
echT PressScience
Computer Modeling in

Engineering & Sciences

DOI: 10.32604/cmes.2021.014947

ARTICLE

Bubble-Enriched Smoothed Finite Element Methods for Nearly-Incompressible
Solids

Changkye Lee1, SundararajanNatarajan2, Jack S. Hale3, Zeike A. Taylor4, Jurng-Jae Yee1,*
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ABSTRACT

This work presents a locking-free smoothed finite element method (S-FEM) for the simulation of soft matter

modelled by the equations of quasi-incompressible hyperelasticity. The proposed method overcomes well-known

issues of standard finite element methods (FEM) in the incompressible limit: the over-estimation of stiffness

and sensitivity to severely distorted meshes. The concepts of cell-based, edge-based and node-based S-FEMs are

extended in this paper to three-dimensions. Additionally, a cubic bubble function is utilized to improve accuracy

and stability. For the bubble function, an additional displacement degree of freedom is added at the centroid of

the element. Several numerical studies are performed demonstrating the stability and validity of the proposed

approach. The obtained results are compared with standard FEM and with analytical solutions to show the

effectiveness of the method.
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1 Introduction

The deformation of soft matter, which can be modelled using the equations of hyperelasticity,

is an important problem with applications throughout the physical sciences and engineering. Such

soft matter, e.g., rubbers, polymers and human soft tissues, behave in a geometrically and materi-

ally non-linear manner characterized by large deformations and nearly incompressible behaviour.

It is important to design numerical approaches that provide robust and accurate simulation for

scientists and engineers [1]. The first step to numerically solve such problem is to obtain a

subdivision of the problem domain as automatically (without user intervention) and rapidly as

possible. In the context of finite element methods, this operation is called mesh generation. Meshes
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consisting of low-order simplex tetrahedral cells (triangulations) are best suited to automatic mesh

generation and there exist schemes that allow the generation of millions of tetrahedral elements

per second [2]. However, finite elements defined on simplex tetrahedral cells are also notorious

for the excessive stiffness and the sensitivity to volumetric locking. Rabczuk et al. [3] discussed a

possibility of non-mesh based method to handle incompressibility undergoing large deformations.

However, this work focuses on development of an alternative approach which leads to use simplex

tetrahedral cells. Therefore, the strain-smoothed approach in the framework of finite element

approximation [4–6] (so-called smoothed finite element methods—S-FEM) is an another possible

option to address the following issues in the context of simulating soft matter: 1) volumetric lock-

ing associated with nearly- and fully-incompressible materials and 2) the difficulty of generating

quality subject-specific meshes. The method relies on the smoothed deformation gradient, which

therein is assumed homogeneous over smoothing domains.

Various 3D strain smoothing approach variants have been introduced. Firstly, Nguyen-Thoi

et al. [7] used the face-based smoothed finite element method (FS-FEM) for linear and geometri-

cally non-linear problems. Viscoelastoplastic problems are successfully addressed by the face-based

strain smoothing [8] and 3D extension of node-based smoothed finite element method (NS-

FEM) [9], both of which show higher efficiency than FEM and the edge-based smoothing method.

Cazes et al. [10] presented 3D-extended edge-based smoothed finite element method (ES-FEM)

for solid problems. Not only solid problems but also coupled structural-acoustic problems are

tackled by smoothed finite element methods. He et al. [11] used a coupled 3D ES-FEM/FEM

formulation, with ES-FEM and FEM applied to structure and fluid parts, respectively, while Li

et al. [12] used a coupled ES/FS-FEM approach for solid and fluid. Moreover, to handle heat

transfer and thermal mechanical problems, Feng et al. [13] used face-based S-FEM (FS-FEM)

and Cui et al. [14] used cell-based S-FEM (CS-FEM). In particular, Cui and colleagues employed

cell-based strain smoothing approach with the meshless radial point interpolation method to

obtain the radial basis function on smoothing domains. Other hybrids of node- and edge-based

smoothed finite element methods with meshless point interpolation methods for heat transfer

problems are presented by Wu et al. [15,16]. Natarajan et al. [17] constructed cell-based polyhedral

S-FEM with one sub-cell. To stabilize the polyhedral S-FEM, they adapted the stabilizing term

of the virtual element method to S-FEM without increasing the number of smoothing domains.

Additionally, further applications for linear fracture problems were investigated by 3D ES-FEM

by Zeng et al. [18], employing singular 7 node tetrahedral elements for the crack front.

The application of main interest of this work, i.e., soft materials, has been also considered

by Jiang et al. [19,20]. They employed the selective 3D-ES/NS-FEM and FS/NS-FEM to solve

nearly-incompressible hyperelastic models. To use the selective S-FEM, the strain energy density is

split into two parts: the deviatoric and volumetric. Since it is known that ES-FEM is immune to

the distorted meshes and NS-FEM can avoid the over-stiffness phenomenon [21], the deviatoric

part of the strain energy density is solved by 3D-ES- and FS-FEM while NS-FEM tackles the

volumetric part.

