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We show that layered quenched randomness in planar magnets leads to an unusual intermediate
phase between the conventional ferromagnetic low-temperature and paramagnetic high-temperature
phases. In this intermediate phase, which is part of the Griffiths region, the spin-wave stiffness per-
pendicular to the random layers displays anomalous scaling behavior, with a continuously variable
anomalous exponent, while the magnetization and the stiffness parallel to the layers both remain fi-
nite. Analogous results hold for superfluids and superconductors. We study the two phase transitions
into the anomalous elastic phase, and we discuss the universality of these results, and implications
of finite sample size as well as possible experiments.
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The macroscopic behavior of many-particle systems is
often sensitive to quenched disorder. For example, at
zero-temperature quantum phase transitions, the inter-
play of quantum and disorder fluctuations gives rise to
exotic phenomena, such as quantum Griffiths singulari-
ties [1–3], infinite-randomness critical points [4, 5], and
smeared transitions [6, 7]. The main reason for these
strong effects of disorder is the presence of perfect disor-
der correlations in the imaginary-time dimension, which
becomes infinitely extended at zero temperature. Thus,
one is effectively dealing with infinitely large impurities.

This suggests that strong disorder effects should also
occur at classical (thermal) phase transitions, if the dis-
order is perfectly correlated in one or more space dimen-

sions. For example, the McCoy-Wu model [8, 9], a two-
dimensional (2D) Ising model in which the disorder is
perfectly correlated in one dimension, shows an exotic
transition, characterized by a smooth specific heat but
an infinite susceptibility over a range of temperatures.
By using a strong-disorder renormalization group, Fisher
[4, 5] showed that the critical point is of the infinite-
randomness kind, and is accompanied by power-law Grif-
fiths singularities. Similar behavior was found in Heisen-
berg magnets having 2D disorder correlations [10].

In this Letter, we study thermal phase transitions ex-
hibited by randomly layered 3D superfluids, supercon-
ductors, and planar magnets, as sketched in Fig. 1. All
these systems are characterized by two-component or-
der parameters of U(1) or, equivalently, O(2) symmetry
(representing the condensate wave function, Cooper pair
amplitude, and magnetization, respectively).

Couched in terms of the planar ferromagnet, our re-
sults can be summarized as follows: The interplay of the
layered randomness and the Kosterlitz-Thouless (KT)
[11] transitions in strongly coupled multilayers (slabs)
leads to an anomalously elastic intermediate phase as
part of the Griffiths region associated with the phase

FIG. 1: (Color online) Schematic behavior of the magnetiza-
tion m and the stiffnesses ρs,‖ and ρs,⊥ vs. temperature T

for a bounded disorder distribution. SD and SO denote the
conventional strongly disordered and ordered phases, respec-
tively. The Griffiths region (bounded by Tu and Tl) consists
of the “non-anomalous” (G) and the anomalous (AG) Grif-
fiths phases. For an unbounded distribution, Tu → ∞. Inset:
Randomly layered magnet or superconductor: layers of two
distinct materials are deposited in a random sequence.

transition. In this anomalous Griffiths phase, the mag-
netization m and the spin-wave stiffness ρs,‖ parallel to
the layers are both nonzero (as in a conventional ferro-
magnet). However, the stiffness ρs,⊥ perpendicular to
the layers vanishes, and the elastic free energy exhibits
anomalous scaling behavior. Specifically, free energy ∆F
due to twisted boundary conditions (BCs) in the z direc-
tion, forcing the spins on the top face in Fig. 1 to make
an angle of Θ with those on the bottom face, varies as

∆F ∼ Θ2L−z
⊥ (1)

with system size L⊥. Here, z(T ) is a temperature depen-
dent dynamical exponent that varies continuously from
z = ∞ at the upper Griffiths temperature Tu (i.e., the
boundary between the Griffiths region and the conven-
tional paramagnet) to z = 1 at the temperature Ts where
a nonzero perpendicular stiffness first appears.
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While anomalous elasticity of this type occurs in some
disordered systems possessing uncorrelated disorder (e.g.,
liquid crystals in aerogel [12]), in those cases it is charac-
terized by universal values of the anomalous exponent z:
the non-universality and strong temperature dependence
of z that we find here are, to the best of our knowledge,
unique to systems having correlated disorder.
We also find unusual behavior at the two transition

