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Abstract

Let (E, θ) be a stable Higgs bundle of rank r on a smooth complex projective surface X equipped with a
polarization H . Let C ⊂ X be a smooth complete curve with [C] = n · H . If

2n >
R

r

(
2rc2(E) − (r − 1)c1(E)2)

,

where R = max{
(r
s

)(r−1
s−1

)
: 1 � s � r − 1}, then we prove that the restriction of (E, θ) to C is a stable Higgs

bundle. This is a Higgs bundle analog of Bogomolov’s restriction theorem for stable vector bundles.
 2010 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let X be a smooth irreducible complex projective surface. Fix a very ample line bundle H

over X. Let E be a vector bundle over X. If there is a positive integer n0, and a smooth closed
curve C ⊂ X lying in the linear system |H⊗n0 |, such that the restriction E|C is stable (respec-
tively, semistable), then using the openness of the stability (respectively, semistability) condition,
it is easy to deduce that E itself is stable (respectively, semistable). There are various results in
the converse direction; see [8]. One of them is the following celebrated theorem of Bogomolov:
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Theorem 1.1 (Bogomolov). Let E be a stable vector bundle on X. Let C ⊂ X be a smooth

complete curve with [C] = n · H . If

2n >
R

r

(
2rc2(E) − (r − 1)c1(E)2),

where R = max{
(
r
s

)(
r−1
s−1

)
: 1 � s � r − 1}, then the restriction E|C is stable.

A Higgs vector bundle on X is pair of the form (E, θ), where E −→ X is a vector bundle,
and θ is a section of End(E) ⊗ Ω1

X satisfying the integrability condition θ ∧ θ = 0 [7,9]. Higgs
bundles play crucial role in diverse topics. Our aim here is to prove an analog of Theorem 1.1 for
Higgs bundles.

We prove the following (see Theorem 3.3):

Theorem 1.2. Let (E, θ) be a stable Higgs bundle of rank r on X. Let C ⊂ X be a smooth

complete curve with [C] = n · H . If

2n >
R

r

(
2rc2(E) − (r − 1)c1(E)2),

where R = max{
(
r
s

)(
r−1
s−1

)
: 1 � s � r − 1}, then the restriction of (E, θ) to C is a stable Higgs

bundle.

The proof of Theorem 1.2 is modeled on the proof of Theorem 1.1 given in [8].
In [2], the Grauert–Mülich and Flenner’s restriction theorems were generalized to principal

Higgs bundles. It will be interesting to prove a principal Higgs bundle analog of Theorem 1.2.

2. Preliminaries

2.1. Higgs sheaf

Let X be an irreducible smooth projective surface over C. The holomorphic cotangent bundle
of X will be denoted by Ω1

X .
A Higgs sheaf on X is a pair of the form (E, θ), where E −→ X is a torsionfree sheaf, and

θ : E −→ E ⊗ Ω1
X

is an OX-linear homomorphism such that θ ∧ θ = 0 [10]. The homomorphism θ is called a Higgs

field on E. A coherent subsheaf F of E is called θ -invariant if

θ(F ) ⊂ F ⊗ Ω1
X.

A θ -invariant subsheaf will also be called a Higgs subsheaf.
Fix a very ample line bundle H = OX(1) on X. The degree of a torsionfree coherent sheaf V

on X is defined to be the degree of the restriction of V to the general complete intersection curve
D ∈ |OX(1)|. So,

degree(V ) =
(
c1(V ) ∪ c1(H)

)
∩ [X].