Instead, in the present work, we employ a cubic bubble function to enrich S-FEM [22,23].

The study of Ong et al. [23] showed that the inf-sup condition for the bubble-enriched S-FEM

was satisfied in small deformation cases and Lee et al. [22] used the concept of the bubble-

enhanced S-FEM to analyze large deformation problems in the quasi-incompressible hyperelas-

tic limits. In this paper, the suggested bubble function is integrated into two strain-smoothed

approaches, 3D-edge-based and face-based smoothing methods to deal with the distorted meshes

in near-incompressibility.
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An outline of this paper as follows: in the following section, the basic properties of

cell-based, edge-based, face-based and node-based gradient smoothing approaches extended to

three-dimension in the framework of finite elasticity are recalled. In the next section the bubble-

enhanced smoothed FEM is formulated for the hyperelastic neo-Hookean material. In the penul-

timate section numerical tests including large deformation and insensitivity to mesh distortion in

incompressible models are studied with several cases of soft materials parameters, e.g., polymers

and human organs. In the final section, we draw a conclusion to remarks of the proposed methods

and give some possible ideas for future work.

2 Review of Gradient-Smoothed Finite Element Approximation

Many existing studies of strain-smoothed finite element approaches describe their basic for-

mulation and properties. We briefly revisit the background of the strain-smoothed method in

this section. The basic idea behind S-FEM is to divide the computational domains into sub-

domains wherein gradients are smoothed. Gradients are constant over the smoothing domains

but are discontinuous across the boundaries of smoothing domains. Sub-domains are usually

constructed using the topology provided by the mesh. Depending on this construction, various

solution behaviors are observed, offering the use of a spectrum of methods with particular

properties [5,24].

The salient abilities of S-FEM are its insensitive to locking and to element distortion [22].

The integration for S-FEM is performed in the global space, hence the Jacobian transformation

from the local to global space is obviated. Moreover, since the bandwidth of the stiffness in the

smoothed-strain method is wider than in the existing FEM, there is a potential to design methods

without over-estimated stiffness.

Four different types of S-FEM have been introduced, depending on how the smoothing

domains are built [21]: cell-based (CS-FEM), edge-based (ES-FEM), node-based (NS-FEM) and

face-based (FS-FEM). In this section, we extend the idea of two-dimensional cell-based, edge-

based and node-based smoothing to three-dimension and Figs. 1–4 illustrate how to construct the

smoothing domains for each strain-smoothed technique.

2.1 Cell-Based Smoothing Domain

In the cell-based S-FEM four sub-cells are constructed by splitting the tetrahedron about its

centroidal point. Fig. 1 shows sub-cells and smoothing domains for CS-FEM. In Fig. 1a, it is

shown that how a tetrahedral cell with vertices labelled 1234 can be divided into four tetrahedral

sub-cells by point 5, the centroid of tetrahedron. These sub-cells are new domains where the so-

called smoothed strain can be constructed. Fig. 1b shows an example of the selection of the cell-

based smoothing domain when two cells, tetrahedron 1234 and tetrahedron 2345, are neighbored.

The cells 1234 and 2345 share a triangular face 234, and points 6 and 7 are the centroids of the

respective tetrahedra. When the target cell 2357 is chosen, its smoothing domain is constructed as

itself, a sub-cell 2357. The concept of the construction of the cell-based smoothing domain has

strong similarities with the standard finite element method.

2.2 Face-Based Smoothing Domain

The basic idea of FS-FEM is the extension of the 2D edge-based smoothing method to 3D,

meaning that the target edge of a triangular cell is transferred to the faces of the tetrahedral cell

as shown in Fig. 2.
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Figure 1: 3D-extended-cell-based smoothing approach. (a) The construction of sub-cells for CS-

FEM and (b) target cell and its smoothing domain

In the same manner to CS-FEM, the tetrahedral cell is split into four tetrahedral sub-domains

by the centroidal point of the cell as shown in Fig. 2a. In the case that any of the faces of

the tetrahedral cell is located on the boundary of the problem domain, the face-based smoothing

domain is only one sub-cell and contains boundary surface. Now let us suppose the target face

(△234) is inside of the domain and is shared by cells 1234 and 2345. When target face 234 is

chosen to build the smoothing domain, sub-cell 2345 of the cell 1234 and its neighbor sub-cell

2347 of the cell 2346 become the target face’s smoothing domain (see Fig. 2b). In summary, for

FS-FEM, there are two cases when constructing the smoothing domain: when the target face is

on the boundary of the solution domain, the smoothing domain is a single sub-cell; and, when

the face is an interior one, the smoothing domain is the union of two sub-cells from the cells

sharing the face.
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Figure 2: Face-based smoothing approach: (a) The construction of sub-cells for FS-FEM and (b)

target face and its smoothing domain

2.3 Edge-Based Smoothing Domain

Assembling the edge-based smoothing domain in three-dimensions is rather more complex

than in its two-dimensional counterpart. Fig. 3 illustrates the division of a cell into sub-cells

geometrically and assembly of sub-cells to form a smoothing domain around a target edge. Firstly,

to create sub-cells for ES-FEM, five new points must be generated at the centroid of the cell

and the centroids of the cell’s four faces. Then, as shown in Fig. 3a, sub-cells associated with
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each edge are created from the nodes of those edges, the cell centroid, and the centroids of the

two respective adjoining faces. The number of sub-cells for ES-FEM is six since each tetrahedral

cell has six edges. Fig. 3b depicts the construction of the smoothing domain associated with the

target edge.

