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AN UPPER BOUND FOR THE REGULARITY OF BINOMIAL EDGE

IDEALS OF TREES

A. V. JAYANTHAN, N. NARAYANAN, AND B. V. RAGHAVENDRA RAO

Abstract. In this article we obtain an improved upper bound for the regularity of binomial
edge ideals of trees.

Let G be a finite simple graph on [n]. The binomial edge ideal JG is the ideal in S =
K[x1, . . . , xn, y1, . . . , yn] generated by the binomials {xiyj − xjyi | {i, j} ∈ E(G)}, where
K is a field and E(G) denotes the set of all edges of G. This notion was introduced by
Herzog et al., [4] and independently by Ohtani [11]. Ever since then researchers have been
trying to understand the interplay between the combinatorial invariants of the graph G and
the algebraic invariants associated to the ideal JG. In particular, there have been a lot
of attempts on estimating the Castelnuovo-Mumford regularity of the binomial edge ideals
using combinatorial invariants.

It is known that ℓ ≤ reg(S/JG) ≤ n − 1, where n is the number of vertices in G and ℓ
denotes the length of a longest induced path in G, [10]. Further, in the same article, Matsuda
and Murai conjectured that reg(S/JG) = n − 1 if and only if G is a path. This conjecture
was settled in the affirmative by Kiani and Saeedi Madani, [8].

A vertex v in G is said to be a cut vertex if G \ {v} contains strictly more components
than G. A block of a graph is a maximal induced subgraph without any cut vertex and
a block graph is a graph in which every block is a complete graph. Saeedi Madani and
Kiani proved that if c(G) denotes the number of maximal cliques, then for a closed graph
G, reg(S/JG) ≤ c(G), [13]. For a block graph G, c(G) is same as the number of blocks in G.
Saeedi Madani and Kiani conjectured that the above inequality holds for all graphs. They
proved the conjecture for the case of generalized block graphs, [7]. In [6], the authors obtained
a lower bound for the regularity of the binomial edge ideal of trees and characterized the trees
having minimal regularity. Recently, Herzog and Rinaldo computed one of the extremal Betti
number of the binomial edge ideal of a block graph and classified block graphs admitting
precisely one extremal Betti number, [5]. As a consequence, they generalized the lower bound
obtained in [6] for block graphs and also characterized the block graphs attaining the lower
bound. In [9], Mascia and Rinaldo computed the Krull dimension and regularity of block
graphs.

Trees are an important subclass of block graphs. For a tree T on n vertices, c(T ) = n− 1
thus making the bound reg(S/JT ) ≤ c(T ) far from being sharp. Chaudhry et al. proved
that a tree T is a caterpillar tree if and only if reg(S/JT ) = ℓ, where ℓ is the length of a
longest path in T , [2]. The authors of this article generalized this result to obtain an upper
bound for the regularity of a class of trees known as lobster trees, [6]. In this article, we
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obtain an improved upper bound for reg(S/JT ). The upper bound obtained is better than
the presently known bound, n− 1, for most of the trees.

Upper bound for regularity of trees

Let G be a block graph. If two distinct blocks in G share a vertex, then it is a cut vertex.
A block is said to be an end-block if it contains at most one cut vertex. We define the block
degree bd(v) of a cut vertex to be the number of blocks incident to v. A spine of a block
graph G is defined to be a maximum length path P in G where every edge of P is a block in
G. Note that it is possible that the spine is a single vertex. For v ∈ V (G), let lbd(v) denote
the number of large blocks, i.e., blocks of size at least three, incident at v.

One of the terminology that we need is that of gluing of two graphs at a vertex. Let G
be a graph. For a subset W of V (G), let G[W ] denote the induced subgraph of G on the
vertex set W . For a cut vertex v in G, let G1, . . . , Gk denote the components of G \ {v}. Let
G′

i = G[V (Gi) ∪ {v}]. Then we say that G is obtained by gluing G1, . . . , Gk at v, [12].
A vertex v in a graph G is said to be a free vertex if it is part of exactly one maximal

clique. Let G be a block graph and v be a vertex which is not a free vertex of a graph G. Let
G′ denote the graph obtained by adding edges between all the vertices of NG(v), G

′′ denote
the graph G \ {v} and H denote the graph G′ \ {v}. Then there is an exact sequence, [3, 1]:

0 −→
S

JG

−→
S

JG′

⊕
S

JG′′

−→
S

JH

−→ 0 (1)

If G is obtained by identifying a vertex each of k cliques of size at least three, then by [6],
reg(S/JG) = k. Now, we consider block graphs having non-trivial spine.

