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ABSTRACT

Intermittency observed prior to thermoacoustic instability is characterized by the occurrence of bursts of high-amplitude periodic oscillations
(active state) amidst epochs of low-amplitude aperiodic fluctuations (rest state). Several model-based studies conjectured that bursting arises
due to the underlying turbulence in the system. However, such intermittent bursts occur even in laminar and low-turbulence combustors,
which cannot be explained by models based on turbulence. We assert that bursting in such combustors may arise due to the existence of
subsystems with varying timescales of oscillations, thus forming slow–fast systems. Experiments were performed on a horizontal Rijke tube
and the effect of slow–fast oscillations was studied by externally introducing low-frequency sinusoidal modulations in the control parameter.
The induced bursts display an abrupt transition between the rest and the active states. The growth and decay patterns of such bursts show
asymmetry due to delayed bifurcation caused by slow oscillations of the control parameter about the Hopf bifurcation point. Further, we
develop a phenomenological model for the interaction between different subsystems of a thermoacoustic system by either coupling the slow
and fast subsystems or by introducing noise in the absence of slow oscillations of the control parameter. We show that interaction between
subsystems with different timescales leads to regular amplitude modulated bursting, while the presence of noise induces irregular amplitude
modulations in the bursts. Thus, we speculate that bursting in laminar and low-turbulence systems occurs predominantly due to the inter-
dependence between slow and fast oscillations, while bursting in high-turbulence systems is predominantly influenced by the underlying
turbulence.
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Large amplitude self-sustained oscillations in the acoustic field
may arise due to positive feedback between the heat release
rate and the pressure oscillations in a combustor. This phe-
nomenon, known as thermoacoustic instability, has detrimen-
tal effects on the lifetime of a combustor. Recently, studies
in many systems have shown that such thermoacoustic oscil-
lations are preceded by a state of intermittency. In order to
predict or mitigate these oscillations, it is essential to charac-
terize the route to thermoacoustic instability and recognize its
cause. During intermittency, bursts of high-amplitude periodic
oscillations occur amidst epochs of low-amplitude aperiodic fluc-
tuations. Such a dynamical state has been observed across var-
ious combustors, but the features of these bursts are different
in different combustors. The cause of intermittent bursting is
usually attributed to turbulent fluctuations in the underlying
flow. However, intermittent bursts are also observed in laminar

and low-turbulence combustors, indicating a different physical
cause. There are several subsystems in thermoacoustic systems
such as the acoustics, flame dynamics, and hydrodynamics. We
conjecture that the existence of the multiple timescales asso-
ciated with the oscillations in these different subsystems in a
thermoacoustic system is responsible for the occurrence of the
bursts during intermittency, and the interaction between these
oscillations determines the features of the bursts. To that end,
we study the effect of multiple timescales on the occurrence of
bursts in a prototypical thermoacoustic system using a hori-
zontal Rijke tube. Furthermore, we present a phenomenological
model to explain the cause of bursting in laminar and low-
turbulence combustors through the framework of slow–fast sys-
tems. We also investigate the effect of the interaction between var-
ious subsystems on the characteristics of bursts observed during
intermittency.
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I. INTRODUCTION

Continuous combustion is required in several applications for
power generation, such as aero-engines, rocket propulsion, and gas
turbine engines. The operation and lifetime of combustors devel-
oped for such power generation are plagued by the phenomenon
of thermoacoustic instability.1,2 During the occurrence of thermoa-
coustic instability, large amplitude self-sustained tonal sound waves
arise as a result of mutual interaction between the unsteady heat
release rate due to combustion and the unsteady acoustic field of
the combustor.3 Identification of dynamical routes that lead to ther-
moacoustic instability and developing measures for predicting or

mitigating such a state has been a field of intense research recently.4,5

Traditionally, the onset of thermoacoustic instability has been
viewed as a sudden transition from stable operation to unstable
operation of the system. In the purview of dynamical systems the-
ory, this transition is referred to as Hopf bifurcation6,7 and the state
of thermoacoustic instability is considered to be a stable limit cycle.8

Nair et al.9 showed that the transition from stable operation (com-
bustion noise) to unstable operation (thermoacoustic instability) in
turbulent combustors is interspersed by a dynamical state called
intermittency. Intermittency prior to thermoacoustic instability is
a state consisting of bursts of high-amplitude periodic oscillations
interspersed amongst epochs of low-amplitude aperiodic oscilla-
tions. In the intermittency signals, the epochs of periodicity increase
as the system dynamics approaches the point of onset of ther-
moacoustic instability. Subsequently, several studies have reported

the presence of intermittency prior to thermoacoustic instability in
different combustors.10–15,52

In a laminar thermoacoustic system consisting of a matrix
burner, Kasthuri et al.16 showed the presence of bursting oscillations
(switching of oscillations between bursts of periodic oscillations
and a nearly quiescent state) and mixed-mode oscillations (char-
acterized by periodic oscillations switching between two different
amplitudes) prior to the onset of limit cycle oscillations. In addition,
Weng et al.17 showed the existence of self-sustained beating dynam-
ics arising due to fluctuations in the flame location in a Rijke-type
burner with a laminar premixed flame. Therefore, while intermit-
tent bursts are observed in both laminar and turbulent combustors,
the characteristic features of such bursts are different in these com-
bustors due to the difference in the preceding stable state. In laminar
combustors, the intermittent bursts consist of periodic oscillations
amidst epochs of quiescence and, hence, are referred to as “bursting
oscillations.”16 However, in turbulent combustors, the intermittent
oscillations consist of bursts of periodic oscillations interspersed by

epochs of low-amplitude chaotic fluctuations and thus referred to as
“intermittency”9 and not bursting oscillations.

Several attempts have been made to explain the transition
from a state of stable operation to thermoacoustic instability via
intermittency in various combustors. Using the framework of syn-
chronization theory, Pawar et al.19,51 studied the coupling between
the acoustic pressure and the heat release rate fields and showed
that these fields undergo intermittent phase synchronization during
the state of intermittency in thermoacoustic systems. Further, most
studies attribute the occurrence of bursting during intermittency to
the effects of the underlying turbulent fluctuations,49 which are mod-
eled either as stochastic forcing terms in the heat release rate20,50 or

stochasticity in velocities of the vortices that convect in a turbulent
combustion chamber.21 On the other hand, a deterministic approach
was presented by Seshadri et al.22 to explain the cause of intermit-
tency, which was based on the feedback between the acoustic waves
generated due to the localized heat release and the vortex shedding
in the system. Although some understanding has been developed on
the occurrence of intermittency in turbulent combustors, the afore-
mentioned studies could not explain the causes and characteristics
of bursts in laminar and low-turbulence combustors.

The kind of bursting behavior observed during intermittency
prior to thermoacoustic instability in various combustors is remark-
ably different. Figure 1 shows the time series of such intermittent
oscillations reported in some of the recent studies involving dif-
ferent type of combustors with varying levels of turbulence. For
combustors having a high-turbulence intensity [Figs. 1(a)–1(c)] in
the underlying flow field, the intermittent bursts are almost contin-
uous in time with no distinct transition between epochs of periodic
and aperiodic fluctuations. On the other hand, the intermittent
oscillations observed in low-turbulence18 [Fig. 1(d)] and laminar16

[Fig. 1(e)] combustors show the occurrence of pronounced bursts
of large amplitude as well as small amplitude periodic oscillations
amidst very low-amplitude (nearly quiescent) aperiodic fluctua-
tions. The intermittent oscillations in these systems are character-
ized by relatively smooth and regular variation in the amplitude
envelope with distinct occurrence of growth and decay pattern for
the bursts. Further, Fig. 1(f) shows self-sustained beating dynam-
ics in a Rijke-type laminar burner,17 where the pressure oscillations
show a regular transition between bursts of periodic oscillations
and epochs of steady state. Clearly, the occurrence of intermittent
bursts in the system shown in Figs. 1(d)–1(f) is not turbulence-
induced and, hence, cannot be explained by earlier models based
on turbulence.20,22 We endeavor to possibly fill this gap and provide
a model to explain bursting behavior observed in low-turbulence
combustors through a different approach.