Figure 3: 3D-extended-edge-based smoothing approach: (a) The construction of sub-cells for ES-

FEM and (b) target edge and its smoothing domain

2.4 Node-Based Smoothing Domain

For NS-FEM, the tetrahedral cell is divided into four hexahedral sub-domains based around

the four nodes. To create the hexahedral sub-domains, we construct 11 additional points: the
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centroid of the cell (1), the centroid of each face (4), and centroid of each edge (6). Then the

sub-cells are constructed from the four original vertices and 11 additional points as shown in

Fig. 4a. Assembly of sub-cells from adjoining elements to form the smoothing domain around a

target node is illustrated (for the case of node 2) in Fig. 4b.

Figure 4: 3D-extended-node-based smoothing approach: (a) The construction of sub-cells for NS-

FEM and (b) target node and its smoothing domain

2.5 Numerical Integration

Integrals are evaluated over smoothing domains using a Gauss integration scheme. Sample

points, at which shape functions and outward normals are computed, are located in the middle

of each face of the smoothing domain [25]. Fig. 5 depicts the positions of Gauss points for the

face-based smoothing.

Note that red circles are Gauss points located at the centroid of each surface of the element

and n is the outward normal vectors.
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Figure 5: Gauss integration scheme: The smoothing domain associated with the target face with

Gauss points and outward normals on each surface for FS-FEM

3 Strain Smoothing Approximation

To formulate the non-linear strain smoothing approximation in the following section, we recall

the fundamentals of smoothed finite element approximation. The infinitesimal strain tensor εhij is

given as:

εhij =
1

2

(

∂uhi
∂Xj

+
∂uhj

∂Xi

)

(1)

where u is the displacement field and X is the initial configuration. The infinitesimal strain tensor

is smoothed over the smoothing domain �s
k
as:

∀x∈�s
k, ε̃h (xk)=

∫

�s
k

εh (x)� (x) d� (2)

where a point xk is located in the smoothing domain �s
k
and �(x) is the weight function of

gradient-smoothed approximation. The properties of the weight function �(x) are given as:
∫

�s
k

�(x) d�= 1, � > 0 (3)

�(x)=

{

1/Vk x ∈�s
k

0 x /∈�s
k

(4)

The smoothed strain can be obtained as follows, applying the divergence theorem:

ε̃h =
1

Vk

∫

�s
k

ε (x) d�=
1

Vk

∫

Ŵs
k

n (x)uh (x) dŴ (5)
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where Vk is the volume of smoothing domain �s
k
, Ŵs

k
is the boundary of the smoothing domain

�s
k
and n is the outward normal on boundary Ŵs

k
. The 3D form of the outward normal vector

matrix is given as:

n (x)=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

n1 0 0

0 n2 0

0 0 n3

n2 n1 0

0 n3 n2

n3 0 n1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6)

The discrete trial and test functions are expanded in terms of linear Lagrange shape function

�I with degrees of freedom associated with vertex I of a simplex mesh:

uh =

N
∑

I=1

uI�I (x) , vh =

N
∑

J=1

uJ�J (x) (7)

When the strain in each sub-domain is constant, the smoothed strain can be written as:

ε̃h (x)=
1

Vk

NSD
∑

q=1

Vk,qε (x)q (8)

where ε (x) is the constant compatible strain of the qth sub-domain of the smoothing domain

�s
k
, Vk,q is the smoothing domain volume of the qth sub-domain and NSD is a number of sub-

domains of the smoothing domain �s
k
.

4 Smoothed Finite Element Approximation in Finite Elasticity, Enhanced by the Bubble Function

To solve the non-linear equilibrium equations, we adopt the Newton–Raphson iterative

method. The detailed information could be found in [22,26], but we herein briefly explain the

smoothed Galerkin weak form and its linearization.
∫

�

∂W

∂F̃

(

X, F̃ (u)
)

: ∇vd�=

∫

�

f · vd�+

∫

ŴN

g · vdŴ (9)

where v is the set of admissible test functions and F̃ is the smoothed deformation gradient

computed on each smoothing domain. The smoothed deformation gradient F̃ is defined as:

F̃ij (x)=
1

Vk

∫

�s
k

(

∂uhi
∂Xj

+ δij

)

�(x) d�

=
1

Vk

∫

�s
k

(

∂uhi
∂Xj

)

�(x) d�+ δij (10)

=
1

Vk

∫

�s
k

∑

I∈Gk

(

∂�I

∂Xj
uiI

)

�(x) d�+ δij



420 CMES, 2021, vol.127, no.2

where Gk is a set of nodes and ∂�/∂X is the shape function derivatives. Note that, 1
Vk

∫

�s
k

∂�i
∂Xj

d�

in Eq. (10) can be replaced by a set of the outward normal vectors n and the shape functions �

as shown in Eq. (5).

