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An Analysis of Real-Fourier Domain-Based Adaptive
Algorithms Implemented with the Hartley Transform

Using Cosine-Sine Symmetries
Vasanthan Raghavan, Student Member, IEEE, K. M. M. Prabhu, Senior Member, IEEE, and

Piet C. W. Sommen, Senior Member, IEEE

Abstract—The least mean squared (LMS) algorithm and its
variants have been the most often used algorithms in adaptive
signal processing. However the LMS algorithm suffers from a
high computational complexity, especially with large filter lengths.
The Fourier transform-based block normalized LMS (FBNLMS)
reduces the computation count by using the discrete Fourier trans-
form (DFT) and exploiting the fast algorithms for implementing
the DFT. Even though the savings achieved with the FBNLMS
over the direct-LMS implementation are significant, the compu-
tational requirements of FBNLMS are still very high, rendering
many real-time applications, like audio and video estimation,
infeasible. The Hartley transform-based BNLMS (HBNLMS) is
found to have a computational complexity much less than, and
a memory requirement almost of the same order as, that of the
FBNLMS. This paper is based on the cosine and sine symmetric
implementation of the discrete Hartley transform (DHT), which is
the key in reducing the computational complexity of the FBNLMS
by 33% asymptotically (with respect to multiplications). The
parallel implementation of the discrete cosine transform (DCT) in
turn can lead to more efficient implementations of the HBNLMS.

Index Terms—Adaptive algorithms, DCT, DST, FBNLMS, FFT,
FHT, frequency domain algorithms, LMS algorithms.

I. INTRODUCTION

THE ability of an adaptive filter to operate effectively in
an unknown environment and track time variations of the

input statistics makes it a powerful device. It finds wide applica-
tions in diverse fields such as interference and echo cancellation,
channel equalization, linear prediction, and spectral estimation.

The adaptive filter is implemented in the time domain by
algorithms like the least mean squared (LMS) algorithm [1],
the gradient adaptive lattice [2], or the least squares algorithms
[3], [4]. However, as the number of computations per sample
needed to implement the LMS algorithm grows linearly with the
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filter order, it is less useful in real-time applications like audio
and video estimation. Many techniques have been proposed to
reduce this burgeoning computation count. Transforming the
LMS algorithm to the frequency domain [5], [6] has been the
classical approach, as we can exploit the various forms of fast
Fourier transform (FFT) algorithms to reduce the number of
computations. With the generalization of the transform domain
LMS algorithm [7], we find that we can use orthogonal trans-
forms to yield better computation counts.

Merched et al. [8]1 have introduced the implementation of the
FBNLMS in the Hartley domain (the so-called “HBNLMS”).
This method involves extending the data matrices to circulant
symmetric matrices and then using the Hartley transform to di-
agonalize them. The main motive of [8] is to find the com-
monality between adaptive filters using multidelay concepts and
those using filterbanks, whereas in this paper, our main motive
is the efficient implementation of the HBNLMS algorithm. We
exploit the symmetry of the Hartley transform in being decom-
posed into a cosine and a sine transform of reduced order and the
symmetrical structure of the HBNLMS to significantly reduce
the computational complexity of the FBNLMS. This is possible
entirely because the sine transform of a sequence can be imple-
mented using the cosine transform of its alternate sequence [9].
The asymptotic computational savings with the HBNLMS is
20% with respect to multiplications and additions and 33% with
respect to multiplications alone. Since fast cosine transforms
are commonly used in MPEG coding and are efficiently im-
plemented in special VLSI chips, decomposition of the Hartley
transform to a cosine and a sine transform also has other inherent
advantages that are associated with VLSI designs. We also note
that the HBNLMS requires almost the same order of memory as
that of the FBNLMS implementation.