The quotient degree(V )/ rank(V ) ∈ Q is called the slope of V , and it is denoted by μ(V ).
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For any nonzero subsheaf E′ of a torsionfree sheaf E, define

ξE′,E :=
rank(E)c1(E

′) − rank(E′)c1(E)

rank(E) rank(E′)
, (2.1)

which is an element of NS(X) ⊗Z R.
A subsheaf E′ of a torsionfree sheaf E is called normal if E/E′ is torsionfree.
A Higgs sheaf (E, θ) is said to be stable (respectively, semistable) if for every normal Higgs

subsheaf F ⊂ E, the inequality

μ(F) < μ(E)
(
respectively, μ(F ) � μ(E)

)

holds.
A Higgs sheaf (E, θ) is said to be a Higgs bundle if the underlying coherent sheaf E is locally

free. A semistable Higgs bundle (E, θ) is said to be polystable if it is a direct sum of stable Higgs
bundles of same slope μ(E).

A semistable Higgs bundle satisfies the Bogomolov inequality. More precisely, if (E, θ) is a
semistable Higgs bundle over X, then the discriminant

�(E) := 2rc2(E) − (r − 1)c1(E)2
� 0 (2.2)

(see [9, Proposition 3.3, Proposition 3.4, Theorem 1]), where cj (E) is the j -th Chern class of E.

2.2. The positive cone K+

We will briefly recall some basic facts on line bundles X which will be needed later (the
details can be found in [1]).

Let Pic(X) be the abelian group of isomorphism classes of line bundles with the operation
of tensor product. The Néron–Severi group NS(X) is defined to be the quotient of Pic(X) by
the numerical equivalence. Let NSR(X) denote the tensor product NS(X) ⊗Z R. The image of
Pic(X) in NSR(X) is a sub-lattice which coincides with the H 1,1(X) ∩ H 2(X,Z). There is a
natural nondegenerate pairing on NSR(X) given by the cup product that is integral on H 2(X,Z).
In NSR(X), the domain x2 > 0 breaks up into two cones; a cone of a real vector space V is a
subset C ⊂ V such that all linear combinations elements of C with nonnegative coefficients lie
in C. Let K+ be the component defined by

K+ =
{
D ∈ NSR(X)

∣∣ D2 > 0, D · H > 0 for all ample divisors H
}
. (2.3)

For any ξ ∈ K+, define |ξ | =
√

ξ2. Note that the condition D · H > 0 in (2.3) is added only to
pick one of the two components of the set of all D with D2 > 0. If D is a divisor on X such that
D2 > 0 and D · H0 > 0 for one ample divisor H0, then D · H > 0 for all ample divisors H . We
have,

D ∈ K+ if and only if D · L > 0 for all L ∈ K+ − {0}. (2.4)

For any nonzero ξ ∈ NSR(X), define the cone

C(ξ) :=
{
x ∈ K+

∣∣ x · ξ > 0
}
. (2.5)

From (2.4), (2.5),

C(ξ) = K+ if and only if ξ ∈ K+. (2.6)
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3. Restriction of Higgs bundles

The following lemma is a straightforward computation.

Lemma 3.1. Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be a short exact sequence of nonzero torsionfree

sheaves.

(1) Let G ⊂ F ′ be a proper subsheaf. Then

ξG,F = ξG,F ′ + ξF ′,F ,

where ξ−,− is defined in (2.1).
(2) Let G′′ ⊂ F ′′ be a proper subsheaf of rank s, and let G be the kernel of the surjective map

F −→ F ′′/G′′. Then we have

ξG,F =
r ′(r ′′ − s)

(r ′ + s)r ′′
ξF ′,F +

s

r + s
ξG′′,F ′′ ,

where r ′, r ′′ and r are ranks of F ′, F ′′ and F respectively.

(3)

�(F ′)

r ′
+

�(F ′′)

r ′′
=

�(F)

r
+

rr ′

r ′′
(ξF ′,F )2,

where � is the discriminant defined in (2.2).

The details of the proof of Lemma 3.1 are omitted.

Proposition 3.2. Let (E, θ) be a Higgs bundle on X of rank r � 2 with discriminant �(E) < 0.

Then there exists a Higgs normal subsheaf E′ ⊂ E such that

(1) ξE′,E ∈ K+, and

(2)

ξ2
E′,E � −

�(E)

r2(r − 1)
.