Intermittent bursts may arise as a result of turbulent fluctu-
ations in the flow that affect the heat release rate fluctuations as
well as the acoustic fluctuations just prior to the onset of ther-
moacoustic instability. However, in the absence of high-intensity
turbulence in the combustor, such bursting behavior is prone to
arise due to interactions between the oscillations in the flow field,
heat release rate, acoustics, etc. which have very distinct timescales.
Recent experimental studies have provided insight into the inter-
action between the hydrodynamic and acoustic subsystems leading
to bursting dynamics in thermoacoustic systems. Hong et al.23 have
shown that control parameters such as the equivalence ratio oscil-
late at a timescale much slower than the acoustic timescale when
the system is close to the onset of thermoacoustic instability. In
addition, Nair et al.9 have conjectured that intermittent bursts in tur-
bulent combustors can arise if the acoustic subsystem is modulated
by the hydrodynamics over slow timescales. Premchand et al.24 have
shown the presence of two dominant frequencies during the state
of intermittency in a bluff-body stabilized turbulent combustor.
They showed that the low-frequency peak in the amplitude spec-
trum of velocity fluctuations corresponds to the slow hydrodynamic
timescale, while the high-frequency peak in the amplitude spec-
trum of the pressure fluctuations corresponds to the fast acoustic
timescale.
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FIG. 1. The time series of the acoustic pressure oscillations during the state of intermittency observed prior to thermoacoustic instability obtained from studies involving
different classes of thermoacoustic systems, such as [(a) and (b)] a turbulent gas-fired combustor with a bluff-body and a swirl stabilizer,9 respectively, (c) a turbulent gas-fired
swirl combustor,15 (d) a low turbulence laboratory spray combustor,18 (e) a laminar multiple flame matrix burner,16 and (f) a Rijke-type laminar flame burner.17 These plots
are reproduced with permission from: [(a) and (b)] Nair et al., J. Fluid Mech. 756, 470–487 (2014). Copyright 2014 Cambridge University Press; (c) Ebi et al., J. Eng. Gas
Turb. Power 140, 061504 (2018). Copyright 2018 ASME; (d) Pawar et al., J. Eng. Gas Turb. Power 138, 041505 (2016). Copyright 2016 ASME; (e) Kasthuri et al., Chaos 29,
043117 (2019). Copyright 2019 AIP Publishing LLC; (f) Weng et al., Combust. Flame 166, 181–191 (2016). Copyright 2016 Elsevier.

Kasthuri et al.16 showed that the temperature close to the
burner in a multiple flame combustor fluctuates at a slow timescale.
They conjectured that the nonlinear interaction of the slow temper-
ature oscillations and fast acoustic fluctuations gives birth to mixed-
mode and bursting oscillations in their system. Further, Weng et
al.17 conjectured that beating occurs in their system due to slow and
fast timescales of the flame oscillations, where the slow timescale
is around 100–1000 times the timescale of acoustic fluctuations
induced in the system. Thus, all these studies provide an incentive to
study the interaction of slow–fast dynamics in thermoacoustic sys-
tems, where the acoustic fluctuations are the fast subsystem while the
slow subsystem is formed by the hydrodynamic oscillations or flame
fluctuations. The hydrodynamic oscillations may further introduce
slow oscillations in several other subsystems such as the heat release
rate or the temperature, or in the control parameters such as the local
equivalence ratio or the flow Reynolds number.

The occurrence of “bursts” is a widely studied phenomenon
across numerous fields such as neuroscience,25 chemical systems,26

and fluid mechanics.27 Across these numerous fields, bursting phe-
nomena have been studied under the purview of coupling of slow
and fast subsystems or multiple timescales associated with the sys-
tem. Thus, bursting dynamics in thermoacoustic systems may also
be studied in the purview of multiple timescales associated with
the oscillations of various subsystems and control parameters. With
the insight from experiments in thermoacoustic systems and stud-
ies from other fields as our motivation, we try to explain the
cause of intermittency in low-turbulence systems using the slow–fast
approach.

We conduct an experimental and theoretical investigation on a
prototypical thermoacoustic system, known as the horizontal Rijke
tube.28 The horizontal Rijke tube inherently does not show inter-
mittency or bursting behavior prior to the onset of thermoacoustic
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instability.28–30 We design the experiments so as to create bursting
behavior and, hence, to test the hypothesis of the occurrence of
bursts due to multiple timescales in the Rijke tube. In pursuit of the
same, we purposefully introduce sinusoidal oscillations in the con-
trol parameter (i.e., heater voltage) at a frequency which is orders
of magnitude lesser than the acoustic frequency. The mean value
of this oscillatory control parameter is varied such that the system
dynamics transitions from steady state to limit cycle oscillations.

We also develop a low order phenomenological model with
a canonical form for subcritical Hopf bifurcation for heat release
rate fluctuations, where low-turbulence intensity is modeled using
additive noise and interactions between various subsystems is mod-
eled using multiplicative noise. Slow–fast dynamics is introduced in
the model by the slow sinusoidal oscillation of the control param-
eter, in a similar manner as described for the experiments. Prior
to thermoacoustic instability, we observe the occurrence of bursts
of high-amplitude periodic oscillations amidst low-amplitude ape-
riodic oscillations in the acoustic pressure due to the slow modu-
lations of the control parameter in the experiments on the Rijke
tube as well as through our model. Finally, we study the interde-
pendence of the various subsystems of a thermoacoustic system by
two approaches in the model. In the first approach, we use the
slow–fast systems approach and couple the oscillations of the slow
and the fast subsystems, while in the second approach, we introduce
multiplicative noise in the heat release rate term in the absence of
slow oscillations in the control parameter. We show that a coupling
between the slow and the fast subsystems induces regular amplitude
modulations in the bursts of periodic oscillations, while the mul-
tiplicative noise introduces small and irregular modulations in the
amplitude envelope of bursts.

II. EXPERIMENTAL SETUP

The experimental setup of a horizontal Rijke tube (Fig. 2) con-
sists of an aluminum duct that is 100 cm long with a square cross
section of 9.3 × 9.3 cm2. A decoupler is attached to the inlet of the
duct. The decoupler eliminates the fluctuations of the incoming flow
and maintains ambient pressure conditions at the attached side of
the duct. The Rijke tube houses a stainless-steel wire gauge (hence-
forth, referred to as the heater), which is used as a concentrated heat
source in the system. The heater is connected to a DC power sup-
ply (TDK-Lambda, GEN 8-400, 0-8 V, 0-400A) through two copper
rods. The DC power supply is used to control the supplied voltage
to the heater, which thus controls the amount of power supplied
to the system. The heater voltage (i.e., the control parameter) is
varied in a quasi-static manner such that the system dynamics tran-
sitions from the steady state to thermoacoustic instability (i.e., limit
cycle oscillations) via a subcritical Hopf bifurcation. The airflow
rate is maintained constant at 100 ± 0.52 SLPM (standard liters per
minute), using an electronic mass flow controller (Alicat Scientific).
The corresponding Reynolds number of the air flow in the Rijke tube
is 1154 ± 6.

To test our hypothesis on the occurrence of bursts due to
slow–fast oscillations in a thermoacoustic system, we externally
introduce slow timescale oscillations in the heater voltage. Such con-
trol parameter oscillations are introduced by generating a sinusoidal
voltage signal using the SignalExpressTM software, which, in turn,

FIG. 2. The schematic of the experimental setup of the horizontal Rijke tube and
a cross section of the Rijke tube duct showing the position of the heater in the
system.

introduces sinusoidal oscillations in the heater power. Throughout
all the experiments in the Rijke tube, the sinusoidal oscillations of
the voltage supplied to the heater are maintained at an amplitude of
0.5 V and a frequency of 50 mHz. The mean value of the heater volt-
age is varied in the range 1.5–2.75 V, corresponding to which the
mean value of the heater power varies in the range 200–600 W. In
order to obtain bursting behavior in the system, we ensure that the
frequency of the oscillations in the heater voltage is of the order of
1/1000th of the natural frequency of the acoustic oscillations devel-
oped during thermoacoustic instability in the Rijke tube, which is
around 162 Hz. We use such a low ratio in order to allow enough
decay and growth time between consecutive bursts of periodic oscil-
lations in the acoustic pressure dynamics. Thus, the heater power
oscillations reflect the slow subsystem, while the unsteady acoustic
pressure fluctuations developed inherently in the system comprise
the fast subsystem.