Eq. (9) can be defined to the energy function R̃ (u) and its directional derivatives DR̃ (u) · u

which are given as:

R̃=

∫

�

∂W

∂F̃ij

(

X, F̃ (x)

) ∂vi

∂Xj
d�−

∫

�

fivi d�−

∫

ŴN

givi dŴ (11)

and

DR̃ (u) · r=

∫

�

∂2W

∂F̃ij∂F̃kl

(

X, F̃ (u)
) ∂rk

∂Xl

∂vi

∂Xj
d� (12)

where i, j, k, l ∈ {1, 2, 3} for three dimensional problem.

To solve Eq. (9) approximately, the Newton-Raphson method is utilized in this work:

DR̃ (uiter) · riter =−R̃ (uiter) (13)

therefore, the energy functional Eq. (11) and its directional derivatives Eq. (12) can be rewritten:

R̃ (u) =

∫

�

2
∂W

∂C̃ij
F̃ki

∂vk

∂Xj
d�−

∫

�

fivi d�−

∫

ŴN

givi dŴ

DR̃ (u) · r=

∫

�

(

∂2W

∂C̃ij∂C̃kl
F̃pi

∂vp

∂Xj
F̃sk

∂rs

∂Xl
+ 2

∂W

∂C̃ij

∂rk

∂Xi

∂vk

∂Xj

)

d�

(14)

where C̃ is the smoothed right Cauchy-Green deformation tensor defined as C̃ = F̃TF̃ and

i, j, k, l, p, s ∈ {1, 2, 3}.

Eq. (13) can be assembled into matrix form at every iteration given as:
⎡

⎢

⎢

⎢

⎣

K̃11 K̃12 K̃13

K̃12 K̃22 K̃23

K̃13 K̃23 K̃33

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

r1

r2

r3

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

b̃1

b̃2

b̃3

⎤

⎥

⎥

⎥

⎦

(15)

where the smoothed tangent stiffness matrix K̃tan = K̃mat + K̃geo can be defined by the smoothed

discretized gradients B̃0 and B̃NL:

K̃mat=

∫

�

B̃T
0 C̃B̃0 d�=

Nt
∑

k=1

∫

�s
k

B̃T
0 C̃B̃0 d�=

Nt
∑

k=1

B̃T
0 C̃B̃0Vk

K̃geo=

∫

�

B̃T
NLS̃symB̃NL d�=

Nt
∑

k=1

∫

�s
k

B̃T
NLS̃symB̃NL d�=

Nt
∑

k=1

B̃
TS̃symB̃Vk

(16)
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where Nt is the number of target cells, edges, vertices and faces, S̃sym is a symmetric matrix form

of the smoothed second Piola-Kirchhoff stress (PK2) S̃, and C̃ is the smoothed fourth-order

elasticity tensor of the stored strain energy which are defined as:

S̃= 2
∂W

∂C̃

C̃= 2
∂S̃

∂C̃
= 4

∂

∂C̃

(

∂W

∂C̃

)

(17)

The load vector b̃ can be expressed as:

b̃=

Nt
∑

k=1

B̃0

{

S̃
}

Vk (18)

where
{

S̃
}

is the vector form of the PK2 stress. Note that the matrix form of the smoothed

discretized gradients B̃0 and B̃NL are the same as the conventional FEM replacing the smoothed

deformation gradient.

The smoothed global system of equations for Eq. (13) at each iteration can be written as:

K̃iterriter = b̃iter (19)

thus the displacement u is obtained by the Newton–Raphson iteration:

uiter+1 = uiter+ riter (20)

4.1 The Bubble Enrichment

The domain-based selective strain smoothing finite element approximation was suggested due

to the fact that the edge-based strain-smoothed method does not fully overcome locking [11].

Recent study of the domain-based S-FEM showed that the selective S-FEM can alleviated lock-

ing [19,20]; however, an additional treatment is required the discretized equations for the each

strain smoothing approach.

For this reason, Nguyen-Xuan et al. [27] proposed the mixed displacement-pressure formu-

lation in the framework of the edge-based smoothing method using the cubic bubble function

and its mathematical properties about the stability of the inf-sup condition were provided by Ong

et al. [23]. The bubble function requires the supplement of an additional degree of freedom for the

displacement field approximation at the centroid of the element. At the centroid of the element,

only the linear displacement field exists as the unknown field in the bubble-enriched gradient

smoothing because the strain smoothing approach is based on displacement-based formulation.