The Hartley transform has been used in the literature for fil-
tering in [10] and [11], but the authors are not aware of an ef-
ficient implementation of the Hartley transform routines based
on sine and cosine symmetric decompositions in the context of
LMS filters. Merched et al. [8] use the regular Hartley trans-
form in their work without exploiting the symmetries of the
sequences involved. Thus, this work is an efficient implemen-
tation of the proposed Hartley transform-based frequency do-
main LMS. The paper is organized as follows. The Fourier do-
main-based block normalized LMS algorithm is described in

1We would like to thank one of the reviewers for introducing us to the results
of [8].
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Section II. The Hartley transform-based BNLMS (HBNLMS) is
introduced in Section III. Sections IV and V deal with the imple-
mentation issues of the HBNLMS and the computation counts
of the discrete Fourier transform (DFT) and discrete Hartley
transform (DHT)-based algorithms, respectively. The memory
requirements of both the algorithms are compared in Section VI
and concluding remarks are provided in Section VII.

A. Notation

We assume real inputs, real “desired” outputs and we start
with a real . This will ensure that the weight vectors
over all iterations are real. The operations , and

refer, respectively, to the transpose, Hermitian, and the
conjugate of , respectively. The operation refers to ele-
mentwise multiplication of two sequences. The superscripts in

and refer, respectively, to “circulant” and “cir-
culant symmetric.” , , and refer to the Fourier, the
Hartley, the inverse Fourier and the inverse Hartley matrices,
respectively. X(k) and X_H(k) refer, respectively, to the DFT
and the DHT of the sequence x(n). The computation count of
an algorithm is defined as the number of multiplications and
additions, since in most modern-day digital signal processors
(DSPs), the time needed for implementing an addition is almost
the same as that for a multiplication.

The tap inputs of the LMS filter are denoted by
and the tap weights by .

The output, the desired output, and the error in the output are de-
noted by y(n), d(n), and e(n), respectively. Here, M is the order
of the filter used. The filter output y(n) is given by the convolu-
tion sum

(1)

This output y(n) is used to estimate the desired re-
sponse d(n). Let and

. We do not use an explicit
dependence of the weight vector and the error vector on the
discrete-time variable “n” as we are dealing with a particular
iteration, and for that iteration, these vectors can be assumed to
be constant. In the block algorithm (where B is the filter block
length), we define the block input (an M B matrix) as

(2)

Then, the block output is defined as ,
where

(3)

The estimation error is defined as

(4)

refers to the adaptation constant in the adaptive algorithm.

II. FBNLMS ALGORITHM

The Fourier transform-based block normalized least mean
square (FBNLMS) algorithm [12], [13] is an efficient way of im-

plementing the block normalized least mean squares (BNLMS)
algorithm [12]. The weight update equation of the BNLMS al-
gorithm is

(5)

Here, is an estimate of block variance of . The structure
of allows us to extend it circulantly as follows:

(6)

where , , and are chosen appropriately. The first row of
is given as

(7)

Here, the size of (a square matrix of N N), which is
denoted by N, is constrained by . Usually,
N is chosen to be a power of two so that the FFTs can be used
to reduce computation (described later in this section). Further
manipulation is made easy if we notice that is a sub-
matrix of , where . This
submatrix can then be extracted from the product by
premultiplication with a M N windowing matrix defined
as . The following algebraic manipu-
lations then follow trivially:

(8)

It can be seen that
diag , where we exploit the realness of the input vector
and the fact that Fourier matrices diagonalize circulant matrices
[14]. This, therefore, leads to

(9)

where the symbol denotes the elementwise multiplication of
the two N-point sequences. The weight update equation of the
BNLMS algorithm then becomes

(10)
can be written as follows:

(11)

where , and .
Equation (11) can then be rewritten similarly as

(12)
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Since is a sequence that is well-known even before the start
of iterations, we can assume that it is a constant sequence and
therefore, is a known sequence (or can be computed of-
fline). We therefore need three forward Fourier transforms, two
inverse Fourier transforms, two elementwise multiplications, a
variance estimator and two windows for each iteration. We do
not concern ourselves with the dynamic behavior (convergence
or tracking properties) of the FBNLMS or the Hartley trans-
form-based algorithm that will be introduced in Section III, be-
cause both the algorithms are in principle the same when real
inputs and weights are used. The main motive of this paper is
to exploit the structure that lies hidden in the vectors used in
HBNLMS, in order to reduce the computation count. However,
we would like to comment that, since the FBNLMS algorithm is
an exact transformation of the BNLMS algorithm, the dynamic
behavior of both of them will be essentially the same [12].

