against the X-arm end test mass suspension ac-

tuators.

In Advanced LIGO, one practical drawback is the narrow

frequency range in which this technique is applicable. Not
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FIG. 10. Comparison between radiation pressure, radio frequency

oscillator, and laser wavelength calibration techniques, displayed as

[KTAT( f )](method)/[KTAT( f )]
(model), for the test mass stage of the L1 in-

terferometer. Only statistical uncertainty is shown; systematic errors

for individual methods are not shown.

all input test masses suspensions have actuation on the fi-

nal stage, so the the penultimate mass suspension actuators

must be used instead. This limits the frequency range over

which one can drive above the displacement sensitivity of the

Michelson. The penultimate stage actuators themselves are

also weak, further reducing the possible signal-to-noise ratio

of the fundamental measurement. As a consequence, the use-

able frequency range is limited to below 10 Hz.

3. Results and discussion

Figures 9 and 10 show the correction factor forKT AT . Only

the test mass stage is shown for brevity. This comparison was

done for all three masses of actuation system and show similar

results. With the correction factors of both independent meth-

ods (radio frequency oscillator and laser wavelength) within

10% agreement with that as estimated by radiation pressure

(again, for all stages of actuation), we consider the absolute

calibration of the primary method confirmed to that 10% level

of accuracy. At this point, the independent methods are used

merely to bound the systematic error on the radiation pres-

sure technique’s absolute calibration; considerably less ef-

fort and time were put into ensuring that all discrepancies

and systematic errors within the independent method were

well-quantified and understood. Only statistical uncertainty—

based on coherence for each compound-measurement point

in each method—is shown, because the systematic error for

these independent methods have not yet been identified or

well-quantified. Refinement and further description of these

techniques is left for future work.
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