The bubble function is given with four linear basis functions and the cubic bubble function for

the tetrahedral element as follows:

�̄ (ξ , η, ζ )=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1− ξ − η− ζ

ξ

η

ζ

256ξηζ (1− ξ − η− ζ )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(21)
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Since Eq. (21) does not satisfy the partition of unity, the basis function necessarily requires

the transformed form can be obtained as:

�̃ (ξ , η, ζ )= �̄ (ξ , η, ζ )TB−1
S

= [1− ξ − η− ζ , ξ , η, ζ , 256ξηζ (1− ξ − η− ζ )]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−
1

4
−
1

4
−
1

4
−
1

4
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(22)

Hence the transformed bubble basis function can be expressed as:

�̃ (ξ , η, ζ )T =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1− ξ − η− ζ − 64ξηζ (1− ξ − η− ζ )

ξ − 64ξηζ (1− ξ − η− ζ )

η− 64ξηζ (1− ξ − η− ζ )

ζ − 64ξηζ (1− ξ − η− ζ )

256ξηζ (1− ξ − η− ζ )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(23)

where the properties of the bubble is given as:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�̃ > 0 in �e

�̃ = 0 on Ŵe

�̃ = 1 at internal degree of freedom

(24)

meaning that the bubble function has a value one at the center of the element and the value is

zero on the boundaries of the element.

5 Numerical Tests

A series of test problems is used to assess the effectiveness of the proposed method in dealing

with the shortcoming explained in the previous section: simple torsion of a rectangular block,

Cook’s membrane, a hollow cylinder and a cube.

To test near-incompressibility we use the following soft materials: polymers, e.g., polyurethane,

and human tissues. Both soft media exhibit the nonlinear strain-stress behaviour commonly asso-

ciated with highly deformable materials, and their Poisson’s ratios are close to 0.5. Polyurethane

is mainly used in energy absorption applications, such as packaging or the cushion of padded

chairs [28]. In this work, we model a Polyurethane spring which is currently used in a base iso-

lation device to regulate mass energy from earthquakes using its reversible deformation property.

Human soft tissues can sustain large deformations and, due to their high water content, are nearly

incompressible. Correspondingly, they are frequently modelled as hyperelastic materials. In our test

case, we employ the quasi-incompressible neo-Hookean model used by Taylor et al. [29] to model

brain material.
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Another aspect that we consider is the mesh distortion sensitivity. To study the influence of

the mesh distortion, finite element meshes are artificially distorted, changing the position of a

vertex randomly in each direction.

For all numerical examples the following parameters for the Newton iteration method are

used: tolerance 10−9, 15∼300 load steps and 4∼6 iterations at each load step, including quadratic

convergence of the Newton-Raphson algorithm.

5.1 Near-Incompressibility

In this section we investigate the performance of the proposed method for quasi-

incompressibility, with Poisson’s ratio ν → 0.5. The DOLFIN finite element software [30,31] is

used as a source of pseudo-analytical solutions for the described simple tension of a rectangular

block, Cook’s membrane, hollow cylinder and a cube. Python scripts implementing the models are

derived from the DOLFIN python demos1, and the MINI element [32], which is a finite element

with linear basis functions enriched with cubic bubbles for displacements, and linear basis function

for pressure, is used.

5.1.1 Simple Torsion of a Rectangular Block

Firslty, the non-homogeneous Dirichlet boundary conditions (BCs) problem in quasi-

incompressible limit is considered. Simple torsion of a rectangular block is used with human

brain-like material [29]: the shear modulus µ = 1000 Pa and the bulk modulus κ = 50000 Pa

(equivalent to Poisson’s ratio ν ≈ 0.49). The geometry of the rectangular block is given in Fig. 6,

where A= (−0.5, 0.5) m, B= (0.0, 2.0) m and C = (−0.5, 0.5) m.

Figure 6: The geometry of the rectangular block

For this test, cylindrical coordinates and Dirichlet BCs based on a solid cylinder are needed;

however cylindrical coordinates and Dirichlet BCs are transformed to Cartesian coordinates

1 https://fenicsproject.org/docs/dolfin/2018.1.0/python/demos.html.
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and imposed to a rectangular solid (further details can be found in [26]). The deformation in

cylindrical polar coordinates are given as:

r=R, θ =�+ τY , y=Y (25)

where the torsion per unit length τ = π/3 is used in this test. The deformation gradient F and the

right Cauchy-Green tensor C are defined as:

F=

⎡

⎢

⎣

1 0 0

0 1 τR

0 0 1

⎤

⎥

⎦

C=

⎡

⎢

⎢

⎣

1 0 0

0 1 τR

0 τR 1+ τ 2R2

⎤

⎥

⎥

⎦

(26)

Then, cylindrical coordinates are formulated to the following Cartesian coordinates:

x= r cos θ =R cos (θ + τY )=R {cos θ cos (τY )− sin θ sin (τY )}

y=Y (27)

z= r sin θ =R sin (θ + τY )=R {cos (τY ) sin θ + cos θ sin (τY )}

where R =
√

X2+Z2 and tan θ =
Z

X
. Therefore, the following non-homogeneous Dirichlet BCs

can be obtained:

ux =X cos (τY )−Z sin (τY )−X

uy = 0 (28)

uz =Z cos (τY )+Z sin (τY )−Z

Fig. 7 shows deformed configurations of the rectangular blocks obtained by each method and

Fig. 8 illustrates the convergence of strain energy errors for the block, respectively.