Theorem 1. Let G be a connected block graph in which every block of size at least three is

an end-block. Let P be a spine of G of length ℓ(G) ≥ 1, e2(G) = |{{a, b} ∈ E(G) \ E(P ) |
bd(a) ≤ 2 and bd(b) ≤ 2}|, CG = {v ∈ V (G) \ V (P ) | bdG(v) ≥ 3} and b(G) be the number

of large end-blocks that intersect the spine P . Then,

reg(S/JG) ≤ e2(G) + ℓ(G) + b(G) +
∑

v∈CG

max{lbd(v), 2}.

Proof. If there is no cut vertex in G, then G is an edge and hence the assertion holds, since
e2(G) = 0, b(G) = 0 and CG = ∅.

Assume that G has at least one cut vertex. Let d(x, P ) denote the distance of the vertex

x from the spine P and d(G) =
∑

x is a cut vertex in G

d(x, P ). We apply induction on d(G). If

d(G) = 0, then G is a graph with a spine P and some cliques attached to P . Therefore, the
assertion follows from [6, Theorem 4.5].

Let d(G) > 0. Let v be a cut vertex in G such that d(v, P ) is maximum.

Case I: If bd(v) = 2, then there exists a graph G1 containing v as a free vertex and a
clique C such that G is obtained by gluing G1 and C at v. Then e2(G1) = e2(G) − 1,
ℓ(G) = ℓ(G1), CG = CG1

and b(G) = b(G1). Moreover, d(G1) < d(G). By induction,

reg(S/JG1
) ≤ e2(G1) + ℓ(G1) + b(G1) +

∑

v∈CG1

max{lbd(v), 2}.
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By [6, Theorem 3.1], reg(S/JG) = reg(S/JG1
) + 1. Hence the assertion follows.

Case II: Assume that bd(v) ≥ 3. Then v ∈ CG. Since v is not a free vertex, it follows from
the exact sequence (1) that

reg

(

S

JG

)

≤ max

{

reg

(

S

JG′

⊕
S

JG′′

)

, reg

(

S

JH

)

+ 1

}

.

Since H is an induced subgraph of G′, reg(S/JH) ≤ reg(S/JG′). Therefore, we get

reg

(

S

JG

)

≤ max

{

reg

(

S

JG′′

)

, reg

(

S

JG′

)

+ 1

}

.

We show that both the entries on the right hand side of the above inequality satisfies the
bound given in the assertion.

Note that v is not a cut vertex in G′ and if v 6= y ∈ V (G) is a cut vertex of G′, then
it is a cut vertex of G as well. Therefore, d(G′) = d(G) − d(v, P ) < d(G). We also have
CG′ = CG \ {v}. It can be seen that e2(G

′) ≤ e2(G) and ℓ(G) = ℓ(G′). By induction
hypothesis,

reg(S/JG′) ≤ e2(G
′) + ℓ(G′) + b(G′) +

∑

x∈CG′

[max{lbd(x), 2}].

If d(v, P ) = 1, then b(G′) = b(G) + 1 and for every u ∈ CG′, lbdG′(u) = lbdG(u). Therefore,

∑

x∈CG

[max{lbdG(x), 2}] =
∑

x∈CG′

[max{lbdG′(x), 2}] + max{lbdG(v), 2}.

Hence

reg(S/JG′) ≤ e2(G) + ℓ(G) + b(G) + 1 +
∑

x∈CG′

[max{lbdG(x), 2}]

≤ e2(G) + ℓ(G) + b(G) +
∑

x∈CG

[max{lbdG(x), 2}]− 1.

If d(v, P ) > 1, then b(G′) = b(G). Further, there is a vertex uv ∈ CG′ which is the
unique cut vertex neighbor of v. Morever, we have lbdG′(uv) = lbdG(uv) + 1 and for every
u ∈ CG′ \ {uv}, lbdG′(u) = lbdG(u). Therefore,
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∑

x∈CG′

[max{lbdG(x), 2}] =
∑

x∈CG′\{uv}

[max{lbdG′(x), 2}] + max{lbdG′(uv), 2}

=
∑

x∈CG′\{uv}

[max{lbdG(x), 2}] + max{lbdG(uv) + 1, 2}

≤
∑

x∈CG′\{uv}

[max{lbdG(x), 2}] + max{lbdG(uv), 2}+ 1

≤
∑

x∈CG′\{uv}

[max{lbdG(x), 2}] + max{lbdG(uv), 2}

+max{lbdG(v), 2} − 1

=
∑

x∈CG

[max{lbdG(x), 2}]− 1.