temperatures Tu and Ts. The magnetizationm is nonzero
for all T < Tu and shows a double-exponential tail to-
wards the nonmagnetic phase. Close to Tu, it takes the
asymptotic form

ln(m) ∼ − exp[a(Tu − T )−ν] , (T → Tu−) (2)

where ν ≈ 0.6717 [13] is the correlation-length critical
exponent of a clean 3D planar (XY) magnet and a is a
nonuniversal constant. If an external magnetic field H is
applied at temperatures T . Tu, the magnetization van-
ishes with decreasing field more slowly than any power,

ln(m) ∼ −
√

| ln(H)|(Tu − T )−ν , (H → 0) . (3)

This relation applies for magnetizations larger than the
double-exponentially small value given in (2).
The parallel spin-wave stiffness (corresponding to a

twist of the BCs in the x or y direction) ρs,‖ is nonzero
for all T < Tu and shows an exponential tail of the form

ln(ρs,‖) ∼ (Tu − T )−ν , (T → Tu−) . (4)

In contrast, the perpendicular stiffness ρs,⊥ (correspond-
ing to a twist of the BCs in the z direction) vanishes as
Ts is approached from below via

ρs,⊥ ∼ (Ts − T ) , (T → T−
s ) . (5)

In the remainder of this Letter, we sketch the deriva-
tion of these results, compute finite-size effects, and dis-
cuss possible experimental realizations. For definiteness,
we focus on the classical planar ferromagnet (i.e., the XY
model) on a cubic lattice. The Hamiltonian is given by

H = −
∑

r

J‖
z (Sr·Sr+x̂+Sr·Sr+ŷ)−

∑

r

J⊥
z Sr·Sr+ẑ. (6)

Here, Sr is a two-component unit vector at lattice site
r, and x̂, ŷ, and ẑ are the unit vectors in the coordinate
directions. The exchange interactions within the layers,

J
‖
z , and between the layers, J⊥

z , are both positive and
independent random functions of the perpendicular co-
ordinate z. For simplicity, we take all J⊥

z ≡ J⊥ and draw

the J
‖
z from a binary distribution (Ju > Jl)

P (J‖) = (1− c) δ(J‖ − Ju) + c δ(J‖ − Jl) , (7)

where c is the concentration of “weak” layers.
Let us discuss the planar magnet (6) qualitatively. At

sufficiently high temperatures, the system is in a con-
ventional (i.e., strongly disordered) paramagnetic phase.

Below the upper Griffiths temperature Tu, which is de-
fined as the transition temperature of a clean system hav-

ing J
‖
z ≡ Ju, rare thick slabs (“rare regions”) of strong

(J
‖
z = Ju) layers show local magnetic order, while the

bulk is nonmagnetic. Although individual such slabs
are prevented from developing true long-range order [14],
they can undergo KT transitions [11]. The unusual be-
havior, eqs. (1) to (5), is caused by the interplay between
the randomness and the KT physics of the rare regions.
Ultimately, below the lower Griffiths temperature Tl (the

transition temperature of a clean system having J
‖
z ≡ Jl),

all layers order magnetically, and the system exhibits the
conventional (i.e., strongly ordered) ferromagnetic phase.
We now use optimal fluctuation theory (i.e., Lifshitz-

tail arguments [15]) to derive the thermodynamics in the
Griffiths region. The probability w(LRR) for finding a
rare region of LRR consecutive strong layers reads

w(LRR) ∼ (1− c)LRR = e−c̃LRR , (8)

with c̃ ≡ − ln(1 − c). Each individual such slab is
equivalent to a 2D XY model, and thus undergoes a
KT transition at some thickness-dependent temperature
TKT (LRR). Finite-size scaling yields Tu − TKT (LRR) ∼

L
−1/ν
RR . This result defines a cutoff length Lc(T ) ∼

(Tu−T )−ν. At any temperature T < Tu, all rare regions
of thickness LRR < Lc(T ) are (locally) in the disordered
phase, while those having LRR > Lc(T ) are in the quasi
long-range ordered KT phase.
Let us first consider a single rare region. According to

KT theory [11], the spatial correlation function C(x) in
the KT phase falls off as a power of the distance |x|:

C(x) ∼ |x|−η (|x| → ∞) . (9)

The exponent η is related to the renormalized (parallel)
spin-wave stiffness ρs,RR of the slab via η = T/(2πρs,RR).
It takes the value 1/4 at the KT transition and is
inversely proportional to LRR for very thick rare re-
gions. We thus model the thickness-dependence of η via
η = 1

4Lc(T )/LRR, which correctly describes both lim-
its. The power-law correlations also lead to a nonlinear
magnetization-vs.-field curve within the KT phase,

m ∼ Hη/(4−η) , (10)

which implies an infinite magnetic susceptibility.
We now combine the single-slab results, (9) and (10),

with the size distribution (8). We start with the response
to an external magnetic field H . Neglecting interactions
between the rare regions for the moment, we write the
rare-region contribution to the magnetization as

m ∼

∫ ∞

Lc(T )

dLRR w(LRR)H
η(LRR)/[4−η(LRR)] . (11)

For small fields, this integral can be evaluated using the
saddle-point method. This yields a saddle-point value
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L2
sp = | ln(H)|Lc(T )/(16c̃), implying that the response at

small fields is dominated by thick rare regions. Inserting
Lsp into (11) immediately gives (3). This highly singular
result breaks down for H > Hx ∼ exp[−16c̃Lc(T )], at
which the saddle point reaches Lc(T ). For H & Hx, the
response is of the power-law type, m ∼ H1/15, until the
regular, linear-response part takes over at an even larger
field Hreg ∼ exp[−(15/14)c̃Lc(T )] [16].
The parallel spin-wave stiffness ρs,‖ can be found anal-

ogously. The free energy cost due to a twist of the BCs in
either the x or y direction is simply a sum over all slabs
in the KT phase. Each slab has the same twisted BCs,
thus, the total parallel stiffness is given by

ρs,‖ ∼

∫ ∞

Lc(T )

dLRR w(LRR) ρs,RR(LRR) . (12)

This integral is dominated by the contribution near the
lower limit, where ρs,RR is approximately constant and
equal to 2T/π. To leading exponential accuracy, we thus
obtain ρs,‖ ∼ exp[−c̃Lc(T )], which leads to (4).
To discuss the perpendicular stiffness ρs,⊥, we apply

twisted BCs in the z direction. The resulting local twists
occur mostly in the disordered bulk between the rare
regions; due to the randomness, they are not uniform
but vary from layer to layer. As the spatial positions
of the rare regions are completely random, the distribu-
tion of their nearest-neighbor distances R is Poissonian,
P (R) = RKT exp(−R/RKT ), where RKT ∼ exp[c̃Lc(T )]
is the typical separation. The effective coupling be-
tween neighboring rare regions falls off exponentially,
J⊥
eff(R) ∼ exp(−R/ξ0), where ξ0 is the bulk correlation

length. Combining this exponential form with P (R) gives
a power-law distribution for the effective couplings, i.e.,

P̄ (J⊥
eff) ∼ (J⊥

eff)
1

z
−1 . (13)

The Griffiths dynamical exponent z ≡ RKT /ξ0 takes the
value ∞ at Tu, and decreases with decreasing tempera-
ture. Writing the free energy due to the twist of the BCs
by an angle Θ as ∆F ∼

∑

z J
⊥
eff Θ2

z, with
∑

z Θz = Θ,
and minimizing w.r.t. the Θz, we obtain [10]

ρs,⊥ ∼ 〈1/J⊥
eff〉

−1 (14)

where 〈· · · 〉 denotes the average over the distribution
(13). This average diverges for z > 1, implying ρs,⊥ = 0
at temperatures just below Tu. Upon lowering T fur-
ther, the exponent z reaches the value 1 at a temperature
Ts < Tu. For T < Ts (i.e., z < 1), the average converges,
yielding a nonzero stiffness. Close to z = 1, the average
behaves as 〈1/J⊥

eff〉 ∼ 1/(1− z) yielding (5).
Finally, we turn to the spontaneous magnetization m.