The number of elements along to x- and z-axes is 2 and the numbers of elements in y-axis are

4, 8, 16, 24 and 32. As shown in Fig. 7 and Tab. 1, the bubble-enhancement leads to improve the

accuracy„ FEM and CS-FEM provide identical results. 3D edge-based and node-based smoothing

strain methods show the minus values of the relative error in strain energy, meaning their strain

energies are smaller than the analytical solution. FS-FEM shows around 31% of the relative error,

while its bubble-enhanced approach gives only about 9% of the error. It is clearly shown that the

bubble-enhancement is able to reduce almost 71% of the error and it helps to increase.

where strain energy relative error is obtained as follows:
(

WNumerical −WAnalytical

WAnalytical

)

× 100 (29)

Tab. 2 provides the computational time for the standard FEM, the standard S-FEM and

the proposed enriched S-FEM. To obtain the computational time, the following computer system
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is used: Matlab R2019b running on Windows 10 with 3.40 GHz Intel Core i7-6800K and

32 GB memory.

Figure 7: Deformed shapes of the rectangular block. (a) FEM T4, (b) cell-based S-FEM T4, (c)

face-based S-FEM T4, (d) edge-based S-FEM T4, (e) node-based S-FEM T4 and (f) face-based

S-FEM with bubble enrichment

It is known that the bandwidth of the stiffness matrix for S-FEM is larger than the standard

FEM; therefore, in general, S-FEM needs more computational time than the standard FEM. As

given in Tab. 2, FS-FEM and 3D-NS-FEM are around two times slower than the standard FEM

and 3D-ES-FEM needs almost three times more computational effort to converge the problem.

On the other hand, the computational cost of the bubble-enriched FS-FEM is the most expensive

among the present approaches. However, as shown in Fig. 8 and Tab. 1, the bubble-enhancement
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leads to improve the quality of result meaning that with coarser meshes the bubble-enriched

S-FEM provides the relatively accurate results.

2 4 6 8 10 12 14 16

100

101

102

Analytical

FEM T4

CS-FEM

FS-FEM

ES-FEM

NS-FEM

bFS-FEM

Figure 8: The convergence of the relative errors in strain energy for simple torsion of the

rectangular block

Table 1: Strain energy relative error for simple torsion of the rectangular block

Method Strain energy
(

×102
)

Relative error (%)

Analytical solution 2.0613 –

FEM T4 3.4950 69.55

CS-FEM T4 3.4950 69.55

FS-FEM T4 2.7071 31.33

ES-FEM T4 1.8473 −10.38

NS-FEM T4 1.2833 −37.74

FS-FEM with the bubble 2.2481 9.06

Table 2: Computational time of the polyurethane spring for FEM and each S-FEM

Method Computational time (×104 s)

FEM T4 1.005538

CS-FEM T4 1.418809

FS-FEM T4 1.870802

ES-FEM T4 2.757793

NS-FEM T4 2.215367

FS-FEM with the bubble 147.109921
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5.1.2 Cook’s Membrane

In this section, the well-known Cook’s membrane is investigated. The geometry is shown in

Fig. 9 with Lx = 48 m, Ly1 = 44 m, Ly2 = 16 m and Lz = 10 m. Human brain-like materials are

also used given as: µ= 1000 Pa and κ = 50000 Pa equivalent to Poisson’s ratio ν ≈ 0.49.

The structure is a cantilever, therefore fixed boundary conditions are implemented as:

• Left surface (X = 0): (u1, u2, u3)= (0, 0, 0),

and a bending force (F = 1/16 N) is imposed on the right-hand side surface where X = 48. For

this test, four different numbers of DOFs are used: 903, 1320, 2589 and 6678. DOLFIN finite

element software is also used to obtain the analytical solution with finer MINI element mesh

(40941 DOFs).

Figure 9: The geometry of the Cook’s membrane

The deformed configurations of Cook’s membrane obtained by reference solution (MINI

element) and the proposed strain smoothing approaches are shown in Fig. 10. Fig. 11 illustrates

the convergence rate of the relative error in strain energy of Cook’s membrane and the detailed

values are provided in Tab. 3. As shown in Fig. 11 and Tab. 3, FEM and CS-FEM show identical

results and this phenomenon is also shown in the aforementioned non-homogeneous Dirichlet BCs

problem. The most accurate result is obtained by ES-FEM with about 0.6% of error and the

bubble-enhanced FS-FEM provides around 0.81% of error in strain energy. As shown in Tab. 3,

the bubble-enhanced FS-FEM gives relatively accurate results among others, while FS-FEM shows

almost 6% of error. It is clearly seen that the bubble-enhancement leads to an increase in the

accuracy of results by about 86% compared to the standard FS-FEM. The notable result obtained

in the present test is the bubble-ES-FEM which produces a worse result that is around eight times

higher error than ES-FEM and as well as NS-FEM shows three times higher error.