III. HARTLEY TRANSFORM-BASED BNLMS (HBNLMS)

The DHT [15], [16] of a real valued N-point sequence x(n) is
defined as follows:

cas

(13)
where, cas . A circulant matrix can be
diagonalized by a Fourier matrix, viz. diag ,
where is the DFT of the first column of [14]. A circulant
symmetric matrix can be diagonalized by a Hartley matrix.

diag (14)

where is the first column of C. The FBNLMS algorithm can
then be implemented by extending all data matrices to be cir-
culant and symmetric and using to diagonalize them [8]. The
order of all circulant symmetric matrices should satisfy the con-
straint . We will abuse notation and use

(where N stands for the size of the extended circulant
matrix in the FBNLMS) henceforth. The following equations
can then be seen to be true for HBNLMS [8].

where and
.

(15)

where , ,
and is the DHT of the first column of . We then
have

(16)

Since is a sequence that is well known even before the
start of iterations, we can assume that its transform is a known
sequence. Thus, three Hartley transforms and two inverse
Hartley transforms are needed to compute in the
frequency domain. These Hartley transforms can be computed
using the more efficient DCT and discrete sine transform (DST)
systems. It might initially appear that the HBNLMS has an
inherent disadvantage because of the order of the transforms
needed here. For every Fourier transform (and inverse) of order
N, we need a Hartley transform (and inverse) of order 2N. The
HBNLMS would be computationally disadvantageous when
compared to the FBNLMS (if the symmetries in the sequences
are not used), as is done in [8], where a Hartley transform
of order 2N is implicitly used. The main motive of this work
is to exploit the symmetries inherent in the sequences to use
the computationally more efficient DCT and DST systems to
recursively compute the needed transforms. In this process, we
reduce the needed computations even below that needed by the
FBNLMS (with real-FFT’s used for a fair comparison). The
symmetry in the sequences helps us in replacing a 2N-point
Hartley transform with cosine transforms of order of N/2 down
until 1 [17], [18].

IV. IMPLEMENTATION OF THE HBNLMS

When real data vectors are used, the HBNLMS is just another
mathematically equivalent way of implementing the FBNLMS.
The basic idea of our implementation is that the recursive imple-
mentation of the DCT-I, DST-I, DCT-II and DST-II involve the
same building blocks with signs changed appropriately to give
the needed transforms. The first column of , sat-
isfies the following properties:

(17)

This then implies the following about :

cas

(18)
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Here, is defined as

(19)
This implies that all we need to do to find the 2N-point Hartley
transform is to find the DCT-I [19] of the sequences
and .

The DCT-I of an N-point sequence is computed recursively
using the DCT-I of the even sampled sequence and the DCT-II
of the odd sampled sequence [19], as follows:

(20)

If A and B are the DCT-I of the even samples and DCT-II of
the odd samples of and and are the last

points of A and B in the same order, respectively,
for to can be written as follows:

(21)

The DCT-I of can be calculated using A, B,
and as follows:

(22)

This method is employed recursively to obtain A, B, and thus
. Thus, we will need DCT-II of order N/2 down until 1

to compute . The block diagram of an N-point DCT-I
transformer is shown in Fig. 1. The restructured block diagram
for computing the DCT-I of an alternate sequence is also shown
in Fig. 1.

can be computed using a similar approach. Let
and .

(23)

Since can be written as the sum of two symmetric vec-
tors ( and ), can be computed using an N-point
transform as follows:

(24)

where .
From (24), it can be seen that can be computed from

the DCT-I and DST-I [20] of the two sequences, and
. Let and represent the DCT-I and

the DCT-II of the even and the odd samples, respectively, of
. The suffix R shall denote reordering. [The reordering
(which is an point sequence) of an N-point se-

quence Y(n) is defined as for to
.] Then, the 2N-point Hartley transform of is

(25)

The DST-I of a sequence can also be obtained from the
DCT-II of that sequence [9]. The DST-I is computed using the
DST-I and DST-II of the even and the odd samples, respec-
tively. Thus, a DST-I of order N requires DST-II’s of order N/2
down until 1. The DST-II of order L can be computed from the
DCT-II of the alternate sequence as shown below:

(26)
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Fig. 1. Block diagram for finding the N-point DCT-I of the original and the alternate sequence from the original data sequence. (The signs a and b in a/b correspond
to the respective signs to be used in computing the DCT-I of the original sequence and the alternate sequence.) Circular blocks represent adders.