The unsteady acoustic pressure oscillations generated in the
Rijke tube are recorded using a pressure transducer (PCB103B02),
which has an uncertainty of ±0.2 Pa. The transducer is located at a
distance of 31.5 cm from the inlet of the Rijke tube. The sampling
frequency was fixed at 10 kHz. The acoustic pressure data were col-
lected using a 16-bit data acquisition system DAQ (NI-USB 6343).
To ensure repeatability of the experimental results, environmental
factors such as temperature and relative humidity were maintained
at 23 ± 3 ◦C and 60 ± 5%, respectively. The acoustic decay rate of
the setup under cold flow conditions was always recorded to be
between 12 ± 0.5 s−1. The acoustic damping is maintained within
bounds to ensure repeatability of the experiments.

III. MODEL BASED ON THE NORMAL FORM OF

SUBCRITICAL HOPF BIFURCATION

In general, any thermoacoustic system consists primarily of a
source of unsteady heat release subjected to an acoustic field estab-
lished in a confinement. If the premixed/diffusion flame inside the
duct is restricted to a smaller length compared to the size of the duct,
it can essentially be considered as a concentrated source of heat,
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just like the electrically heated wire mesh in the case of a horizon-
tal Rijke tube. We, therefore, use a model similar to that discussed
by Gopalakrishnan et al.,31 which is a modified form of the non-
linear model developed by Balasubramanian and Sujith,32 to obtain
subcritical Hopf bifurcation through a generalized heat release rate
function.33

A. Governing equations

The linearized non-dimensional equations for momentum and
energy in one-dimension, neglecting the effect of mean flow and
temperature gradient, are as follows:32,34

γ M
∂u′

∂t
+

∂p′

∂x
= 0, (1)

∂p′

∂t
+ γ M

∂u′

∂x
= (γ − 1)Q̇′δ(x − xf), (2)

where γ is the ratio of specific heat capacities, M is the mean flow
Mach number, Q̇′ is the fluctuating heat release rate at the location
of the heat source (xf) in the system, while p′ and u′ are the fluctua-
tions in the acoustic pressure and the acoustic velocity, respectively.
Here, t denotes time and x denotes the distance along the axial
direction of the duct. The set of partial differential equations (1)
and (2) are converted to a set of ordinary differential equations
(ODEs) by using the method of modal expansion, also often called
the Galerkin projection.35 Accordingly, we expand the acoustic pres-
sure and velocity fluctuations as a linear combination of basis
functions that satisfy the boundary conditions associated with the
Rijke tube duct, which is open at both ends. Since, at open ends,
the acoustic pressure fluctuations are zero and the acoustic velocity
fluctuations are maximum, sine and cosine functions are a natu-
ral choice as basis functions for the modal expansion of p′ and u′,
respectively. The pressure and velocity fluctuations are expressed in
terms of time-varying modes η and η̇ as follows:

u′(x, t) =

∞
∑

j=1

ηj(t) cos(jπx)

and

p′(x, t) = −

∞
∑

j=1

γ M

jπ
η̇j(t) sin(jπx). (3)

Substituting the expressions from Eq. (3) into Eqs. (1) and (2) and
projecting the resulting equation on the jth mode of the basis func-
tion, we obtain the set of ordinary differential equations (ODEs) as
given in Eqs. (4) and (5). Finally, we include the effect of damp-
ing in Eq. (2) by adding a damping term which is dependent on the
frequency of the system,28

dηj

dt
= η̇j, (4)

dη̇j

dt
+ 2εjωη̇j + ω2ηj = q̇′, (5)

where ω is the non-dimensional angular frequency, q̇′ is the non-
dimensional heat release rate term. Here, εj is the damping coeffi-
cient which is calculated according to the following equation, with

k1 = 0.1 and k2 = 0.06:

εj =
1

2π

(

k1

ωj

ω1

+ k2

√

ω1

ωj

)

, (6)

where ωj = jπ for the jth duct mode.28,36

For a horizontal Rijke tube, the model developed by Balasubra-
manian and Sujith32 uses a modified form of King’s law37,38 to model
the heat release rate term (Q̇′). King’s law governs the heat release
rate from the thin hot wire to the surrounding fluid, which is appro-
priate to describe the heat transfer from the electrically heated wire
mesh to the air in the Rijke tube. However, for thermoacoustic sys-
tems in general, King’s law may not be the most general description
of the heat source as it is for a Rijke tube with electric heater.

For the current study, the non-dimensional heat release rate
fluctuations are decomposed into coherent and non-coherent com-
ponents in Eq. (7), as suggested by Noiray.20 The coherent fluctu-
ations in the heat release rate (q̇′

c) are due to the interaction of the
acoustic field fluctuations with the flame, while the non-coherent
heat release rate fluctuations (q̇′

nc) occur due to the turbulence in the
underlying flow field,

q̇′
= q̇′

c + q̇′

nc. (7)

The non-coherent component of the heat release rate, q̇′
nc, is mod-

eled using the noise term ξ(t) in Eq. (8). The coherent heat
release rate q̇′

c is considered to be a nonlinear function of the
non-dimensional acoustic modes η and η̇. For the current study,
we use the canonical form of the subcritical Hopf bifurcation for
q̇′

c with a time delay coupling between η and η̇, as motivated by
Gopalakrishnan et al.,31 which is given by Eq. (8),

q̇′

c = −c1(η − τ η̇) − c3(η − τ η̇)3
+ c5(η − τ η̇)5 and q̇′

nc = ξ(t),
(8)

where c1, c3, and c5 are constants, and τ is the time delay term. As
discussed by Gopalakrishnan et al.,31 the time delay term ensures
that the heat release rate responds to the velocity fluctuations at the
location of the heating source with a certain time delay. Further-
more, the heat release rate introduces nonlinear feedback between
the evolution of acoustic pressure and acoustic velocity fluctuations.
The specific expression of q̇′

c in Eq. (8) also ensures that a subcriti-
cal Hopf bifurcation [Fig. 3(b)] is obtained for the set of ODEs (4)
and (5).

The term ξ(t) is a combination of multiplicative and additive
noise. A random term [ξa in Eq. (9)] is added at each iterative step
to the acoustic pressure fluctuations, to effectuate additive noise
(strength σa) in the system. Similarly, we generate multiplicative
noise of strength σm by adding a random term [ξm in Eq. (9)] to the
acoustic pressure oscillations at each step, where the strength of the
random term is directly proportional to η̇ as noted in Eq. (9). Both
the random terms ξa and ξm are generated by the Weiner process
and are white Gaussian noise terms. The non-dimensional strengths
σa and σm are a fraction comparable to the maximum amplitude
of the non-dimensional pressure variable η̇, which is of the order
of 1 (η̇ ∼ 1). These non-dimensional strengths are varied to sim-
ulate the absence of turbulent fluctuations (σa = 0.0001) and also
low or high levels of turbulence or perturbations from other sub-
systems (where σa and σm are of the order of 0.1). We choose such
an order of magnitude for the noise intensities, so that the ratio
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of amplitudes of periodic and aperiodic oscillations in the acoustic
pressure signal obtained from the model is similar to that obtained
from experiments,

ξ(t) = σaξa + σmη̇(t)ξm. (9)