5.1.3 Pressure of a Hollow Cylinder

In this section, Polyurethane MER (Mass Energy Regulator) spring used for the seismic base

isolation unit (EQS, Eradi Quake System), developed by ESCO RTS2. The basic idea of the EQS

2ESCO RTS Co., Ltd., (https://enrtech.co.kr/en/).
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unit is that the seismic force can be absorbed by the disk bearing and the horizontal force is

dissipated by the MER spring.

Figure 10: Deformed shapes of Cook’s membrane. (a) Reference (MINI element), (b) FEM T4,

(c) cell-based S-FEM T4, (d) face-based S-FEM T4, (e) edge-based S-FEM T4, (f) node-based

S-FEm T4, (g) face-based S-FEM with bubble enrichment and (h) edge-based S-FEM with

bubble enrichment

The details of the device are given in Fig. 12a: 1. Guide box, 2. PTFE (Polytetrafluo-

roethylen), 3. MER spring, 4. Polyurethane disk, and 5. Shear Pin. Fig. 12b shows the assembled

device as used in the experiments.

To model polymer polyurethane material, neo-Hookean hyperelastic limit is again used. Shear

and bulk moduli are µ= 12.796 MPa and κ = 315.62 MPa, corresponding to a Poisson’s ratio of

ν = 0.47999. Dirichlet BCs with the prescribed displacement on top for this numerical experiment

are given as:

• Bottom surface (Y = 0): (u1, u2, u3)= (0, 0, 0)

• Top surface (Y = 16.8): (u1, u2, u3)=
(

0, −0.4Ly, 0
)

.
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Figure 11: The convergence of the strain energy for the Cook’s membrane. Note that FEM T4

and CS-FEM lines are overlapped since their results are identical

Table 3: Cook’s membrane: Relative error in the strain energy for different approaches

Method Strain energy
(

×10−2
)

Relative error (%)

Analytical solution 3.9652 –

FEM T4 3.5883 −9.5046

CS-FEM T4 3.5883 −9.5046

FS-FEM T4 3.7302 −5.9251

ES-FEM T4 3.9895 0.6139

NS-FEM T4 4.0481 2.0914

FS-FEM with the bubble 3.9329 −0.8116

ES-FEM with the bubble 4.1875 5.6075

Considering the instability of NS-FEM and bES-FEM observed in the previous section,

only CS-FEM, ES-FEM, FS-FEM and the bubble-FS-FEM are examined in this section. Fig. 13

illustrates deformed configurations of the polyurethane spring for respective S-FEM approaches

and for the MINI element obtained by DOLFIN software.

The deformation predicted by bFS-FEM is similar to that of the reference solution, while

other methods produced somewhat different patterns. Distinct improvements in the strain energy

results were also observed, as shown in Tab. 4. CS-FEM and FEM, again, produce the same

results, and cannot avoid locking in quasi-incompressibility. The edge-based smoothing is more

accurate than the face-based smoothing; however, the bubble-enrichment notably increases the

accuracy retaining the stability. The bubble-face-based smoothed finite element method is able to

improve the accuracy about three times and it also shows around 26% less error in strain energy

compared to ES-FEM.
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(a) (b)

Figure 12: Details of EQS device and MER spring. (a) Exploded view of EQS seismic base

isolator and (b) the assumed device as used

Figure 13: Deformed shapes of the polyurethane spring. (a) MINI element, (b) FEM T4, (c) cell-

based S-FEM T4, (d) face-based S-FEM T4, (e) edge-based S-FEM T4 and (f) face-based S-FEM

with bubble enrichment
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Table 4: Strain energy relative error for the polyurethane spring

Method Strain energy (×105) Relative error (%)

Analytical solution 10.5202 –

FEM T4 11.1317 5.81

CS-FEM T4 11.1317 5.81

FS-FEM T4 10.3227 3.68

ES-FEM T4 10.9084 −1.88

FS-FEM with the bubble 10.4747 −1.39

5.2 Mesh Distortion Sensitivity

Lastly, in this section, the mesh distortion sensitivity for the proposed approach for quasi-

incompressible problem is investigated. For this test, regularly distributed finite element cell meshes

are artificially distorted by the following terms [24]:

X ′ =X + rc αdistortion�x

Y ′ =Y + rc αdistortion�y (30)

Z′ =Z+ rc αdistortion�z

where X , Y , Z and X ′, Y ′, Z′ are the initial and updated coordinates respectively, rc is a ran-

dom number −1 ≤ rc ≤ 1, αdistortion is the distortion magnitude and �x, �y, �z are the initial

mesh sizes.

