
Alternating Anderson-Richardson method: An efficient alternative

to preconditioned Krylov methods for large, sparse linear systems

Phanish Suryanarayana∗,a, Phanisri P. Pratapaa, John E. Paskb

aCollege of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
bPhysics Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Abstract

We present the Alternating Anderson-Richardson (AAR) method: an efficient and scalable alter-

native to preconditioned Krylov solvers for the solution of large, sparse linear systems on high

performance computing platforms. Specifically, we generalize the recently proposed Alternating

Anderson-Jacobi (AAJ) method (Pratapa et al., J. Comput. Phys. (2016), 306, 43–54) to include

preconditioning, discuss efficient parallel implementation, and provide serial MATLAB and par-

allel C/C++ implementations. In serial applications to nonsymmetric systems, we find that AAR

is comparably robust to GMRES, using the same preconditioning, while often outperforming it in

time to solution; and find AAR to be more robust than Bi-CGSTAB for the problems considered.

In parallel applications to the Helmholtz and Poisson equations, we find that AAR shows superior

strong and weak scaling to GMRES, Bi-CGSTAB, and Conjugate Gradient (CG) methods, using

the same preconditioning, with consistently shorter times to solution at larger processor counts.

Finally, in massively parallel applications to the Poisson equation, on up to 110,592 processors,

we find that AAR shows superior strong and weak scaling to CG, with shorter minimum time to

solution. We thus find that AAR offers a robust and efficient alternative to current state-of-the-art

solvers, with increasing advantages as the number of processors grows.

Key words: Linear systems of equations, Parallel computing, Anderson extrapolation,

Richardson iteration, Electronic structure calculations

PROGRAM SUMMARY

Manuscript Title: Alternating Anderson-Richardson method: An efficient alternative to preconditioned

Krylov methods for large, sparse linear systems

Authors: Phanish Suryanarayana, Phanisri P. Pratapa, John E. Pask

Program Title: AAR

Journal Reference:

Catalogue identifier:

Licensing provisions: GNU General Public License 3 (GPL)

Programming language: MATLAB for the MATLAB version. C/C++ for the PETSc version. C/C++ for

the standalone version.

∗Corresponding Author (phanish.suryanarayana@ce.gatech.edu)

Preprint submitted to Elsevier June 26, 2018

© 2018 published by Elsevier. This manuscript is made available under the Elsevier user license

https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S001046551830256X

Manuscript_a44c38acbbce256ff1b17d1ef124c5fe

Computer: Any system with MATLAB for the MATLAB version. Any system with C/C++ compiler and

MPI library for the PETSc and standalone versions.

Operating system: Unix/Linux or Windows for the MATLAB version. Unix/Linux for the PETSc and stan-

dalone versions.

RAM: Problem dependent.

Number of processors used: As many as available via MPI for the PETSc and standalone versions.

Keywords: Linear systems of equations, Parallel computing, Anderson extrapolation, Richardson iteration,

Electronic structure calculations

Classification: 4.8

External routines/libraries: MATLAB 2014a or later for the MATLAB version.

PETSc 3.5.3 (http://www.mcs.anl.gov/petsc) or later and

MVAPICH2 2.1 (http://mvapich.cse.ohio-state.edu/) or later for the PETSc version.

MVAPICH2 2.1 or later for the standalone version.

Nature of problem: Linear systems of equations.

Solution method: Anderson extrapolation at periodic intervals within a preconditioned Richardson iteration.

Restrictions: Jacobi preconditioning for the standalone version.

Running time: Problem dependent. Timing results for selected cases provided in paper.

1. Introduction

Linear systems of equations are encountered in the gamut of applications areas within com-

putational physics, from quantum to continuum to celestial mechanics. The strategies adopted for

solving such systems can be broadly classified into two categories: direct methods [1] and iter-

ative methods [2]. For relatively small system sizes, direct methods such as QR decomposition

and LU factorization are generally the preferred approaches. However, as the size of the system

increases, direct methods become inefficient—in terms of both computational cost and storage

requirements—due to poor scaling with system size relative to iterative approaches, particularly

Krylov subspace based techniques such as the Generalized Minimal Residual (GMRES) [3] and

Conjugate Gradient (CG) [4] methods. Therefore, such iterative approaches are often the methods

of choice for the solution of large-scale linear systems of equations.