A slow–fast system is formed by the two-way interaction of both
the slow and the fast subsystems. The evolution of each subsystem
is, in general, dependent on the other. To study slow–fast oscilla-
tions in a thermoacoustic system where the pressure fluctuations
have a fast timescale, we introduce slow sinusoidal oscillations in the
control parameter c1 [Eq. (8)] centered at a mean value A, ampli-
tude B, and frequency f. As stated earlier for the experiments, we
maintain the value of the frequency of the control parameter in the
model at an order of magnitude of 1/1000th of the natural frequency
of the acoustic fluctuations (fast timescale). The oscillations in the
non-dimensional control parameter c1 are governed by the following
equation [Eq. (10)]:

c1 = A + B sin(2π ft). (10)

The set of ordinary differential equations, Eqs. (4) and (5), are
solved by the stochastic Runge–Kutta method39 for the heat release
rate function given by Eqs. (7) and (8), subject to noise [as given
in Eq. (9)] and control parameter oscillations of the form shown in
Eq. (10). In the rest of the paper, we refer to the above model as
the “standard model.” We also assume that the evolution of the con-
trol parameter (slow subsystem) stays independent of the dynamics
of the acoustic field variables (fast subsystem), say, p′ in the system
in Sec. IV. Further, we investigate the effect of the evolution of fast
subsystem on the evolution of the slow subsystem by introducing an

interdependence between the two subsystems, which is discussed in
detail in Sec. V.

IV. RESULTS AND DISCUSSION

A. Bifurcation diagram

We plot the bifurcation diagram of the acoustic pressure oscil-
lations obtained during the transition to thermoacoustic instability
through experiments in the horizontal Rijke tube and the model.
The bifurcation diagrams [Figs. 3(a) and 3(b)] show the variation
of root mean square value (rms) of the acoustic pressure (p′

rms)
with a quasi-static change in the heater power (or heater voltage)
for the experiments and the non-dimensional parameter c1 for the
model, respectively. The non-dimensional acoustic pressure from
the model is converted to a dimensional form by multiplying it with
the atmospheric mean pressure for the ease of comparison with the
experimental results. Since this is a phenomenological model, we
aim only for a qualitative match with the experiments. The bifur-
cation diagrams shown in Figs. 3(a) and 3(b) are for laminar flow
(Re = 1154 ± 6) conditions in the experiment and very low noise
intensity in the model (σa = 0.0001 to account for inherent noise in
real systems), respectively.

When the control parameter value is varied in a quasi-static
manner in the forward direction (i.e., the value of control parameter
is increased), we notice a sudden transition of the system behavior
from steady state to limit cycle oscillations at the Hopf bifurcation
point H in Figs. 3(a) and 3(b). A further increase of the control
parameter beyond the point H leads to a continuous increase in
the amplitude of the limit cycle oscillations in the system. In the
reverse direction, as the value of the control parameter is reduced,

FIG. 3. The bifurcation diagram of the acoustic pressure fluctuations (p′) with respect to (a) Kh, the heater power (W) or heater voltage (V) from experiments in the Rijke
tube and (b) non-dimensional parameter c1 from the standard model, when σa = 0.0001, σm = 0 in Eq. (9), c3 = c5 = 1 in Eq. (7). Points F and H represent the fold and
the Hopf point, respectively, while a, b, c, and d are reference points.
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FIG. 4. Comparison of the time series of acoustic pressure (p′) obtained from experiments (I) and from the model (II) for slow-scale oscillations in the control parameter
about a mean value. For experiments, the mean value of Kh is varied from (a) to (d) as 1.8 V (306W), 2.1 V (365W), 2.2 V (428W), and 2.56 V (568W), respectively, where
the amplitude and frequency of oscillations of Kh are fixed at 0.5 V and 0.05 Hz throughout. In the model, the parameter c1 oscillates with amplitude B = 0.4 and frequency
f = 0.17 Hz when its mean value is increased from (e) to (h) as A = 0.2, 0.6, 0.75 and 0.95, respectively. The noise intensity in the model is σa = 0.0001.

we notice a continuous decrease in the amplitude of limit cycle
oscillations, along the same path as in the forward direction. How-
ever, the transition from limit cycle to stable equilibrium state in the
reverse direction occurs at point F (i.e., fold point), which is well
past the point H. Thus, the bifurcation diagram exhibits a hystere-
sis region, indicative of a subcritical Hopf bifurcation in the system
dynamics. In experiments, the Hopf bifurcation point is found to be
at 2.45 V (483.6 W) and the fold point at 1.95 V (352.6 W). From the
model, the Hopf and the fold point values for the non-dimensional
parameter c1 are 0.77 and 0.57, respectively, when we choose τ = 0.2
and c3 = c5 = 1. Also, the bifurcation diagram in Fig. 3 is marked
with points a, b, c, and d representing different dynamical states for
reference in Fig. 4.

B. Effect of slow oscillations in the control parameter

on the transition to thermoacoustic instability

In this section, we present the results of experiments on the
horizontal Rijke tube, which were designed to investigate the occur-
rence of bursting oscillations induced due to the slow oscillations
of the control parameter during the transition from steady state to
limit cycle oscillations in the system. Figures 4-I and 4-II show the
time series of acoustic pressure fluctuations from the experiments
performed on the Rijke tube and from the model, respectively, for

the reference points of the subcritical Hopf bifurcation shown in
Fig. 3.

Column I in Fig. 4 shows results from the experiments in the
Rijke tube when slow oscillations, with fixed amplitude (0.5 V) and
frequency (0.05 Hz), are induced in the heater voltage (Kh). The
mean value of the heater voltage is increased from point a to d [with
reference to the bifurcation diagram in Fig. 3(a)] in Figs. 4(a)–4(d),
respectively. For oscillations about the mean value of Kh corre-
sponding to a point in the steady state region, we observe only very
low-amplitude aperiodic fluctuations, which can be considered as
a quiescent state. As the mean value of the control parameter is
increased to a value around the fold point [point b in Fig. 3], we
observe bursts of high-amplitude periodic oscillations amidst nearly
quiescent state, as seen in Fig. 4(b). We also obtain such bursting
dynamics [Fig. 4(c)] when the mean value of the control parameter is
in the bistable zone [point c in Fig. 3]. Comparing Figs. 4(b) and 4(c),
we note that as the mean value of Kh is increased, the average epoch
of the rest state reduces and the maximum amplitude achieved by
periodic oscillations in the pressure signal increases. Finally, corre-
sponding to control parameter oscillations about a point far ahead
of the Hopf bifurcation point in the limit cycle regime [point d
in Fig. 3], we observe the occurrence of limit cycle oscillations
with modulated amplitude envelope, as shown in Fig. 4(d). Such
modulations in the amplitude envelope arise when the minimum
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value of the control parameter oscillations is more than or close
to (if less than) the value of the control parameter at the fold
point. That is, even though the control parameter oscillations
may cross the fold point by a small margin and transit to the
steady state region, the acoustic pressure oscillations never achieve
a quiescent state. This is because the acoustic pressure oscilla-
tions in the active state have insufficient time to decay to the rest
state, when a lesser fraction of the oscillation cycle of the con-
trol parameter occurs in the steady state region of the bifurcation
diagram.

In column II of Fig. 4, we show the time series of acoustic pres-
sure fluctuations obtained from the standard model (discussed in
Sec. III) in the presence of slow timescale oscillations of the con-
trol parameter c1, as indicated by Eq. (10). The mean value (A) of
the oscillating control parameter is increased in a quasi-static man-
ner from point a to d [with reference to Fig. 3(b)] to obtain the
dynamics shown in Figs. 4(e)–4(h). The model qualitatively captures
all the features of bursting oscillations observed from experiments
in the Rijke tube [Fig. 4-I]. The acoustic frequency of limit cycle
oscillations obtained from the standard model is fa = 170 Hz. In
the absence of random perturbations (i.e., for σa = σm = 0) in the
model, when the control parameter oscillations are introduced, we
observe bursting behavior only when the mean value of the oscil-
lating control parameter is greater than that at the Hopf bifurcation
point. However, from the experiments in the Rijke tube, we observe
bursting behavior even when the control parameter oscillations are
centered much before the Hopf bifurcation point (i.e., in the bistable
zone) [for example, see Fig. 4(b)]. This is because noisy fluctuations
are inherent to any real system; hence, we use very low noise inten-
sity (σa = 0.0001) to mimic such a noise in real systems. As a result,
we obtain bursting behavior even when the control parameter is
centered around the fold point, given that the amplitude of its oscil-
lations is sufficient to cross the Hopf bifurcation point [for example,
see Fig. 4(f)].