A cube model under compression, with edge lengths 0.1 m (see in Fig. 14), is used, with

artificially distorted meshes obtained by Eq. (30), and coefficient of distortion αdistortion = 0.3. The

following Dirichlet BCs are implemented:

• Bottom surface (Y = 0): (u1, u2, u3)= (0, 0, 0)

and a pressure of −0.5 N/m2 is imposed on the top surface Y = 0.1 m. The neo-Hookean

constitutive model is used with Lamé parameters µ = 1.0 Pa and κ = 100.0 Pa (equivalent to

ν = 0.495).

Figure 14: The geometry of the cube with distorted finite element meshes
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Fig. 15 shows the deformed shapes of the cube for DOLFIN software with MINI element,

cell-based smoothing, face-based smoothing, edge-based smoothing, and the bubble-enhanced

face- and edge-based smoothing approaches.

Figure 15: Deformed shapes of the cube. (a) MINI element, (b) cell-based S-FEM T4, (c) face-

based S-FEM T4, (d) edge-based S-FEM T4, (e) face-based S-FEM with bubble enrichment and

(f) edge-based S-FEM with bubble enrichment

The pseudo-analytical solution obtained with DOLFIN software using MINI element with

regular fine meshes. The convergence of displacement and strain energy errors and the detailed

relative errors of displacement and strain energy for the mesh distortion problem can be found

in Fig. 16 and Tab. 5, respectively. MINI element gives lower strain relative error but higher

displacement error than cell-based, face-based and edge-based smoothing methods. This result

shows that the MINI element effectively handles volumetric locking in nearly-incompressible

media, compared to normal smoothed-strain approaches. However, MINI element is still suffered

from highly distorted meshes. The bubble-enriched-FS-FEM shows the improvement of accuracy

in the both displacement and strain energy rather than the standard FS-FEM: around 20% of
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improvement in displacement and 85% of improvement in strain energy. Moreover, bFS-FEM

provides more accurate result in strain energy although displacement relative error is slightly

higher than ES-FEM, reducing almost half of strain energy error. A remarkable result we obtain

from this problem is the performance of bubble-enhanced face-based smoothing approach is rather

better than ES-FEM for the combined mesh distortion and nearly-incompressible problem.
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Figure 16: The convergence of the strain energy for the cube

Table 5: Strain energy and displacement relative error for the cube

Method Displacement Relative error (%) Strain energy (×10−5) Relative error (%)

Analytical solution −0.0143 – 3.09 –

MINI −0.0134 −6.38 3.02 −2.54

CS-FEM T4 −0.0132 −7.87 2.71 −12.52

FS-FEM T4 −0.0134 −6.14 2.82 −8.89

ES-FEM T4 −0.0137 −4.11 3.01 −2.69

FS-FEM with the bubble −0.0136 −4.97 3.05 −1.29

ES-FEM with the bubble −0.0152 6.54 3.27 5.63

6 Conclusions

In this work, the strain-smoothed finite element approaches were extended to the problem of

three-dimensional hyperelasticity. On each smoothing domain, the smoothed deformation gradients

are constructed, allowing expressions for the smoothed strain-displacement matrix, the smoothed

tangent stiffness matrix and the smoothed internal force vector to be obtained. The cubic bubble

enrichment function for the 3D face-based and the edge-based strain smoothing methods is
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also introduced. The proposed bubble function is straightforwardly implemented into the existing

smoothed-strain framework.

The proposed S-FEMs and their bubble-enhancement are examined by numerical benchmark

tests to evaluate their immunity to volumetric locking and mesh distortion. Comparisons are made

with solutions obtained by DOLFIN using the well-known MINI element. Quasi-incompressible

media, ν > 0.49, under large deformations, and with severely distorted finite element cells are the

main considerations of the proposed methods.

From the results carried out in numerical tests, the following conclusions are obtained:

• the behaviour of CS-FEM is similar to FEM in quasi-incompressible media; that, the cell-

based strain smoothing method is not able to avoid the over-estimation of stiffness;

• the accuracy and stability of the edge-based and node-based smoothed-strain approaches

are problem-dependent, which means ES-FEM and NS-FEM occasionally fail to solve the

problem; and

• the bubble-enrichment in the framework of the strain smoothing approach shows more

accurate and reliable results, especially in the quasi-incompressible case, than do to the

standard S-FEM.

A notable issue of the instability of 3D-extended NS-FEM and ES-FEM is found through

certain numerical tests, for which those methods either failed to converge or produced substantially

higher error. FS-FEM, especially the bubble-enhancement version, however, provides a very stable

solution and relatively accurate results compared with FEM or even other S-FEMs. Because the

concept behind the face-based smoothing method has been geometrically derived from the 2D

edge-based S-FEM, bFS-FEM is more reliable than the direct transfer of ES-FEM and NS-FEM

into three dimensions.

Overall, the bubble-enriched face-based strain-smoothed approach with low order tetrahedral

cells provides a computationally efficient, yet stable and accurate solution for large deformation

quasi-incompressible problems.

In future work, we plan to integrate the proposed method with the efficient total Lagrangian

Explicit Dynamics (TLED) algorithm [33] which should further reduce solution times, especially

when deployed on massively parallel GPU hardware [33].
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