Proof. Both statements will be proved by using induction on r .
Proof of (1): Suppose that r = 2. Since �(E) < 0, there exists a normal Higgs subsheaf

L ⊗ IW ⊂ E of rank one, such that
(

c1(L) −
1

2
c1(E)

)
· H > 0, (3.1)

where L is a line bundle on X and W is a zero cycle on X (see (2.2)). We have the following
short exact sequence

0 L ⊗ IW E det(E) ⊗ L−1 ⊗ IZ 0,

where Z is a zero cycle, and det(E) is the determinant line bundle
∧2

E. We have

c2(E) = c1(L)
(
c1(E) − c1(L)

)
+ n,
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where n is some nonnegative integer. The discriminant �(E) is given by

�(E) = 4c2(E) − c1(E)2 = −4

(
c1(L) −

c1(E)

2

)2

+ n = −4ξ2
L,E + n. (3.2)

Since �(E) < 0, we have ξ2
L,E > 0. From (3.1) it follows that ξL,E has a positive intersection

with the ample divisor H . Hence ξL,E ∈ K+.
Now assume that r = rank(E) > 2. We impose the induction hypothesis that for every Higgs

sheaf (F, θ0) of rank not greater than r − 1, and �(F) < 0, there is some normal Higgs subsheaf
F ′ ⊂ F such that ξF ′,F ∈ K+.

Since (E, θ) is not semistable (see (2.2)), there is a normal Higgs subsheaf E′ of (E, θ) such
that ξE′,E · H > 0. Fix such a subsheaf E′. The quotient E/E′ will be denoted by E′′. Denote
�′ := �(E′), �′′ := �(E′′) and � := �(E). Then by Lemma 3.1(3), we have

�′

r ′
+

�′′

r ′′
=

�

r
+

rr ′

r ′′
ξ2
E′,E,

where r ′ and r ′′ are the ranks of E′ and E′′ respectively.
If ξ2

E′,E
> 0, then the assertion in part (1) of the proposition holds, because ξE′,E · H > 0. So

we assume that ξ2
E′,E

� 0. Then one of �′ and �′′ is negative, and ξE′,E /∈ K+.
First assume that �′ < 0. By the induction hypothesis, there exists a normal Higgs subsheaf

G ⊂ E′

such that ξG,E′ ∈ K+. By Lemma 3.1(1), the cone C(ξG,E) (defined in (2.5)) contains the cone
C(ξE′,E) properly, and ξG,E · H > 0.

Next assume that �′′ < 0. By the induction hypothesis, there exists a normal Higgs subsheaf

G′′ ⊂ E′′

such that ξG′′,E′′ ∈ K+. Let G be the kernel of the composition

E −→ E′′ −→ E′′/G′′.

By Lemma 3.1(2), the cone C(ξG,E) contains the cone C(ξE′,E) properly, and ξG,E · H > 0.
Therefore, in both cases we have a Higgs subsheaf G ⊂ E such that ξG,E ·H > 0, and C(ξG,E)

strictly contains C(ξE′,E).
For any subcone C(ξE′,E) containing a nontrivial polarization, there exist finitely many sub-

cones C(ξG,E) containing C(ξE′,E), where G is a subsheaf of E (see [4, Lemma 3.4]). Hence by
repeating this process, in finitely many steps, we get a normal Higgs subsheaf E′ ⊂ E, such that
ξ2
E′,E

> 0 with ξE′,E · H > 0, or equivalently, ξE′,E ∈ K+. This completes the proof of part (1)
of the proposition.

Proof of (2): The proof uses induction on r , and follows the steps in [8, Theorem 7.3.4].
If r = 2, the inequality follows from (3.2).
Now suppose that r > 2. Let E′ be a Higgs normal subsheaf of (E, θ) of rank r ′ such that

ξE′,E ∈ K+. The Hodge Index theorem implies that

ξ2
E′,E �

(ξE′,E · H)2

H 2
�

(μmax(E) − μ(E))2

H 2
,

where μmax(E) is the maximum among the slopes of Higgs subsheaves of (E, θ), or equivalently,
it is the slope of the smallest subsheaf in the Harder–Narasimhan filtration of (E, θ). Let E′ be a
Higgs subsheaf such that ξ2

E′,E
attains the maximum value.