Similar to the experiments, the model produces bursts of
high-amplitude periodic oscillations amidst nearly quiescent state
[Figs. 4(f)–4(g)] and modulated limit cycle oscillations [Fig. 4(h)].

We also notice that such bursting behavior occurs only when the
control parameter value crosses both the Hopf and the fold points
in every cycle of the oscillation. Further, for the bursts induced by
slow parameter oscillations (as shown in Fig. 4), we note that the
transition from the rest to the active state (growth) and from the
active to the rest state (decay) is asymmetric. A similar asymmetry
in the growth and decay of the bursts of acoustic pressure signal has
been recently reported in a Rijke-type burner by Weng et al.17 They
observed that the asymmetry associated with bursting oscillations
changes with the change in the equivalence ratio in the system; how-
ever, the cause of such asymmetry in a burst is not clear. In Sec. IV
C, we try to explain this asymmetry of growth and decay of bursts
with the help of the model discussed in Sec. III.

C. Delayed bifurcation effect

In this section, we discuss the reason for asymmetry in the
growth and the decay pattern in the bursts induced by slow–fast
dynamics in the experiments and the model [Fig. 4]. We believe that
such asymmetry occurs due to the disproportionate time duration
for which the system dynamics is restricted to the stable limit cycle
branch during the forward and the reverse oscillation paths of the
control parameter. Such unequal durations arise due to two reasons:
(I) delayed bifurcation caused by the slow-scale oscillations of the
control parameter and (II) the existence of a hysteresis zone in the
bifurcation diagram of the system. The effect of delayed bifurcation
is explained with the help of the model in Fig. 5.

Delayed bifurcation effect or memory effect associated with the
slow passage of control parameter through Hopf bifurcation point
is widely studied in the literature.40–43 When the control parame-
ter is varied across the Hopf bifurcation point in a rate-dependent
manner, the transition of the system dynamics from steady state to
limit cycle oscillations gets delayed and occurs at a control param-
eter value greater than that at the Hopf bifurcation point. Such a
delay in the transition of the system behavior is referred to as delayed
bifurcation.

FIG. 5. (a) Transformed phase portrait of acoustic pressure oscillations (p′) obtained from the standard model superposed on the bifurcation diagram of acoustic pressure
(p′

max) obtained from quasi-static variation of c1. (b) The overlapped time series of the control parameter oscillations (c1) and the acoustic pressure oscillations (p
′) during a

state of bursting in the system, obtained from the model. Here, p′

maxR and p
′

maxF refer to the reverse and the forward paths of quasi-static variation of c1. The point demarcated
as A represents the mean value of c1.
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For our model involving a slow–fast system, the delayed bifur-
cation due to slow parameter oscillations can be depicted using a
“transformed phase portrait.”42 The transformed phase portrait is a
plot of the time evolution of the acoustic pressure oscillations (the
fast subsystem variable) with respect to the time-varying control
parameter c1 (the slow subsystem variable), as shown in Fig. 5(a).
For clarity, we plot the acoustic pressure oscillations on the trans-
formed phase diagram starting from the point A [Fig. 5(a)], where
the pressure fluctuations are in the rest state [Fig. 5(a)] to the point
where the pressure fluctuations achieve the maximum amplitude of
periodic oscillations (at point D), observed during the onset of burst
in a signal [Fig. 5(b)]. We then superimpose this transformed phase
portrait on the bifurcation diagram, which is obtained by plotting
the variation of the maximum amplitude of the acoustic pressure
oscillations with respect to the quasi-static variation of the control
parameter [Fig. 5(a)].

We note that the delay associated with the occurrence of the
first burst depends on the initial conditions [i.e., η(0)] of the acoustic
pressure fluctuations. However, the delay associated with the subse-
quent bursts in the same signal is independent of initial conditions
for fixed values of A, B, and f [in Eq. (9)] for the oscillating parame-
ter c1.41 Hence, the transformed phase portrait is obtained from any
subsequent burst after disregarding the first burst as a transient. In
Fig. 5(a), we show the transformed phase portrait for the case when
the control parameter oscillates with an amplitude of B = 0.55 with
a frequency f = 0.102 Hz about a mean value A = 0.55. Further-
more, we show the overlapped time series of slow control parameter
oscillations and fast acoustic pressure oscillations during the state
of bursting in the system in Fig. 5(b). Points A, F, H, X, and D are
the reference points of c1 on the bifurcation diagram in Fig. 5(a)
corresponding to the demarcations on the time series in Fig. 5(b).
Consider the oscillation of the control parameter starting from the
mean value, indicated by the point A in Figs. 5(a) and 5(b). We
define the forward oscillation from point A to point D and the
reverse oscillation from point D to point A in half a cycle of the
control parameter oscillation [Fig. 5(b)].

Even as the control parameter oscillations cross the Hopf bifur-
cation point H, we observe steady state dynamics in acoustic pres-
sure (p′), i.e., the transition of p′ from the rest to the active state
does not occur immediately at H [Fig. 5(a)]. Such a transition occurs
only at a value of c1 that is greater than that at H, i.e., at point X.
The identification of the exact point of the onset of the growth of
oscillations (i.e., point X) is non-trivial and is described in detail in
Appendix A. We qualitatively indicate the delayed bifurcation in the
system by what we define as the “delay value” (in terms of c1), hence-
forth referred to as δ. The delay value (δ) represents the difference
in the values of c1 at point H (the Hopf point) and at point X (where
the onset of a burst of periodic oscillations occurs in the acoustic
pressure signal).

In the forward direction, when the value of c1 grows from
point A to D [Fig. 5(b)], we obtain periodic oscillations in the p′

signal only when the value of c1 traverses from point X to D on
the bifurcation plot [Fig. 5(a)]. In the reverse path of c1 (i.e., from
point D to A), the value of p′

max continuously decreases from point
D to F [Fig. 5(a)] corresponding to which the amplitude of the p′

oscillations in the burst also decreases. Once the control parameter
crosses the fold point F, the periodic oscillations of p′ in the burst

decay rapidly to the rest state. Hence, the dynamics of p′ is sustained
on a longer stretch of the stable limit cycle branch in the reverse
direction of the control parameter oscillation as compared to the for-
ward direction. As a result, the growth and the decay pattern of the
bursts are asymmetric.

In addition, we investigate the effect of slow parameter oscil-
lations across a supercritical Hopf bifurcation, which does not have
a hysteresis zone, using a similar model. The corresponding equa-
tions and results are discussed in Appendix B. In a supercritical
Hopf bifurcation, the amplitude of limit cycle oscillations increases
gradually from the rest state and there is no sudden jump in the
value of p′

max. We find that the slow parameter oscillations across the
supercritical Hopf bifurcation induce bursts of periodic oscillations
amidst nearly quiescent state with distinct growth and decay pat-
tern. Since there is a delay associated with the transition of dynamics
from steady state to periodic oscillations, there is a steep rise in the
amplitude of the acoustic pressure signal, that is, a sudden growth
of high-amplitude periodic oscillations (refer Fig. 11). During the
reverse oscillation, the amplitude of periodic oscillations decreases
gradually to the rest state.

D. Factors effecting the delayed bifurcation

In this section, we present the effect of the change in the mean
value, amplitude, and frequency of the control parameter oscilla-
tions on the delay value (represented as δ in Fig. 5) and also on
the characteristics of bursting oscillations, using the model, through
Fig. 6.

