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Abstract

Short aggregation prone sequence motifs can trigger aggregation in peptide and protein sequences. Most

algorithms developed so far to identify potential aggregation prone regions (APRs) use amino acid residue

composition and/or sequence pattern features. In this work, we have investigated the importance of

atomic-level characteristics rather than residue level to understand the initiation of aggregation in proteins

and peptides. Using atomic-level features an ensemble-classifier, ANuPP has been developed to predict

the aggregation-nucleating regions in peptides and proteins. In a dataset of 1279 hexapeptides, ANuPP

achieved an area under the curve (AUC) of 0.831 with 77% accuracy on 10-fold cross-validation and an

AUC of 0.883 with 83% accuracy in a blind test dataset of 142 hexapeptides. Further, it showed an aver-

age SOV of 48.7% on identifying APR regions in 37 proteins. The performance of ANuPP is better than

other methods reported in the literature on both amyloidogenic hexapeptide prediction and APR identifi-

cation. We have developed a web server for ANuPP and it is available at https://web.iitm.ac.in/bioinfo2/

ANuPP/. Insights gained from this work demonstrate the importance of atomic and functional group char-

acteristics towards diversity of atomic level origins as well as mechanisms of protein aggregation.

� 2020 Elsevier Ltd. All rights reserved.

Introduction

Even though proteins have been continually
evolving over a long time, aggregation remains a
persistent threat to productive protein folding and
function. This is evident from various protein
aggregate depositions such as Lewy bodies and
Amyloids implicated in many proteinopathies.1 At
the same time, various studies have also reported
that aggregation propensities of proteins are
related to their native state stability.2–4 For exam-
ple, Ma et al. 2 have shown that aggregation
propensities of the subunit interfaces are greater
than those of the molecular surfaces, and the differ-
ences between surface and interface aggregation

propensities are directly correlated with optimal
growth temperatures of organisms. By analyzing
large datasets of protein structures, Buck et al. 4

and Prabakaran et al. 5 have shown that aggrega-
tion prone regions (APRs) in protein sequences
contribute significantly more toward native state
stability than other regions of similar lengths. Pro-
teins have also evolved to control aggregation via
negative design by interrupting the APRs through
gate keeping residues.6–7 Thangakani et al. 8 com-
pared the incidence of APRs among thermophilic
and mesophilic proteins, and showed that ther-
mophilic proteins are better able to either interrupt
APRs via gatekeeping residues or stow them in
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their cores than their mesophilic homologues. The
ability to control protein aggregation is also essen-
tial for the production of functional amyloid fibrils
both in vivo and in vitro such as peptide hormone
storage, scaffold support for melanin granules,
biofilm formation and heritable information trans-
fer.9 Aggregation is a challenge for the design,
development and storage of biotherapeutic
molecules.10

Ability of the APRs to dictate the fates of proteins
has attracted considerable research efforts.
Understanding and accurate identification of the
APRs has several potential applications in human
diseases, development of biotherapeutics and
design of nanomaterials.11 Studies have shown that
properties such as hydrophobicity, b-propensity,
buriedness, and solvent isolatedness can identify
APRs in protein sequences and structures.4–5,12–13

Most of the algorithms which have been
developed to predict APRs in proteins are either
sequence-based or structure-based mathematical
models. The structure-based models such as SAP
and Aggscore 14–15 quantified size and solvent
exposure of the hydrophobic patches on the protein
surface. Sequence-basedmethods, such as PAGE,
TANGO, WALTZ and GAP, have highlighted the
importance of sequence patterns, position-specific
residue preferences and residue-pair preferences
as well as charge, hydrophobicity and b-strand
propensity to identify potential APRs in protein
sequences.13,16–18 Other methods such as Aggres-
can3D and Solubis,19–20 use a combination of both
sequence and structure-based approaches.
While several algorithms have been devised to