Let and represent the DST-I and the DST-II, of
the even and the odd samples, respectively. Then, the 2N-point
Hartley transform of is

(27)

Since the DCT-II of x(n) is implemented recursively using an
even and an odd breakup [21], [22], the DCT-II of
(and thus the DST-II and the DST-I) can be easily computed.
The block diagram of a DST-I transformer is shown in Fig. 2.
The 2N-point inverse Hartley transform of the product of

and can also be computed using an N-point
inverse transform. The elementwise product in (15) and (16)
(ignoring the (N/2)th and the (3N/2)th points) can be seen to be
of the form

(28)

Looking at the form of these two sets of sequences, it can be
inferred that the inverse transform should be of the form

(29)

Since windows out the part, we do not need
to compute . If , , , and refer to the even
and odd samples of P and Q, they are noted to be as follows:

(30)

where , , , and are the inverse transforms of
the type DCT-I, DCT-II, DST-I, and DST-II, respectively. Since
the inverse DST-II can be computed using the inverse DCT-II
[9], the inverse Hartley transform of order 2N actually needs the
same order of computations as a forward transform of length N.

can be computed in exactly a similar way as ,
as is similar in structure to . The other inverse transform
follows the same pattern as the one mentioned above.

V. DCT AND DFT COMPARISONS

The DFT can be implemented either with an aim to reduce
memory, execution time, or a combination of both in mind. The
algorithm to be used for the DFT depends on the application

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 11, 2009 at 04:32 from IEEE Xplore.  Restrictions apply. 
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Fig. 2. Block diagram for finding the N-point DST-I of a given sequence. Circular blocks represent adders.

at hand, more so, because a particular algorithm could cater to
the needs of that application better. With this in mind, a gen-
eral choice for the DFT of FBNLMS to compare with the DCT
of HBNLMS is a choice dependent on the specifics of the ap-
plication. Instead of going into the specifics of algorithms and
applications, we use the radix-2 versions of DCT and DFT to
illustrate the advantages of the two implementation schemes.
This does not in anyway imply that the advantages are obtain-
able only with the radix-2 versions. Our aim is only to show the
general trend in computational benefits of the HBNLMS with
respect to FBNLMS.

In addition, since we have assumed real inputs and weights,
it would be unfair to compare a complex FFT with a real DCT,
and hence, in our analysis, we use specialized FFT algorithms
that work with real data [23]. However, our choice for the real
algorithms is restricted to the radix-2 counterparts on both sides
since our motive is in showing the relative advantages rather
than comparing the individual algorithms.

Comparing the performance of radix-2 DCT-II and radix-2
DFT, we need, in general, for a DCT-II [21] of order N,

multiplications and
additions. For a real-valued radix-2 DFT [23] of order N,

we need multiplications and
additions. Table I gives the compu-

tation counts of DCT-II and DFT for different N.
Finding the DCT-I from the DCT-IIs requires

multiplications and
additions. To find the DCT-I of

and the DCT-I of the 2N-point sequence, an additional (3/2 N)
additions are required. Therefore, for finding the DCT-I of the
first sequence, we need multiplications
and additions.

To find the L-point DST-II of the sequence at each stage from
the corresponding L-point DCT-II, we need L additions. Simi-
larly, to get the 2L-point DST-I from the corresponding DST-II,
we need 2L additions. Summing these contributions, we require

additions. Here, an additional count of (3/2 N) is re-
quired to obtain the DST-I of the original 2N-point sequence.
By an easy manipulation, the 2N additions that need to be per-
formed to get from the DCTs and DSTs can be reduced
to unit additions.