In the transformed phase diagrams in Fig. 6, points F and H
indicate the fold and the Hopf points, respectively. We consider two
cases in Figs. 6(a) and 6(b) where for case I, AI = 0.55, and for case
II, AII = 0.85, while B = 0.55, f = 0.102 Hz in both cases. From the
transformed phase diagram in Fig. 6(a), we observe that an increase
in A leads to a corresponding increase in the delay value (δ), i.e., if
AI < AII then δI < δII. The time series of the acoustic pressure for
both the cases are overlapped and plotted in Fig. 6(b) for the ease of
comparison. From Fig. 6(b), we infer that as A increases, the epochs
of high-amplitude periodic oscillations (i.e., burst) increase and
the epochs of low-amplitude aperiodic fluctuations correspondingly
decrease in the p′ signal. The maximum amplitude of the periodic
oscillations in the p′ signal also increases with an increase of A. This
is expected from the bifurcation diagram, where we see an increase
in the amplitude of limit cycle oscillation with the increase in the
value of the control parameter. Since the value of AI is lesser than AII,
for the same amplitude B, the maximum amplitude achieved along
the limit cycle branch is greater for case II.

Next, we inspect the effect of variation in the frequency (f) of
the control parameter oscillations while its amplitude (B) and mean
value (A) are kept constant in Figs. 6(c) and 6(d). Two cases are con-
sidered as before, case I: fI = 0.102 Hz and case II: fII = 0.238 Hz,
while the amplitude and mean value of c1 for both cases are fixed
at B = 0.55 and A = 0.85, respectively. We note that as f increases,
the number of bursts occurring in the signal in a fixed duration also
increases [Fig. 6(d)]. Furthermore, from the transformed phase por-
trait in Fig. 6(c), it is clear that the delay value (δ) associated with
the onset of bursts increases corresponding to the increase in f. This
means, if fI < fII, then δI < δII. We also note that the maximum
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FIG. 6. (I) Transformed phase diagrams and (II) the corresponding overlapped time series of the control parameter oscillations and the acoustic pressure oscillations obtained
from the model, for the cases shown in [(a) and (b)] with different mean values AI and AII while B and f are fixed, [(c) and (d)] with different frequencies fI and fII , while A and
B are fixed, and [(e) and (f)] with different amplitudes BI and BII while A and f are fixed. The point demarcated as A represents the mean value of c1.

amplitude of the burst remains nearly the same with an increase in f

at fixed values of A and B.
Finally, in Figs. 6(e) and 6(f), we study the effect of variation of

the amplitude (B) of the control parameter oscillations while keep-
ing A and f constant. Again, we consider two cases, case I: BI = 0.35
and case II: BII = 0.85 for fixed values of A = 0.85 and f = 0.17 Hz.
We find that the maximum amplitude of acoustic pressure oscilla-
tions in the burst is directly proportional to the amplitude of the
control parameter oscillations. We also note that an increase in B
does not affect the epoch of a burst observed in the signal, i.e., the
duration of bursts remains the same [Fig. 6(f)]. Further, from the
transformed phase portrait in Fig. 6(e), we note that the delay value

(δ) is higher for case II, i.e., if BI < BII then δI < δII.

V. INVESTIGATING THE INTERDEPENDENCE OF SLOW

AND FAST SUBSYSTEMS USING MODEL

In Sec. IV, we discussed the case where the externally intro-
duced slow-scale oscillations in the control parameter are indepen-
dent of the dynamics of the fast scale oscillations observed in the
acoustic pressure. However, in practical thermoacoustic systems,
the acoustic, hydrodynamic, and flame fluctuations, which ensue
at distinct timescales, are non-linearly coupled44 and the quantifi-
cation of the effect of each subsystem on the other is difficult. For
instance, there is an inevitable dependence between the evolution
of the acoustic pressure fluctuations and various control param-
eters, viz., equivalence ratio, mixing, and burning rates, tempera-
ture, etc., inherent to the governing system. In addition, there is a
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FIG. 7. Schematic representation of the simultaneous evolution of the acoustic
pressure (p′, in blue) and the control parameter (c1, in red) oscillations obtained
through the modified model. The dotted line represents the chosen threshold of
p′

th = 25 Pa (which is around 15% of the maximum amplitude); if p′
env ¡ p

′

th, fre-
quency of the control parameter (c1) oscillation is f = 0.17 Hz; if p′

env¿ p′

th, then
f = 15 × 0.17 Hz. The frequency of the acoustic pressure oscillations is 170 Hz.
The noise intensities are σa = 0.0001 and σm = 0.

possible interdependence between the underlying turbulence inten-
sity and the dynamics of acoustic variables. The dynamics arising
in the system due to the interaction between the subsystems with
multiple timescales is highly complex. Therefore, in this section,
we intend to probe the occurrence of bursting dynamics in the
acoustic field due to such interdependence of the slow and fast
subsystems through the model. To model the interaction between
the various subsystems of a thermoacoustic system, we present two
approaches: (I) by coupling the slow and fast subsystems in the pres-
ence of low-intensity noise and (II) by introducing noise (additive
and multiplicative) in the absence of slow oscillations in the control
parameter.

A. Effect of coupling the slow and fast subsystems

From our experiments in the Rijke tube, we understand that
bursts of periodic oscillations arise in the acoustic pressure fluc-
tuations (fast subsystem) as a result of slow oscillations of a con-
trol parameter (slow subsystem). Further, we notice that when the
slow and the fast oscillations are uncoupled, the bursts occur at
equal intervals in the acoustic pressure signal. However, in practi-
cal combustors, such bursts occur at random intervals in the signal.
Sometimes, such bursts also possess a peculiar feature of peri-
odic modulation in the amplitude envelope of the active state in
the acoustic pressure signal18,45 [as shown in Fig. 8(a)], known as
amplitude modulated bursting.

“Amplitude modulated bursting” is a known phenomenon in
the studies pertaining to slow–fast systems.46,47 As discussed by Han
et al.,47 amplitude modulated bursting is characterized by modula-
tions in the envelope of the active phase of bursting. They show

that amplitude modulated bursting can occur in the system dynam-
ics due to “multi-frequency slow parametric modulation,” that is, if
there exist multiple slow frequencies in the parameter modulations
when the system undergoes a Hopf bifurcation or any other type of
bifurcation. In our approach using the modified model, the system
has only one frequency that is a function of time, which introduces
amplitude modulated bursting.

We speculate that amplitude modulated bursting in the acous-
tic pressure signal may arise as a result of interactions between the
slow and the fast subsystems in a combustor. Therefore, to study the
interdependence of these two subsystems, we modify the standard
model by making the frequency of the control parameter oscillations
dependent on the amplitude of the fast oscillations in the acoustic
pressure. Due to such interdependence, we assume that the fre-
quency of the control parameter oscillations increases to a higher
value during the active state of the burst as compared to that during
the rest state. We subsequently show that such an assumption mod-
els the amplitude modulated bursting observed in laboratory-scaled
combustors. In order to realize this altering frequency in the model,
we numerically capture the amplitude envelope of the acoustic pres-
sure fluctuations as and when the system evolves [see Fig. 7]. Then,
we choose a threshold of acoustic pressure amplitude, p′

th, which is
a suitable fraction of the amplitude of the limit cycle oscillations.
The choice of p′

th is based on examining several threshold values in
the model and is restricted to be around 10%–30% of the maximum
amplitude of acoustic pressure oscillations (depending on the level
of noise used in the system). If the value of the threshold is higher
than 30%, we observe bursting dynamics only for a very small range
of the control parameter. If the amplitude envelope of the acoustic
pressure oscillations is below p′

th, the frequency of c1 is chosen to
be f, whereas, if the amplitude envelope of acoustic pressure oscilla-
tions is above p′

th, the frequency of c1 is chosen to be a multiple of f.
Figure 7 represents the simultaneous evolution of c1 and p′ when the
frequency of c1 is allowed to vary according to the amplitude of p′

as described. We, henceforth, refer to the model with such interde-
pendence between the slow and the fast subsystems as the “modified
model.” In a thermoacoustic system, the evolution of dynamics of
each subsystem is dependent on that of the other subsystems. As a
result, the interaction of some slow subsystems with the fast subsys-
tem may give rise to perturbations in various other slow subsystems.
Thus, there may be frequency variations in parameters associated
with different subsystems other than the control parameter origi-
nally oscillating at a slow timescale. However, the cumulative effect
of the interaction of all these slow subsystems will be reflected in
the heat release rate fluctuations. Hence, in the modified model, we
account for the interactions between the various slow and fast sub-
systems through the frequency variation of a single parameter c1,
which eventually affects the heat release rate oscillations according
to Eq. (8).