identify potential APRs in protein sequences and
structures over the past couple of decades, no
single algorithm currently succeeds consistently
when used for aggregation prediction in diverse
datasets. In fact, a recent comparative analysis of
the existing methods has revealed that there is
still a need for improvements in their predictive
performances.21 We postulate that use of amino
acid residue-level features such as sequence pat-
terns, residue preferences, and amino acid physic-
ochemical properties limit the predictive power of
these models because of the lack of large and
diverse datasets of peptides and protein
sequences currently available for training.
In this work, we have developed a new model

called Aggregation Nucleation Prediction in
Peptides and Proteins (ANuPP). ANuPP is an
ensemble-classifier that identifies potential APRs
in peptides and proteins by taking into account
atomic-level features of hexapeptides. It showed
an accuracy of 83% with an AUC of 0.883 in a
test dataset of 142 hexapeptides and an average
SOV of 48.7% for identifying APRs in 37 proteins.
ANuPP is freely available for academic use at
https://web.iitm.ac.in/bioinfo2/ANuPP/.

Methods

Datasets

ANuPP was trained on a dataset of hexapeptides
that have been shown experimentally to be either
amyloidogenic or non-amyloidogenic.
Hexapeptides were chosen as the ideal length for
the model because of availability of experimental
data on a large number of them. Currently, 1421
experimentally validated amyloidogenic and non-
amyloidogenic hexapeptides are available in
literature.22–26 In contrast, numbers of experimen-
tally validated tri-, quadra-, penta- or hepta-pep-
tides (lengths 3, 4, 5 or 7) are currently 1, 4, 16
and 50, respectively.25 The hexapeptide dataset
consists of 512 amyloidogenic and 909 non-
amyloidogenic unique peptide sequences obtained
from CPAD 2.0, WALTZ-DB, and AmyLoad data-
bases.22–26 The dataset was divided into two
groups: 90% for training and cross-validation
(Hex1279) and 10% as a blind test set for evaluat-
ing the performance of the method (Hex142).
Further, we validated ANuPP against APR

annotations in AmyPro database.27 We collected
a dataset of 162 proteins from AmyPro. The data-
set consists of annotations of identified Aggrega-
tion Prone Regions (APRs). However, we
observed that the annotation of the APRs is incom-
plete and approximate. Several large proteins,
such as AChE, BAP, CPEB, etc., are annotated
with only one APR, and several APR segments
are longer than 100 residues. The dataset was fil-
tered to remove sequences without APR annota-
tion, ambiguous annotations, and APR residue
fraction is less than 10% or greater than 95%. Fur-
ther, we performed clustering at 40% sequence
identity using CD-HIT to reduce the redundancy
and obtained a set of 54 proteins.28 These protein
sequences were analyzed for presence of
hexapeptides from Hex1279, training dataset.
Based on the number of hexapeptides present in
the protein sequence, we divided the 54 proteins
into Amy17 (>1 hexapeptide from Hex1279) and
Amy37 (0 or 1 hexapeptide from Hex1279) data-
sets for calibration and assessment. The cut-off
of 1 was chosen to avoid reducing the validation
dataset size (Amy37). However, the choice of cut-
off did not affect the conclusion of the analysis.
The calibration set of 17 protein sequences are
used to select an optimum value for parameters
such as minimum nucleating window and threshold
cut-offs (see “Identification of Aggregation Prone
Regions”). Sequences in Amy17 and Amy37 share
less than 40% sequence identity. All the datasets
used in study are listed in the Appendixes (see
Supplementary Information) and also available for
download at https://web.iitm.ac.in/bioinfo2/
ANuPP/datasets/.
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Features design and selection

ANuPP uses atom compositions of peptides and
protein segments as features for training the
algorithm. Along with the size and branching of
side chains, the presence or absence of specific
functional groups underpins different
physicochemical properties of the 20 amino acids
(Supplementary Table S1). The use of atomic
characteristics helps to expand the training
feature sets. For example, atoms Cb, Cc, Cd1, and
Cd2 represent Leucine in the atom feature space.
These atoms represent the presence of a side
chain (Cb), length of the side chain, lack of non-
aliphatic polar or charged functional groups, lack
of branching at Cb and extension of the side
chain by a methyl group (Cc), presence of next-
level branching at Cc (C d1 and Cd2), respectively.
Since each amino acid contains multiple atomic
level features, 1279 hexapeptide sequences in
the training dataset contain several instances of
occurrences for all the 36 atom types. Frequency
of an atom type i is the number of atoms of type i
normalized by the total number of atoms in a
hexapeptide, as shown in equation (1) and
illustrated in Supplementary Figure S1.