I. Biswas, A. Dey / Bull. Sci. math. 135 (2011) 178–186 183

By an argument identical to the one in the proof of [8, p. 174, Theorem 7.3.3], we have
�′ = �(E′) � 0.

Suppose that

�(E)

r
< −r(r − 1)ξ2

E′,E . (3.3)

Let r ′′ be the rank of the quotient Higgs sheaf E′′ := E/E′. The discriminant of E′′ will be
denoted by �′′. We have by Lemma 3.1(3) and (3.3),

�′′

r ′′
=

�

r
−

�′

r ′
+

rr ′

r ′′
ξ2
E′,E < −

rr ′′(r − 1) − rr ′′

r ′′
ξ2
E′,E = −r2 r ′′ − 1

r ′′
ξ2
E′,E < 0.

So, by induction hypothesis, there exists a normal Higgs subsheaf G′′ ⊂ E′′ such that ξG′′,E′′ ∈

K+, and

ξ2
G′′,E′′ � −

�′′

r ′′2(r ′′ − 1)
>

r2

r ′′2
ξ2
E′,E′′ (3.4)

by the previous inequality.
Let G denote the kernel of the composition E −→ E′′ −→ E′′/G′′. By Lemma 3.1(2),

ξG,E =
r ′(r ′′ − s)

(r ′ + s)r ′′
ξE′,E +

s

r ′ + s
ξG′′,E′′ .

Since K+ is convex, and both ξE′,E and ξG′′,E are in K+, we conclude that ξG,E ∈ K+. Further-
more,

|ξG,E | �
r ′(r ′′ − s)

(r ′ + s)r ′′
|ξE′,E | +

s

r + s
|ξG′′,E |

>
r ′(r ′′ − s)

(r ′ + s)r ′′
|ξE′,E | +

s

r ′ + s
.
r

r ′′
|ξE′,E | = |ξE′,E |.

But this contradicts the maximality of |ξE′,E |. This completes the proof of the proposition. ✷

Theorem 3.3. Let (E, θ) be a stable Higgs vector bundle of rank r � 2 with respect to the

polarization H . Let R = max{
(
r
s

)(
r−1
s−1

)
; 1 � s � r − 1}, and let C ⊂ X be a smooth curve with

[C] = nH . If

2n >
R

r
�(E) + 1, (3.5)

then the restriction (E, θ)|C is a stable Higgs bundle.

Proof. Suppose that (E, θ)|C is not a stable Higgs bundle. Let F be a Higgs quotient bundle of
E|C , with rank(F ) � r − 1, such that

μ(E|C) � μ(F). (3.6)

Let s be the rank of F .
We will first reduce the proof to the case where s = 1.
Suppose that s > 1. By taking s-th exterior power, we get

∧s
E

f ∧s
E|C

g ∧s
F = L. (3.7)
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The discriminant of
∧s

E is

�
(∧s

E
)

=

(
r − 1

s − 1

)(
r

s

)
�(E)

r
(3.8)

(see [8, p. 175, line 11]).
From (3.5) and (3.8),

2n > �
(∧s

E
)

+ 1. (3.9)

The Higgs field θ on E induces a Higgs field on
∧s

E; this induced Higgs field will be denoted
by

∧s
θ . The Higgs bundle (

∧s
E,

∧s
θ) is a Higgs polystable (see [3, Lemma 4.4]). Let

(∧s
E,

∧s
θ
)

=

ℓ⊕

i=1

(Ei, θi)

be the Jordan–Holder filtration of (
∧s

(E),
∧s

θ), where each (Ei, θi) is a Higgs stable bundle
with μ(Ei) = μ(

∧s
E). By [8, Corollary 7.3.2],

�(Ei) � �(E) (3.10)

for all i ∈ [1, ℓ].
Define

φ := g ◦ f.