A number of physical applications require the repeated solution of large, sparse linear systems.

For example, in real-space quantum molecular dynamics calculations [5, 6, 7, 8] or electronic

structure calculations with exact exchange [9, 10], the Poisson equation may be solved hundreds

of thousands of times within a single simulation. Therefore, it is critical to reduce the time to

solution as far as possible in such situations, a goal typically achieved through parallel computing,

wherein the number of floating point operations per second increases linearly with the number of

processors. However, the cost associated with inter-processor communication, especially global

communication, limits the parallel efficiency of linear solvers, which in turn limits the reduction

in wall time that can be achieved in practice [11, 12, 13]. Therefore, there is wide interest in

developing algorithms that scale well on modern large-scale parallel computers which can contain

tens to hundreds of thousands of computational cores or more [14, 15, 16].

Krylov subspace methods such as GMRES and CG have limited parallel scalability due to the

large number of global operations inherent to them [17, 18]. In this context, the classical Richard-

2

son and Jacobi fixed-point iterations [19, 2] are ideally suited for massive parallelization by virtue

of the strict locality of operations required, i.e., they do not require the calculation of any dot

products, other than those required for the calculation of the residual [20, 21]. However, they

suffer from extremely large prefactors and poor scaling with system size compared to Krylov sub-

space methods, which has made them unattractive on even the largest modern platforms. This has

motivated the development of strategies that significantly accelerate the convergence of the basic

Richardson/Jacobi iterations while maintaining their underlying parallel scalability and simplicity

to the maximum extent possible [22, 23]. Such approaches include the Chebyshev acceleration

technique [2] and the recently developed Scheduled Relaxation Jacobi (SRJ) method [22]. How-

ever, Chebyshev acceleration requires the computation of the extremal eigenvalues of the coeffi-

cient matrix, which may be computationally expensive. Moreover, the current formulation of the

SRJ method is applicable only to linear systems arising from the discretization of elliptic equations

using second-order finite-differences. For such reasons, Krylov subspace methods have remained

the methods of choice in general for the solution of large, sparse linear systems.

Recently, we proposed to employ Anderson extrapolation [24]1 at periodic intervals within the

classical Jacobi iteration, resulting in the so called Alternating Anderson-Jacobi (AAJ) method

[23]. This strategy was found to accelerate the Jacobi iteration by orders of magnitude, to the point

in fact of outperforming GMRES significantly in serial computations without preconditioning2. In

the present work, we generalize the AAJ method to include preconditioning, discuss efficient par-

allel implementation, and provide serial MATLAB and parallel C/C++ implementations. In serial

applications to nonsymmetric systems, we find that AAR is comparably robust to GMRES, using

the same preconditioning, while often outperforming it in time to solution. In parallel applications

to the Helmholtz and Poisson equations, on up to 110,592 processors, we find that AAR shows

superior strong and weak scaling to GMRES, Bi-CGSTAB, and Conjugate Gradient (CG) meth-

ods, using the same preconditioning, with consistently shorter times to solution at larger processor

counts. We thus find that AAR offers a robust and efficient alternative to current state-of-the-art

solvers, with increasing advantages as the number of processors grows.

The remainder of this paper is organized as follows. In Section 2, we describe the precondi-

tioned AAR method. We demonstrate the efficiency and parallel scaling of the method in Section 3.

Finally, we conclude in Section 4.

1 Anderson’s extrapolation has been successfully utilized for accelerating the convergence of non-linear fixed-point

iterations arising in electronic structure calculations [25], coupled fluid-structure transient thermal problems [26], as

well as neutronics and plasma physics [27]. In the context of linear systems of equations, Anderson’s technique bears

a close connection to the GMRES method [28, 29, 30].
2In the context of electronic structure calculations, the analogue of the AAJ method for nonlinear fixed-point

iterations—referred to as Periodic Pulay [31]—is found to significantly accelerate the convergence of the self-

consistent field (SCF) method.