Fracatom i segmentð Þ ¼ Natom i segmentð Þ
P36

i¼1Natom i segmentð Þ
ð1Þ

PDB atom-naming convention29 has been used
to denote different atom types present in each
amino acid residue. In this work, we focused only
on ‘heavy’ atoms and excluded all hydrogen atoms.
In all, 36 distinct atom types were defined to repre-
sent all twenty standard amino acids. Further, 15
out of 36 atom types, namely, Cc1, Cd2, Sd, Ne2,
Cb, Ce2, OH, Sc, Od2, Ce3, Ne, Nd1, Ce1, Cf and
Cg2 were chosen to represent a given hexapeptide
sequence via sequential forward feature selection.
The selected features highlight diversity of physico-
chemical attributes of different atom types and
functional groups that constitute each of the twenty
naturally occurring amino acids. For example, Cd1

atom represents carbon atom at the delta position
of branched amino acids such as Phe, Ile, Leu,
Trp, and Tyr. Cd1 is present in both Ile and Leu;
however, Cd1 and Cd2 are present in Leu and Ile,
respectively. Nf and Ng1 together indicate uniquely
the presence of positively charged residues: Arg
and Lys, respectively.

Model architecture

ANuPP hypothesizes that aggregation
mechanisms for amyloidogenic hexapeptide
sequences vary depending upon their atomic
compositions. For example, the isolation of
hydrophobic side chains from the solvent would
be the driving force for aggregation of the
hexapeptide sequence rich in aliphatic and
aromatic residues. On the other hand, hydrogen
bonds and ion pairs may play active roles in the

aggregation of a hexapeptide containing polar
and charged residues. A few well-known
examples include DFNKF from human calcitonin
and GNNQQNY from yeast Sup35 protein.30–31

The arrangement of Gln/Asn residues in the fibrils
leads to the stacking of amide groups, which
results in additional inter-strand hydrogen
bonds.32,33

Supplementary Figure S2 shows the schematic
representation of ANuPP architecture. ANuPP
was developed as an ensemble-classifier to
address the diversity in aggregation mechanisms.
Initially, the 461 amyloidogenic hexapeptide
sequences from the training dataset (Hex1279)
were grouped into clusters using on K-means
clustering based on physicochemical amino acid
properties such as Hydrophobicity (Hp), total
charge, number of charged residues, and total
extended ASA (size) of the peptides. The 461
amyloidogenic sequences were clustered into
various number of clusters (k) and an optimum k
of nine clusters was selected such that each
cluster contains a minimum of 20 sequences and
have low Davies-Bouldin score and high
silhouette score.34–35

An ensemble of nine independent logistic
regression classifiers were built and trained on
each of the nine clusters along with a randomly
chosen subset of non-amyloidogenic
hexapeptides (Supplementary Figure S2). To
avoid class imbalance in the training dataset, we
performed under-sampling, where the number of
randomly chosen non-amyloidogenic
hexapeptides was kept equal to the number of
amyloidogenic hexapeptides. For a given
segment, the predicted scores from the nine
independent classifiers were combined using a
Bayesian approach to derived the consensus
score (Eqs. (2)–(4)).