Therefore,

reg(S/JG′) ≤ e2(G) + ℓ(G) + b(G) +
∑

x∈CG

[max{lbdG(x), 2}]− 1.

Now we consider the graph G′′ = G \ {v}. Let lbdG(v) = r. Then G′′ is the disjoint union
of G1 which is the connected component of G′′ containing P and C1, . . . , Cr maximal cliques
on at least 2 vertices and possibly some isolated vertices. Hence reg(S/JG′′) = reg(S/JG1

)+r.
For all x ∈ V (G1), lbdG1

(x) = lbdG(x) and d(G1) = d(G)− d(v, P ) < d(G). Therefore, by
induction hypothesis

reg(S/JG1
) ≤ e2(G

′′) + ℓ(G1) + b(G1) +
∑

x∈CG1

[max{lbdG1
(x), 2}].

Now, there are two possibilities, namely e2(G
′′) = e2(G) + 1 or e2(G

′′) = e2(G).
If e2(G

′′) = e2(G) + 1, then the unique cut vertex neighbor uv of v has block degree 2 in
G1. Therefore CG1

= CG \ {v, uv} so that

reg(S/JG1
) ≤ e2(G) + 1 + ℓ(G1) + b(G1) +

∑

x∈CG1

max{lbdG1
(x), 2}

≤ e2(G) + ℓ(G1) + b(G1) +
∑

x∈CG1

[max{lbdG1
(x), 2}] + max{lbdG1

(uv), 2}

≤ e2(G) + ℓ(G1) + b(G1) +
∑

x∈CG\{v}

[max{lbdG(x), 2}].

Note also that r = lbdG(v). Hence

reg(S/JG′′) = reg(S/JG1
) + r ≤ e2(G) + ℓ(G) + b(G) +

∑

x∈CG

max{lbdG(x), 2}.

For the case when e2(G
′′) = e2(G), we have CG1

= CG\{v}. Now as argued in the previous
case, one can conclude that

reg(S/JG′′) ≤ e2(G) + ℓ(G) + b(G) +
∑

x∈CG

max{lbdG(x), 2}.
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As an immediate consequence, we generalize [6, Corollary 4.8] to get an upper bound for
the regularity of all trees.

Corollary 2. Let T be a tree on [n] with spine P of length ℓ. Let e2 denote the number of

edges that are not in P and with both end points having degree at most 2 and d3 denote the

number of vertices, not in P , and having degree at least 3. Then

reg(S/JT ) ≤ e2 + ℓ+ 2d3.

Proof. Following the notation of Theorem 1, b(T ) = 0 and lbdT (x) = 0 for each x ∈ V (T )
so that max{lbdT (x), 2} = 2. Now the assertion follows directly from Theorem 1. �

Example 3. Here we illustrate by an example a block graph considered in Theorem 1.

Let G be the graph given on the right side. Following the

notation in Theorem 1, we can see that e2(G) = 1, ℓ(G) =
4, b(G) = 0 and |CG| = 2. Therefore, we get reg(S/JG) ≤
9. We have computed the regularity of this graph using

Macaulay 2 and have found that the graph attains the regu-

larity upper bound.

We also note that the upper bound we obtained in Theorem 1 coincides with the lower
bound for the regularity of Flower graph Fh,k(v) proved in Corollary 3.5 of [9].

Corollary 4. Let Fh,k(v) denote the graph obtained by identifying a free vertex each of h
copies of C3 and k ≥ 1 copies of K1,3 at a common vertex v. Then reg(S/JFh,k(v)) = 2k+ h.

Proof. Let G = Fh,k(v). Following the notation in Theorem 1, we get e2(G) = 0 and
b(G) = h. If k ≤ 2, then C(G) = ∅ and if k > 2, then C(G) consists of all the certer
vertices of k − 2 copies of K1,3 outside a fixed spine. Therefore, it follows from Theorem
1 that reg(S/JG) ≤ 2k + h. Following the notation in the article [9], it can be seen that
i(F (v)) = k + 1 and cdeg(v) = h+ k. This proves the assertion. �

It may also be noted that the upper bound is not attained by all block graphs. For
example, in the case of the graph considered in [9, Example 3.8], our bound gives the value
6 while the actual regularity is 5.
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