B. Effect of additive and multiplicative noise

To model the interactions between the various subsystems
(hydrodynamics, acoustics, and flame dynamics), a completely dif-
ferent approach may be identified, in which we disregard the
approach using slow timescale oscillations of the control parame-
ter. In this second approach, we model such interactions using a
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FIG. 8. Time series of the acoustic pressure oscillations and corresponding amplitude spectrum observed during the state of intermittency prior to thermoacoustic instability
in (a) spray combustor18 (Re ≈ 2.6 × 103) and (b) turbulent combustor9 (Re ≈ 1.4 × 104). The insets show small epochs of periodic oscillations during bursts where the
inset of (a) shows regular amplitude modulations in the envelope and the inset of (b) highlights irregularly modulated envelope of the acoustic pressure oscillations.

combination of additive and multiplicative noise. According to
Eq. (9), the multiplicative noise introduces dependence between the
non-coherent heat release rate (q̇nc) and the instantaneous value of
the acoustic pressure oscillations in the system. Thus, the multiplica-
tive noise aids in capturing the nonlinear interaction between the
acoustic subsystem (pressure oscillations) and the heat release rate
oscillations in the combustor. Further, the additive noise term in Eq.
(9) helps to model the effect of turbulence (hydrodynamic subsys-
tem) on the heat release rate fluctuations.48 Thus, a combination of
additive and multiplicative noise is used to model the interaction
between the various subsystems of a combustor. When such a com-
bination of additive and multiplicative noise is introduced in the
model, we observe bursting behavior when the control parameter
is in the vicinity of the Hopf bifurcation point.

First, we show the intermittency signals and the corresponding
amplitude spectra observed prior to thermoacoustic instability in
two laboratory-scaled combustors, which have been discussed ear-
lier by Pawar et al.18 [Fig. 8(a)] and Nair et al.9 [Fig. 8(b)]. Next, we
compare the time series and the amplitude spectra of the intermit-
tent oscillations in the acoustic pressure signals obtained from the
model using the two approaches, namely, (i) the modified model
[Fig. 9(a)] and (ii) the introduction of additive and multiplicative
noise in the model [Fig. 9(b)]. Finally, we compare the features of
intermittent bursts obtained from model [Fig. 9] with that observed
through experiments [Fig. 8].

Figure 8(a) delineates the intermittency signal from a low-
turbulence spray combustor where we observe distinct amplitude
modulated bursting in the signal and also the occurrence of a
sideband frequency in the amplitude spectrum of the acoustic pres-
sure oscillations.18 The corresponding amplitude spectrum has a

dominant frequency peak at 268.2 Hz and a sideband frequency at
300 Hz. These features, in turn, indicate the presence of multiple
frequencies in the slow subsystems of the combustor.

Similarly, Fig. 8(b) illustrates the intermittent oscillations in the
acoustic pressure signal obtained prior to thermoacoustic instabil-
ity in a laboratory-scale bluff-body stabilized turbulent combustor.9

The amplitude envelope of the pressure signal has very small and
irregular modulations during the high-amplitude bursts of periodic
oscillations. The amplitude spectrum of this signal shows a single
dominant peak around a frequency of 246.9 Hz. This could happen
if the nonlinear interaction of the slow and the fast subsystems is
incapable of introducing multiple slow frequencies in the system in
the presence of dominant turbulent flow fluctuations.

In order to replicate the feature of amplitude modulated burst-
ing as observed in a laboratory-scale spray combustor [Fig. 8(a)], we
use the modified model described in Sec. V A. Figure 9(a) shows the
intermittent oscillations obtained from the modified model when
the value of p′

th is approximately 15% of the maximum amplitude
of the acoustic pressure oscillations. It is assumed that the control
parameter oscillates at a base frequency of 0.17 Hz when the pressure
amplitude is below the threshold, while the frequency of the control
parameter increases to 8.5 Hz otherwise. Here, we use additive noise
alone, i.e., σm = 0 and σa = 0.1. With this approach, we obtain an
intermittency signal where the acoustic pressure oscillations switch
between high-amplitude periodic oscillations and low-amplitude
aperiodic fluctuations [Fig. 9(a)]. Moreover, the occurrence of bursts
is not periodic, owing to the fact that the frequency of the slowly
oscillating control parameter varies as per the acoustic pressure
oscillations which is influenced by the presence of noise in the acous-
tic field. This is different from the periodically occurring bursts we
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FIG. 9. (a) The intermittency signal obtained from the modified model when the pressure threshold is set at p′

th = 25 Pa. If p′
env < p′

th, frequency of oscillating control
parameter c1 is f = 0.17 Hz, while if p′

env > p′

th, then f = 8.5 Hz with noise strengths σa = 0.1 and σm = 0. (b) The intermittency signal obtained from introducing additive
and multiplicative noise of strengths σa = 0.05 and σm = 0.2, respectively, in the model. The amplitude spectrums corresponding to periodic oscillations of each time series
shown in the insets are plotted in the right column.

observed in Fig. 4, when the slow and the fast subsystems were not
coupled.

The inset of Fig. 9(a) shows regular modulations in the
amplitude envelope of the acoustic pressure oscillations, which is
known as amplitude modulated bursting. The corresponding ampli-
tude spectrum has one dominant peak at the natural frequency of
the acoustic field (176.7 Hz) and two sideband frequency peaks at
168.2 Hz and 185.2 Hz. Here, the frequency difference of 8.5 Hz
between the dominant frequency and the sideband frequencies is
equal to the value of the frequency of the slow oscillations (i.e.,
8.5 Hz) introduced in the control parameter, when the amplitude
envelope of pressure oscillations is above the designated thresh-
old. This is also the frequency of the modulations in the ampli-
tude envelope of the pressure oscillations during bursts of periodic
oscillations. This behavior reasserts that the presence of multiple
slow frequencies of control parameter oscillations is responsible for
amplitude modulated bursting, and the higher of these multiple
slow frequencies is reflected in the modulations of the amplitude
envelope of acoustic pressure during bursts. Such a signal closely
replicates the features of the amplitude-modulated limit cycle oscil-
lations observed by Boudy et al.45 in a multiple flame premixed
burner and the amplitude-modulated intermittent oscillations seen
in a low-turbulence laboratory-scale spray combustor18 [as shown in
Fig. 8(a)].

On the other hand, Fig. 9(b) shows the intermittency signal
obtained from the combination of additive and multiplicative noise
alone (i.e., without the slow oscillations in the control parameter) in
the model [refer to Eq. (9)]. Here, we choose the noise intensities
such that σa < σm, since we expect that in low-turbulence systems,
the acoustic pressure dynamics would be more strongly influenced
by the interaction of the heat release rate and the acoustic pres-
sure oscillations as compared to the effect of turbulent fluctuations.