Pagg
cluster i segmentð Þ ¼ 1

1þ e� b i ;0þb i ;1x1þb i ;2x2þ���:þb i ;nxnð Þ ;

i ¼ 1 to 9; n ¼ 1 to 15 ð2Þ

Pcluster i segmentð Þ ¼ 1
ffiffiffiffiffiffi

2p
p

ri

e
�ðx i�liffiffi

2
p

ri
Þ2 ð3Þ

PaggðsegmentÞ ¼
X

9

i¼1

Pcluster i :Pagg
cluster i ð4Þ

In Eq. (2), Pagg
i represents the score for a given

segment from the independent models, ‘i’ varies
from 1 to 9, bi,n represents the weight of the
logistic regression model i for the nth atom
composition feature, ‘n’ varies from 1 to 15. In Eq.
(3), Pcluster represents the probability of the
segment belonging to the cluster; xi is the
distance of the sequence from the center of the
cluster as measured using the physicochemical
properties used for clustering, mi and ri are mean
and standard deviation of the distance of the
original cluster members from the center. Pagg is
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the consensus score for the segment derived by
combining the individual predicted scores in a
Bayesian approach.

Identification of aggregation prone regions

To identify APR in protein sequences, a 4-step
approach similar to Chou-Fasman secondary
prediction algorithm was applied.36 Initially, for a
given sequence S of n residues is split into n-5
overlapping hexapeptide segments, and Pagg is
predicted for each segment. Second, the residue
aggregation score (Pagg

res ) is calculated from the seg-
ment scores (Pagg) predicted by ANuPP. Aggrega-
tion score for a residue j in a sequence is the
average of the predicted aggregation scores of all
hexapeptide segments that contain the residue j.
For example, aggregation score for residue num-
ber 5 is average of the predicted scores for
hexapeptides spanning residues 1–6, 2–7, 3–8,
4–9 and 5–10. Following the residue score (Pagg

res )
calculation, nucleating regions of minimum length
(w = 5 residues) with average residue score
(<Pagg

res >) higher than threshold 1 (th1 = 0.49) are
identified across the sequence. These nucleating
regions are further extended in N-terminal and C-
terminal direction such that the residues have Pagg

res

higher than threshold 2 (th2 = 0.31). The parame-
ters involved in the prediction, i.e., minimum nucle-
ating window length (w), threshold 1 (th1), and
threshold 2 (th2) were optimized to score higher
SOVoverall on the calibration dataset of 17 AmyPro
sequences (Amy17).

Performance measures

The performance of the present method in
hexapeptide datasets are assessed using the
measures sensitivity, specificity, accuracy,
Matthew’s correlation coefficient and F1 score.

True Positive Rate ðSensitivity=RecallÞ;TPR ¼ TP

TP þ FN

ð5Þ

True Negative Rate ðSpecificityÞ;TNR ¼ TN

TN þ FP
ð6Þ

Accuracy;ACC ¼ TP þ TN

Total sample size
ð7Þ

Q�value;Q ¼ TPR þ TNR

2
ð8Þ

Matthews Correlation Coefficient;MCC

¼ ðTP � TNÞ � ðFP � FNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ TP þ FNð Þ TN þ FPð ÞðTN þ FNÞ
p ð9Þ

F1score;F1 ¼ 2TP

2TP þ FN þ FP
ð10Þ

In the above equations, TP, TN, FP, and FN
stands for true positive, true negative, false
positive, and false negative, respectively. In

addition, Receiver Operating Characteristic (ROC)
curve and area under the curve (AUC) was
computed to evaluate the performance. Further,
the performance of ANuPP was compared with
other predictors through Bootstrap sampling
(n = 1000), Student’s t-test, and Mann–Whitney
ranksum test using SciPy.37

Segment OVerlap scores (SOVAPR, SOVnon-APR,

and SOVoverall) are used to evaluate the
performance of predicting APRs in proteins.38

SOV scores the prediction accuracy based on the
overlap between the predicted and actual seg-
ments instead of residues, which is more appropri-
ate for segment prediction similar to secondary
structure prediction. Further, exact residues in
APRs are not well defined and hence prediction
of APR regions is more reliable. In addition,
SOVaverage was calculated as an average of
SOVAPR and SOVnon-APR.