Without loss of generality, we can assume image φ(E1) =: L′ �= 0. We note that

deg
(
L′

)
� deg(L). (3.11)

We assume that rank(E1) > 1. The case rank(E1) = 1 will be treated separately.
We have

μ(E|C) � μ(F), (3.12)

and

μ(E1|C) = μ
(∧s

E|C

)
=

(
r−1
s−1

)
c1(E) · C
(
r
s

) = sμ(E|C), (3.13)

because c1(
∧s

E) =
(
r−1
s−1

)
c1(E) (see [5, p. 55]), and rank(

∧s
E) =

(
r
s

)
. From (3.12) and (3.13),

μ(E1|C) = sμ(E|C) � sμ(F ) = μ(L). (3.14)

Since φ(E1) �= 0, we reduced the proof to the case where the rank of the quotient F is one.
We assume that s = rank(F ) = 1.

We have

2n > �(E) + 1 and C2
� �(E) �

�(E)

r − 1
,

and the destabilizing quotient line bundle L satisfies the inequality

c1(E) · C − r deg(L) � 0 (3.15)

(see (3.14)).
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We have an exact sequence of Higgs sheaves

0 G E ι∗(L) 0, (3.16)

where ι : C →֒ X is the inclusion map. Therefore,

rank(G) = r, c1(G) = c1(F ) − C,

c2(G) = c2(E) − C · c1(E) +
1

2
C · (C + KX) + deg(L) + (1 − gC) (3.17)

where gC is the genus of the curve C.
By using adjunction formula and (3.15),

�(G) = �(E) − 2
(
c1(E) · C − r · deg(L)

)
− (r − 1)C2 < 0. (3.18)

Hence by Proposition 3.2, there exists a normal Higgs subsheaf G′ ⊂ G of rank t < r such
that ξG′,G ∈ K+, and

ξ2
G′,G � −

�(G)

r2(r − 1)
. (3.19)

By (3.17),

ξG′,E :=
rc1(G

′) − tc1(E)

rt
= ξG′,G −

1

r
C. (3.20)

Since E is Higgs stable, and the intersection product takes integer values,

ξG′,E · C =
rc1(G

′) · C − tc1(F ) · C

rt
< −

n

rt
. (3.21)

By (3.20) and (3.21),

ξG′,G · C � −
n

rt
+

n2H 2

r
. (3.22)

Now by (3.19) and (3.22),

−
�(G)

r2(r − 1)
n2H 2

� ξ2
G′,GC2

� (ξG′,G · C)2
�

(
n2H 2

r
−

n

rt

)2

. (3.23)

By (3.18) and (3.23), we have

−�(E)

r − 1
H 2

�
1

t2
−

2nH 2

t
.

Hence

2n �
t

r − 1
�(F) +

1

tH 2
� �(E) + 1,

which contradicts our assumption in (3.9); note that �(E) � 0 by (3.3).
Now suppose that rank(E1) = 1.
We have a nonzero homomorphism

E1|C
f

L



186 I. Biswas, A. Dey / Bull. Sci. math. 135 (2011) 178–186

between two line bundles on a curve C with deg(E1|C) � deg(L). The key point is that E1|C ∼=

L ∼=
∧s

F [6, Chapter IV, p. 295, Lemma 1.2]. Hence we have a rank one quotient
∧s

(E) −→

E1 with μ(
∧s

(E)) = μ(E1), such that the restriction
∧s

E|C −→ E1|C is the s-th exterior
power of E|C −→ F . Now by [8, Lemma 7.3.6],

F =

s∧
Ẽ,

where Ẽ is a quotient of E of rank s; this lemma of [8] is stated for semistable bundles, but the
proof goes through for Higgs bundles without any change. This contradicts the stability of E. ✷
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