The reason that m > 0 for all T < Tu is the infinite
susceptibility of those slabs that are in the KT phase.
They align to one another via an infinitesimal coupling.
In contrast, in the quantum Griffiths scenario, realized

in the layered Heisenberg magnet [10], the rare regions
have a large but finite susceptibility. Aligning them re-
quires a nonzero coupling, so that long-range order only
appears at some critical temperature below Tu. To esti-
mate m, we combine the effective interaction J⊥

eff with
the KT scaling within the rare regions. Consider an
area of linear size L (in the x and y directions) in one of
the slabs. The typical magnetization (per site) of such
a region can be calculated by integrating (9), yielding
m(L) ∼ L−η/2. Now consider two such areas in neigh-
boring rare regions. Their interaction can be estimated
as J⊥

eff(L) = J⊥
effL

2m2(L) ∼ L2−η exp(−RKT /ξ0). When
this interaction becomes of order T , the areas align,
and long-range order sets in. This happens at a length
L = Lx ∼ [exp(RKT /ξ0)]

1/(2−η), yielding

m ∼ L−η/2
x ∼ exp[−(RKT /ξ0)η/(4− 2η)] . (15)

Because of the exponential size distribution (8), the vast
majority of rare regions in the KT phase are very close
to the KT transition. Thus, to a good approxima-
tion, we can set η = 1/4. Inserting this, along with
RKT ∼ exp[c̃Lc(T )], into (15) yields the final result (2).
This calculation can be refined by taking into account
the random distribution of rare-region separations, which
only modifies the nonuniversal constants in (2) [16].
We now turn to the aspects of finite system size. The

main effect of a finite perpendicular size L⊥, which is
experimentally important because the number of layers
in a real sample will often be small, is to limit the max-
imum rare-region thickness Lmax

RR in the sample. Esti-
mating Lmax

RR via the condition that a sample of size L⊥

contains, on average, exactly one such rare region, i.e.
L⊥w(L

max
RR ) ∼ 1, we obtain Lmax

RR ∼ ln(L⊥)/c̃.
We note that Lmax

RR introduces an upper limit to the
integral (11) for the m(H) curve. When the saddle-point
value Lsp is larger than Lmax

RR , which happens for fields
H < Hx with ln(Hx) ∼ ln2(L⊥)/[cLc(T )], the integral is
dominated by the contribution near the upper limit. For
very low fields, (3) gets thus replaced by a power law with
a size-dependent exponent: m ∼ HBc̃Lc(T )/ ln(L⊥), with
B a constant. The same mechanism also introduces an
upper limit into the integral (12) for the parallel stiffness.
As this integral is dominated by the lower limit, the finite
size only matters when Lc(T ) > Lmax

RR . Thus, the expo-
nential tail (4) of ρs,‖ gets cut off near the upper Griffiths

temperature, for Tu − T . [ln(L⊥)/c̃]
−1/ν . Using (13),

the minimum J⊥
eff in a sample of size L⊥ behaves as L−z

⊥ .
Inserting this into the elastic free energy expression given
above (14) yields the anomalous elasticity scaling (1).
As an example of the effects of a finite in-plane size

L‖, we discuss the magnetic susceptibility. When L‖ is
finite, the susceptibility of a single slab in the KT phase
is no longer infinite. Its L‖-dependence can be obtained
from integrating (9) to an upper cutoff L‖, which yields

χRR(L‖) ∼ L2−η
‖ . Summing this over all rare regions,
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and evaluating the integral in the saddle-point approxi-
mation, gives a total susceptibility (per unit volume) of
χ ∼ L2

‖ exp{−[cLc(T ) ln(L‖)]
1/2}.

In summary, we have shown that the randomly lay-
ered planar magnet features anomalous elasticity and un-
usual thermodynamics in parts of the Griffiths phase.
Although we have considered the binary disorder distri-
bution (7), the functional forms of the results (1) to (5)
remain valid for any bounded distribution, provided it
does not vanish too rapidly at the upper bound. If the
distribution is unbounded, the tails of magnetization and
parallel stiffness would extend to T = ∞, implying that
the system is always in the magnetic phase [16].
Our theory describes the regime where the system con-

sists of a few isolated rare regions in a disordered bulk; it
becomes controlled for T → Tu. To describe the forma-
tion of bulk order close to Tl, the growths and merging of
rare regions need to be included. Moreover, the charac-
ter of the vortex unbinding transition changes for layers
that are coupled to already ordered slabs [17, 18].
The results (1) to (5) have been formulated in terms