Results and Discussion

Development of a prediction model through
ensemble approach

ANuPP was trained with Hex1279 dataset,
containing 461 amyloidogenic and 818 non-
amyloidogenic hexapeptides using an ensemble-
based approach. It provides a robust framework
to address diversity in amyloidogenic
hexapeptides through independent model training.
The performance of the method is presented in
Table S2. We observed that ANuPP showed an
accuracy, sensitivity and specificity of 79%, 68%,
and 85%, respectively, with an Area under the
ROC curve (AUC) of 0.852. Further, we have
evaluated the performance using 10-fold cross-
validation and the results are included in
Table S2. ANuPP showed a consistent
performance with an average sensitivity,
specificity, accuracy and AUC of 63%, 86%, 77%
and 0.831, respectively.

Assessment of ANuPP on the hexapeptide test
dataset, Hex142

ANuPP was validated using a blind test dataset,
Hex142, which contain 51 and 91 experimentally
studied amyloid and non-amyloid hexapeptides,
respectively. ANuPP showed a consistent
performance with an AUC of 0.883 (Tables 1 and
S3). Further, 83% of the hexapeptides are
correctly classified as amyloids and non-amyloids
with a sensitivity and specificity of 82% and 83%,
respectively. To elucidate importance of the side
chain functional group (atomic) features, we
adapted the ANuPP model by re-training it with
amino acid composition as input feature. The
performance of the new model, ANuPPAA is listed
in Table S2. ANuPPAA performed lower than
ANuPP with an accuracy and AUC of 78% and
0.845, respectively in the test dataset. These
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results highlight the contribution of atomic features
to enhance the predictive power of the model.
The performance of our method is compared with

other existing methods in the literature. Table 1 lists
the performance of ANuPP against six existing
predictors on the test dataset. ANuPP clearly
showed the topmost performance with a Mathews
Correlation Coefficient (MCC) of 0.645 and a
balanced accuracy (Q) of 83%. Interestingly, our
method showed a balance between sensitivity
and specificity of 82% and 84%, respectively.
GAP showed the highest sensitivity of 94%
whereas its specificity dropped to 28%. An
opposite trend was observed for PASTA2,
TANGO and WALTZ with high specificity and low
sensitivity. In addition, we used AUC for unbiased
comparison to rank the predictors. We observed
that ANuPP showed the highest AUC of 0.883
followed by PASTA2 and AGGRESCAN, which
showed an AUC of 0.855 (Supplementary

Figure S3). FishAmyloid scored an AUC of 0.798
with 69% accuracy.

Dependence of aggregation prediction on
hydrophobicity

Hydrophobicity plays a key role in protein and
peptide aggregation. To quantify the variations in
prediction accuracy with hydrophobicity, the
Hex142, test dataset was grouped into three
classes based on number of hydrophobic
residues (0–2, 3, 4–6 residues for dominance of
polar/charged residues, equal number of
hydrophobic and polar/charged residues and
dominance of hydrophobic residues to represent
the mechanisms of aggregation due to charged/
polar and hydrophobic residues) containing 46, 46
and 56 hexapeptides, respectively. Following
residues were considered as hydrophobic: Gly,
Ala, Cys, Tyr, Val, Leu, Ile, Met, Phe and Trp.

Table 1 Comparison of performances of different APR prediction methods on test dataset, Hex142.

Sensitivity (%) Specificity (%) Accuracy (%) Q (%) F1 score (%) MCC AUC

ANuPP 82.4 83.5 83.1 82.9 77.8 0.645 0.883

Aggrescan 68.6 85.7 79.6 77.2 70.7 0.551 0.855

FishAmyloid 45.1 82.4 69.0 63.8 51.1 0.296 0.798

GAP 94.1 27.5 51.4 60.8 58.2 0.26 0.721

Pasta2 37.3 96.7 75.4 67.0 52.1 0.45 0.855

TANGO 5.9 97.8 64.8 51.8 10.7 0.096 0.597

WALTZ 39.2 95.6 75.4 67.4 53.3 0.446 0.675

*AGGRESCAN39; Fish Amyloid40; GAP13; Pasta241; TANGO17; WALTZ18.