Switching of the acoustic pressure oscillations between periodic and
aperiodic oscillations in the presence of noise is obtained when
the control parameter value is close to the Hopf bifurcation point.
Similar to the previous approach using the modified model, this
approach also produces bursts of periodic oscillations at irregular
intervals. Furthermore, we observe that the amplitude envelope of
the acoustic pressure oscillations has small and irregular amplitude
modulations during bursts. The amplitude spectrum corresponding
to periodic oscillations in the burst shows only a single dominant
peak at 176.4 Hz and no sideband frequencies. Moreover, if we use
σa > σm, this approach can also produce intermittent bursting sim-
ilar to that observed experimentally in the intermittency signals
obtained from a highly turbulent combustor9 such as that shown
in Fig. 8(b). Thus, the introduction of additive and multiplicative
noise alone in the model aids in capturing the occurrence of bursts
in the acoustic field of the combustor. However, unlike the mod-
ified model, this approach does not capture the feature of regular
amplitude-modulated bursting as shown in Fig. 9(a).

From comparing our results discussed in Figs. 9(a) and 9(b),
we can postulate to some extent the physical cause of the burst-
ing behavior observed during intermittency in different combustors.
Thermoacoustic systems, which show amplitude-modulated burst-
ing, i.e., regular modulations in the limit cycle oscillations or the
existence of sideband frequencies along with a dominant peak at
the natural frequency in the amplitude spectrum, are likely to have
strongly interacting slow and fast subsystems. On the other hand, if
the bursting dynamics portrays irregular modulations in the ampli-
tude of bursts or the envelope of limit cycles or a single dominant
frequency peak in the amplitude spectrum, then the system dynam-
ics might be predominantly controlled by the underlying flow fluc-
tuations (background turbulence) and its influence on other various
subsystems.
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VI. CONCLUSIONS

In this work, we investigated experimentally and
theoretically the role of multiple timescales in the occurrence of
bursting dynamics during intermittency in a thermoacoustic system.
We conduct experiments on a horizontal Rijke tube and theoreti-
cal investigations through a model, each exhibiting subcritical Hopf
bifurcation. Bursting dynamics is obtained when the control param-
eter oscillates at low frequencies about a mean value in the bistable
zone of subcritical Hopf bifurcation. In order for sustained bursting
dynamics to occur, the amplitude of the control parameter oscilla-
tions must be such that these oscillations necessarily cross the Hopf
bifurcation point to overcome delayed bifurcation. When the slow
and fast subsystems are independent of each other, we obtain burst-
ing at regular intervals and the bursts are asymmetric. Through a
model, we explain that the growth and decay patterns are different
due to the delayed bifurcation associated with slow oscillations of the
control parameter around the Hopf bifurcation point. We showed
that the delayed bifurcation of the acoustic pressure fluctuations
with respect to the oscillating control parameter is dependent on
the frequency, the amplitude, and the mean value of the oscillating
control parameter.

Further, we present two approaches to model the interaction
between the various subsystems. In the first approach, we introduce
a coupling between the frequency of the slowly oscillating control
parameter and the amplitude envelope of the fast oscillating acoustic
pressure in the system. In the second approach, we model the inter-
actions of various subsystems using noise which produces bursts
of periodic oscillations with irregular amplitude modulations. The
interactions between the subsystems of a thermoacoustic system
may be influenced more by either multiple timescales or the under-
lying flow fluctuations, depending on the experimental conditions.
We, thus, provide a possible explanation to various features of burst-
ing oscillations observed during intermittency in thermoacoustic
systems.
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APPENDIX A: DETECTION OF THE ONSET OF THE

ACTIVE STATE OF BURST IN THE PARAMETER SPACE

In Sec. IV C, we discussed the delayed bifurcation effect caused
by the slow passage of control parameter via Hopf bifurcation. As
noted earlier, the choice of the onset point (X) corresponding to
the onset of periodic oscillations from the steady state is non-trivial.
Here, we describe the manner in which we detect the point X with
the help of an example. Consider control parameter (c1) oscilla-
tions about a mean value of A = 0.8 with an amplitude B = 0.4 and
frequency f = 0.17 Hz. Figure 10(a) shows the pressure oscillations
while Fig. 10(b) shows the amplitude envelope of the correspond-
ing pressure oscillations plotted on a log scale as a function of the
control parameter oscillations. Despite minute oscillations, we see
a sudden change in the slope of the log of the envelope of pressure

FIG. 10. (a) The variation of acoustic pressure oscillations (p′) and (b) log of
the amplitude envelope of these pressure oscillations (p′

e) as a function of the
time-varying control parameter (c1) during the growth of amplitude of the burst.
The values of parameters are: A = 0.8, B = 0.4, f = 0.17 Hz, and σa = 0.0001
while σm = 0.

fluctuations in Fig. 10(b). Such sudden change of the pressure ampli-
tude in the log-scale delineates the starting of exponential growth of
amplitude, which thus demarcates the point of the onset of a burst
of periodic oscillations in the signal and we choose this point as
X in our analysis. Thus, the plot of pressure amplitude on a log-
scale helps in identifying the onset of burst in the signal, which
is otherwise not evident from the plot of pressure oscillations in
Fig. 10(a).

APPENDIX B: DELAYED BIFURCATION DUE TO SLOW

OSCILLATIONS ACROSS A SUPERCRITICAL HOPF

BIFURCATION

In Fig. 11, we show the effect of slow oscillations in the con-
trol parameter across a supercritical Hopf bifurcation. The bifurca-
tion diagram is obtained from quasi-static variation of the control
parameter c1, when the coherent heat release term is modeled by the
canonical form of supercritical Hopf bifurcation, as given in Eq. (B1)
in the standard model [instead of Eq. (8)],

q̇′

c = −c1(η − τ η̇) + c3(η − τ η̇)3. (B1)

Figure 11(a) shows the transformed phase portrait for the
case when the control parameter oscillates with an amplitude of
B = 0.65, and frequency f = 0.17 Hz about a mean value A = 0.7.
Figure 11(b) shows the overlapped time series of oscillations of
c1 and p′ during the bursting state in the system. Reference point
A demarcates the starting point of oscillation of c1, H demarcates
the Hopf bifurcation point of the supercritical bifurcation, which
occurs at c1 = 0.79, X demarcates the onset point of the burst, and
D demarcates the point at which c1 achieves a maximum value in an
oscillation cycle. Clearly, slow oscillations of the control parameter
across the supercritical Hopf bifurcation point introduce a delayed
bifurcation as observed for subcritical Hopf bifurcation earlier in
Fig. 5.
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FIG. 11. (a) Transformed phase portrait of acoustic pressure oscillations obtained from the standard model for supercritical bifurcation superposed on the bifurcation diagram
of acoustic pressure (p′

max) obtained from quasi-static variation of c1. (b) The overlapped time series of the control parameter oscillations (c1) and the acoustic pressure
oscillations (p′) during a state of bursting in the system.

As compared to the subcritical Hopf bifurcation, a supercrit-
ical bifurcation does not have a hysteresis zone and the amplitude
of the limit cycle oscillations increases gradually from the steady
state [Fig. 11(a)]. The dynamics of the system transitions from the
steady state to limit cycle oscillations after a delayed bifurcation,
and, therefore, there is a sudden jump in the amplitude of the pres-
sure oscillations during the onset of a burst. In the reverse path,
the amplitude of periodic oscillations decreases gradually along the
limit cycle branch and the pressure oscillations eventually attain a
rest state. The growth and decay patterns are thus different, even
when the system undergoes a supercritical bifurcation. The effect
of varying the amplitude, the frequency, and the mean value of
the oscillating parameter across a supercritical Hopf bifurcation is
similar to that which is discussed for the case of subcritical Hopf
bifurcation in Sec. IV D.

We note a subtle difference between the decay pattern of the
bursts that occur in the case of a subcritical and a supercritical
bifurcation. The decay of the oscillations in a burst caused in a sys-
tem having subcritical bifurcation is initially gradual, as the control
parameter oscillations move along the limit cycle branch. However,
as the control parameter crosses the fold point, there is a sharp
decay in the pressure oscillations in the burst. For a system exhibit-
ing supercritical bifurcation, the decay in pressure oscillations in a
burst is always gradual as the control parameter oscillations trace
the continuous limit cycle branch into the steady state regime.
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