of the planar ferromagnet. Nonetheless, they apply to all
transitions having O(2) or U(1) order parameters, if ex-
pressed in terms of the appropriate variables. For layered
superfluids and superconductors [25], the magnetization
should be exchanged for the condensate wave function
or the Cooper pair amplitude, respectively. In the same
way, the spin-wave stiffness should be exchanged for the
superfluid density, and the external field could possibly
be realized via the proximity effect.
Let us relate our theory to the classification of phase

transitions with disorder based on the rare-region dimen-
sionality dRR [7, 19]: It states that the critical behavior
is conventional if dRR is smaller than the lower critical
dimension d−c of the corresponding clean transition; if the
rare regions order independently (i.e., if dRR > d−c ), the
transition is smeared. The marginal case, dRR = d−c ,
usually leads to an infinite-randomness critical point.
Based on these arguments, one might expect an infinite-
randomness critical point in our system. However, the
quasi long-range order that arises on rare regions in the
KT phase actually leads to a hybrid between a smeared
and a sharp transition. On the one hand, long-range or-
der is present in the entire Griffiths phase (extending to
T = ∞ for an unbounded disorder distribution), just as
at the smeared transition of the randomly layered Ising
model [20]. On the other hand, the long-range order is
due to a collective effect (rather than individual freezing
of rare regions), as in the randomly layered Heisenberg
magnet [10], which has a sharp transition.
Not only are our results of conceptual importance for

the theory of phase transitions, but also they can be
tested experimentally by producing layered nanostruc-
tures of magnetic or superconducting materials. Mag-
netic multilayers having systematic variations of Tc from
layer to layer have recently been produced [21], and our

theory should describe random versions of such struc-
tures (with XY spin symmetry). Moreover, using ultra-
cold atomic gases, one should be able to completely en-
gineer the appropriate many-particle Hamiltonian. We
note that the Kosterlitz-Thouless transition in a single
slab of an 87Rb gas has already been observed [22].
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After completion of this work, we learned of a study of
the same issues by means of a numerical strong-disorder
renormalization group [23]. Our phase transition sce-
nario agrees with that of Ref. [23], and our asymptotic
analytical results complement their numerical data.

[1] M. Thill and D. A. Huse, Physica A 214, 321 (1995).
[2] M. Guo, R. N. Bhatt, and D. A. Huse, Phys. Rev. B 54,

3336 (1996).
[3] H. Rieger and A. P. Young, Phys. Rev. B 54, 3328 (1996).
[4] D. S. Fisher, Phys. Rev. Lett. 69, 534 (1992).
[5] D. S. Fisher, Phys. Rev. B 51, 6411 (1995).
[6] T. Vojta, Phys. Rev. Lett. 90, 107202 (2003).
[7] T. Vojta, J. Phys. A 39, R143 (2006).
[8] B. M. McCoy and T. T. Wu, Phys. Rev. Lett. 21, 549

(1968).
[9] B. M. McCoy and T. T. Wu, Phys. Rev. 176, 631 (1968).

[10] P. Mohan, R. Narayanan, and T. Vojta, Phys. Rev. B
81, 144407 (2010).

[11] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181
(1973).

[12] L. Radzihovsky and J. Toner, Phys. Rev. B 60, 206
(1999).

[13] M. Campostrini, M. Hasenbusch, A. Pelissetto, and
E. Vicari, Phys. Rev. B 74, 144506 (2006).

[14] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133
(1966).

[15] I. M. Lifshitz, Usp. Fiz. Nauk 83, 617 (1964), [Sov.
Phys.–Usp. 7, 549 (1965)].

[16] P. Mohan, P. M. Goldbart, R. Narayanan, J. Toner, and
T. Vojta, unpublished.

[17] H. A. Fertig, Phys. Rev. Lett. 89, 035703 (2002).
[18] W. Zhang and H. A. Fertig, Phys. Rev. B 71, 224514

(2005).
[19] T. Vojta and J. Schmalian, Phys. Rev. B 72, 045438

(2005).
[20] T. Vojta, J. Phys. A 36, 10921 (2003).
[21] M. Marcellini, M. Pärnaste, B. Hjörvarsson, and

M. Wolff, Phys. Rev. B 79, 144426 (2009).
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