Figure 1. Variations in Balanced accuracy (Q) with hydrophobicity in Hex142, test dataset. The Hex142, test

dataset was split into three classes based on number of hydrophobic residues (0–2, 3, 4–6 residues) containing 46,

46 and 56 hexapeptides, respectively. The balanced accuracy (Q) of different predictors was computed in each of

these classes.
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Figure 1 shows the performance of ANuPP along
with the 6 other predictors over the three classes.
ANuPP scored a balanced accuracy of greater
79% is all the three classes. In comparison, with
the overall performance of 83% (Table 1), the
difference was subtle. Though AGGRESCAN
showed the second highest performance, there
was a significant reduction in balanced accuracy
(69%) in Class 2 hexapeptides with 3
hydrophobic residues in comparison with its
overall accuracy of 77%.

Identification of aggregation prone regions

Further, we have validated the predictive power
of our model to identify aggregation prone regions
using the dataset of 37 amyloidogenic proteins
collected from the AmyPro database, Amy37
(see “Datasets”). We have evaluated the
performance of the method using Segment
Overlap scores and the results are presented in
Table 2. SOVs for each class (APR and Non-
APR) are calculated along with overall and
average SOV to compare the performance of
ANuPP with other existing methods. The results
presented in Table 2 showed that ANuPP scored
the highest overall and average SOV of 50.2%
and 48.7%, respectively. TANGO showed the
overall and average SOV of 48% and 39%,
respectively. In addition, ANuPP showed a
balance between SOVAPR (45.2%) and SOVnon-

APR (52.3%) scores whereas TANGO had
SOVAPR and SOVnon-APR scores of 19.1% and
57.8, respectively. On the other hand, Aggrescan
showed a balanced performance with SOVAPR and

SOVnon-APR of 34% and 36%, respectively.
Similar, imbalance was found in other methods
except PASTA2.

ANuPP, prediction server and a repository

ANuPP web server is a user-friendly open
platform built using Bootstrap, Django, and
MySQL and runs on an apache server. For a
given input sequence, ANuPP identifies potential

APRs, lists aggregation score for every
hexapeptide segment, and draws an interactive
aggregation spectrum (Figure S4). The web
server is available at https://web.iitm.ac.in/
bioinfo2/ANuPP/.
ANuPP web server can accept up to 50,000

sequences in a single run to assist proteome-
level analysis of aggregation propensity. ANuPP
also acts as a repository as it hosts predictions
for the human proteome and 64 million
hexapeptide sequences. These predictions show
that approximately 10,881,439 (17%) of the 64
million hexapeptide sequences are aggregation
prone. Additionally, analysis of the human
proteome using ANuPP identified 261,246
potential APRs in 42,357 human protein
sequences (which includes 20,379 proteins and
their isoforms). Interesting, only 2.4% of the
261,246 APRs were not flanked by gatekeeper
residues (charged residues and proline). A
repository of these predictions is available on our
server.

Limitations of ANuPP

As stated earlier, a major limitation towards
developing an accurate aggregation prone region
prediction model is the limited availability of
experimentally validated data. We have tried to
overcome this problem by considering atomic-
level chemical properties of different functional
groups in hexapeptide sequences in the Hex1279
dataset. Availability of experimental data on a
larger number of hexapeptides shall further
improve ANuPP’s predictive performance.

Conclusions

In this work, we have developed ANuPP, a web-
based meta-classifier, to identify aggregation prone
peptides and regions in proteins. The performance
of ANuPP was evaluated using several different
datasets, which demonstrate its superior
predictive power and versatility. While several

Table 2 Comparison of performance measures on the prediction of aggregation prone regions in amyloidogenic proteins

based on Segment Overlap Score.

SOVAPR SOVnon-

APR

SOVOverall SOVAverage No. of correctly

predicted APRsǂ
No. of correctly

predicted Non-

APRsǂ

ANuPP 45.2 52.3 50.2 48.7 28 50

Aggrescan 34.3 36.5 32.4 35.4 17 37

FishAmyloid 14.5 45.2 37.5 29.9 6 56

PASTA2 (85%

specificity)

13.2 24.9 23.2 19.1 5 32

TANGO 19.1 57.8 48.1 38.5 7 69

WALTZ 44.4 28.9 28.7 36.6 25 28

*Segment Overlap score was computed as in Zemla et al. 38.