Removing redundant additions, we find that to compute the
2N-point Hartley transform from the original sequence, we re-
quire multiplications and
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TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITIES OF RADIX-2 DCT-II AND

RADIX-2 RFFT ALGORITHMS

TABLE II
COMPARISON OF COMPUTATIONAL COMPLEXITIES OF HBNLMS AND

FBNLMS ALGORITHMS

additions. For the N-point DFT, however, we need
multiplications and

additions. Thus, if we compare the DCT system used
here with the real-DFT system used in the FBNLMS, we find
that for , the number of multiplications is lesser for
the DCT system. However, in some modern DSP’s, additions
and multiplications are performed at almost the same speed.
For , the total number of computations of the DCT
system is lower than the real-DFT system. Thus, for large adap-
tive filters, the implementation proposed has a distinct advan-
tage with respect to computations. Table II shows the computa-
tion counts of the FFT’s and the FCT’s involved in the FBNLMS
and HBNLMS algorithms, respectively. We assume the same
computation counts for the inverse transform and the forward
transform. The savings in Table II are computed with respect to
multiplications, as they are more prominent for small N.

For , using the FBNLMS, we require 3 727 390
additions and 1 433 620 multiplications, for a total of 5 161 010
computations. Using the HBNLMS, we require 3 981 306 ad-
ditions and 1 064 965 multiplications for a total of 5 046 271
computations. Thus, we can see the inherent advantage of the
HBNLMS as N increases.

As N increases asymptotically to infinity, we find
that the computational savings are of the order of

if multiplications
are seen to be the primary computation operations and

when multiplications and
additions are seen to be equal contributors to computations.

VI. MEMORY REQUIREMENTS

Computation count is just one of the many parameters that
reflect the ‘desiredness’ of an algorithm. The algorithm would
not serve much purpose if the memory requirements of the same
were to far exceed that of the original algorithm. The FBNLMS
requires three forward transforms and two inverse transforms.
The memory requirements of the FBNLMS are the incoming
data, (length N) and (length M), two buffer regis-
ters of length N to store the intermediate results (like forward
transforms etc.), a desired data register of length B, and twiddle
factors that can be stored in a register of length less than N if we
use their complex conjugate symmetry. Unit register locations
are needed to store the adaptation constants and the variance es-
timator. Thus, we would require, in all, an order of
memory units for the FBNLMS.

The HBNLMS, on the other hand, has to incorporate the
inherent symmetry of the data sequences if we want to reduce
the number of memory units used. We require length N and
M registers for the data sequences viz. and , respec-
tively. Since the 2N-point Hartley transforms are of the form
as in (25), it would be easier if we store the two N/2-point
sequences, and . Four length N buffer registers are
needed (in comparison with two in FBNLMS) as we would
have to store , , and their products.
The desired data needs a length B register and twiddle factors
of the DCT-II require a register of length less than N. Unit
memory units for adaptation constants follow the same pattern
as in FBNLMS. Thus, the HBNLMS requires an order of

memory units. However, the computational
benefits achieved by the HBNLMS overweigh the 2N extra
memory units that it needs in the process.

VII. CONCLUSION

In this paper, the HBNLMS has been implemented using
the DCT-DST symmetric decomposition. The HBNLMS is
an exact equivalent of the FBNLMS and forms a part of the
broad class of Transform domain real LMS algorithms [7], [8].
The HBNLMS implemented using the cosine-sine symmetric
decomposition, reduces the number of computations (multi-
plications and additions) by a large amount, especially if the
order of the filter is large, thus enabling direct implementation
of many audio and video estimation problems efficiently. Many
computation reduction techniques that can be employed with
the DFT, like higher-radix and split-radix algorithms, pruning
[24]–[26], block transforms [27], and slide transforms [28]
can be easily extended to the DHT, DCT and DST, thereby
resulting in an almost equivalent reduction in complexity of the
HBNLMS over the FBNLMS with such techniques. Besides,
the memory requirements of the HBNLMS are of the same
order as that of the FBNLMS.

Since DCTs and DSTs are used for video coding in the
various MPEG standards and have been implemented in spe-
cial VLSI blocks, these can be exploited to implement the
HBNLMS. Recursive implementation of DCTs [22], with
parallel processing blocks, can also be used, especially for large
filters to reduce computations by a large amount. The stability
of the HBNLMS algorithm vis-à-vis rounding off errors can
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be studied equivalently by studying the stability of the various
DCT algorithms in comparison with the stability of the real
FFT algorithms used in FBNLMS.
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