ǂA segment (APR or non-APR) is counted as correctly predicted if more than 50% residues of the segment were identified by the

method. In total, there are 58 APRs and 81 non-APRs in the Amy37 dataset.
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APR prediction programs are currently available in
literature, ANuPP is unique. It is the first sequence-
based method that uses atom-based features and
considers diversity of aggregation mechanisms.
Results presented here provide credence to our
hypothesis that aggregation in peptides and
proteins originates at atomic rather than residue
level.

Acknowledgements

We thank Bioinformatics Infrastructure facility,
Department of Biotechnology and Indian Institute
of Technology Madras for computational facilities
and Ministry of human resource and development
(MHRD) for HTRA scholarship to PR. We thank
WALTZ developers for sharing the executable.

Declaration of Competing Interest

Sandeep Kumar is an employee of Boehringer
Ingelheim Pharmaceutical Inc. USA.

Appendix A. Supplementary material

Supplementary data to this article can be found
online at https://doi.org/10.1016/j.jmb.2020.11.006.

References

1. Chiti, F., Dobson, C.M., (2017). Protein misfolding, amyloid

formation, and human disease: a summary of progress

over the last decade. Annu. Rev. Biochem., 86, 27–68.

2. Ma, B.G. et al, (2010). Thermophilic adaptation of protein

complexes inferred from proteomic homology modeling.

Structure, 18 (7), 819–828.

3. Berezovsky, I.N., (2011). The diversity of physical forces

and mechanisms in intermolecular interactions. Phys. Biol.,

8 (3) 2011 Jun; 035002.

4. Buck, P.M. et al, (2013). On the role of aggregation prone

regions in protein evolution, stability, and enzymatic

catalysis: insights from diverse analyses. PLoS Comput.

Biol., 9 e1003291.

5. Prabakaran, R. et al, (2017). Aggregation prone regions in

human proteome: Insights from large-scale data analyses.

Proteins Struct. Funct. Bioinforma., 85, 1099–1118.

6. Reumers, J. et al, (2009). Protein sequences encode

safeguards against aggregation. Hum. Mutat., 30 (3), 431–

437. https://doi.org/10.1002/humu.20905.

7. Gsponer, J., Babu, M.M., (2012). Cellular strategies for

regulating functional and nonfunctional protein aggregation.

Cell Rep., 2 (5), 1425–1437. https://doi.org/10.1016/j.

celrep.2012.09.036.

8. Thangakani, A.M. et al, (2012). How do thermophilic

proteins resist aggregation? Proteins, 80 (4), 1003–1015.

9. Invernizzi, G. et al, (2012). Protein aggregation:

Mechanisms and functional consequences. Int. J.

Biochem. Cell Biol., 44, 1541–1554.

10. Agrawal, N.J. et al, (2011). Aggregation in protein-based

biotherapeutics: Computational studies and tools to identify

aggregation-prone regions. J. Pharm. Sci., 100, 5081–

5095.

11. Pastor, M.T. et al, (2007). Hacking the code of amyloid

formation: the amyloid stretch hypothesis. Prion, 1, 9–14.

12. Sawaya, M.R. et al, (2007). Atomic structures of amyloid

cross-b spines reveal varied steric zippers. Nature, 447,

453–457.

13. Thangakani, A.M. et al, (2014). GAP: towards almost 100

percent prediction for b-strand-mediated aggregating

peptides with distinct morphologies. Bioinformatics, 30,

1983–1990.

14. Sankar, K. et al, (2018). AggScore: prediction of

aggregation-prone regions in proteins based on the

distribution of surface patches. Proteins Struct. Funct.

Bioinforma., 86, 1147–1156.

15. Chennamsetty, N. et al, (2009). Design of therapeutic

proteins with enhanced stability. Proc. Natl. Acad. Sci. U.S.

A., 106, 11937–11942.

16. Tartaglia, G.G. et al, (2005). Prediction of aggregation rate

and aggregation-prone segments in polypeptide

sequences. Protein Sci., 14, 2723–2734.

17. Fernandez-Escamilla, A.M. et al, (2004). Prediction of

sequence-dependent and mutational effects on the

aggregation of peptides and proteins. Nat. Biotechnol.,

22, 1302–1306.

18. Maurer-Stroh, S. et al, (2010). Exploring the sequence

determinants of amyloid structure using position-specific

scoring matrices. Nat. Methods, 7, 237–242.

19. Van Durme, J. et al, (2016). Solubis: A webserver to reduce

protein aggregation through mutation. Protein Eng. Des.

Sel., 29, 285–289.

20. Zambrano, R. et al, (2015). AGGRESCAN3D (A3D):

Server for prediction of aggregation properties of protein

structures. Nucleic Acids Res., 43, W306–W313.

21. Prabakaran, R. et al, (2017). Influence of amino acid

properties for characterizing amyloid peptides in human

proteome. Lect. Notes Comput. Sci., 10362, 541–548.

22. Thangakani, A.M. et al, (2016). CPAD, curated protein

aggregation database: a repository of manually curated

experimental data on protein and peptide aggregation.

PLoS ONE, 11 e0152949.

23. Beerten, J. et al, (2014). WALTZ-DB: A benchmark

database of amyloidogenic hexapeptides. Bioinformatics,

31, 1698–1700.

24. Wozniak, P.P., Kotulska, M., (2015). AmyLoad: Website

dedicated to amyloidogenic protein fragments.

Bioinformatics, 31, 3395–3397.

25. Rawat, P. et al, (2020). CPAD 2.0: a repository of curated

experimental data on aggregating proteins and peptides.

Amyloid, 27, 128–133.

26. Louros, N. et al, (2020). WALTZ-DB 2.0: an updated

database containing structural information of

experimentally determined amyloid-forming peptides.

Nucleic Acids Res., 48, D389–D393.

27. Varadi, M. et al, (2018). AmyPro: a database of proteins

with validated amyloidogenic regions. Nucleic Acids Res.,

46, D387–D392.

28. Li, W., Godzik, A., (2006). Cd-hit: a fast program for

clustering and comparing large sets of protein or nucleotide

sequences. Bioinformatics, 22, 1658–

1659.

29. Burley, S.K. et al, (2019). Protein data bank: the single

global archive for 3D macromolecular structure data.

Nucleic Acids Res., 47, D520–D528.

R. Prabakaran, P. Rawat, S. Kumar, et al. Journal of Molecular Biology 433 (2021) 166707

7



30. Balbirnie, M. et al, (2001). An amyloid-forming peptide from

the yeast prion Sup35 reveals a dehydrated b-sheet

structure for amyloid. Proc. Natl. Acad. Sci. U.S.A., 98,

2375-.

31. Nelson, R. et al, (2005). Structure of the cross-b spine of

amyloid-like fibrils. Nature, 435, 773–778.

32. Bertolani, A. et al, (2017). Crystal structure of the DFNKF

segment of human calcitonin unveils aromatic interactions

between phenylalanines. Chemistry, 23, 2051–2058.

33. Reddy, G. et al, (2010). Dry amyloid fibril assembly in a

yeast prion peptide is mediated by long-lived structures

containing water wires. Proc. Natl. Acad. Sci., 107, 21459–

21464.

34. Rousseeuw, P.J., (1987). Silhouettes: A graphical aid to

the interpretation and validation of cluster analysis. J.

Comput. Appl. Math., 20, 53–65.

35. Davies, D.L., Bouldin, D.W., (1979). A cluster separation

measure. IEEE Trans. Pattern Anal. Mach. Intell., PAMI-1,

224–227.

36. Chou, P.Y., Fasman, G.D., (1974). Prediction of protein

conformation. Biochemistry, 13 (2), 222–245.

37. Oliphant, T.E., (2007). SciPy: Open source scientific tools

for Python. Comput. Sci. Eng., 9, 10–20.

38. Zemla, A. et al, (1999). A modified definition of Sov, a

segment-based measure for protein secondary structure

prediction assessment. Proteins Struct. Funct. Genet., 34,

220–223.
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