3

2. Alternating Anderson-Richardson method

In this section, we present the preconditioned Alternating Anderson-Richardson (AAR) method

for the solution of large, sparse linear systems:

Ax = b , (1)

A ∈ C
N×N , x ∈ C

N×1 , b ∈ C
N×1 ,

where C is the set of complex numbers. This approach generalizes the Alternating Anderson-

Jacobi (AAJ) method presented previously [23] to include preconditioning and therefore acceler-

ate convergence. In this work, we summarize and focus on the incorporation of preconditioning

and the development of an efficient parallel formulation and implementation; a more complete

discussion of the underlying alternating Anderson approach found in our previous work [23].

In the AAR method, Anderson extrapolation [24] is performed periodically within a precon-

ditioned Richardson fixed-point iteration [2] to accelerate its convergence, while maintaining its

parallel scalability to the maximum extent possible. Since the method makes no assumptions about

the symmetry of A, it is applicable to symmetric and nonsymmetric systems alike. Moreover, it

is amenable to the three types of preconditioning: left, right, and split [2, 32]. For the sake of

simplicity, we choose left preconditioning in the present work. Mathematically, the linear system

in Eq. 1 is solved using a fixed-point iteration of the form

xk+1 = xk +Bkfk , k = 0, 1, . . . (2)

where the matrix Bk ∈ CN×N can be written as

Bk =

{

ωI if (k + 1)/p 6∈ N , (Richardson)

βI− (Xk + βFk)(F
T

k
Fk)

−1
F

T

k
if (k + 1)/p ∈ N . (Anderson)

(3)

Above, ω ∈ C is the relaxation parameter used in the Richardson update, β ∈ C is the relaxation

parameter used in the Anderson update, I ∈ RN×N is the identity matrix, the superscript T denotes

the conjugate transpose, and p is the frequency of Anderson extrapolation. Additionally, Xk ∈
CN×m and Fk ∈ CN×m contain the iteration and residual histories at the kth iteration:

Xk =
[

(xk−m+1 − xk−m) (xk−m+2 − xk−m+1) . . . (xk − xk−1)
]

, (4)

Fk =
[

(fk−m+1 − fk−m) (fk−m+2 − fk−m+1) . . . (fk − fk−1)
]

, (5)

where m+ 1 is the number of iterates used for Anderson extrapolation,3 and the residual vector

fk = M
−1(b−Axk) , (6)

with preconditioner M
−1 ∈ CN×N . As discussed in the context of AAJ [23], the key to the

robustness and efficiency of the method is the Anderson extrapolation step which minimizes the

3In the initial iterations, xj in Eq. 4 and fj in Eq. 5 with j < 0 are omitted or can be set to null vectors if a

pseudoinverse is used to evaluate (FT
kFk)

−1 in Eq. 3.

4

l2 norm of the residual in the column space of Fk, yielding consistent and substantial reductions

with increasing history length m;4 while the key to the parallel scalability of the method is that the

extrapolation is performed only periodically, thus reducing nonlocal communications significantly.

We summarize the AAR method in Fig. 1, wherein x0 denotes the initial guess, rk denotes the

relative l2 norm of the residual vector (i.e., rk = ‖Axk − b‖/‖b‖), and ǫ is the tolerance specified

for convergence. In order to enhance parallel scalability, we reduce global communications by

checking for convergence of the fixed-point iteration (i.e., calculating rk) only during Anderson

extrapolation steps. Overall, AAR involves 1 matrix-vector product and 1 preconditioner applica-

tion per iteration, and an average of m(m+ 3)/2p inner product and 2(1 +m/p) DAXPY5 vector

operations per iteration. Note that the inner product operations occur only during the Anderson

extrapolation steps and can be carried out as dense matrix-matrix and matrix-vector operations:

two important features that can be exploited to increase both serial and parallel efficiency, as we

show in Section 3.

The key difference between the AAR and AAJ [23] methods lies in the choice of residual vector

Eq. 6. In the AAR method, any available preconditioner M−1 can be employed, whereas in AAJ,

M = D is the diagonal part of A. The AAR method thus generalizes the AAJ method in the sense

that the AAJ method is recovered for the particular choice of preconditioner M−1 = D
−1, i.e.,

the classical Jacobi preconditioner. Furthermore, just as the AAJ method can be understood as a

generalization of the Jacobi [2] and Anderson-Jacobi (AJ) [24, 23] methods, the AAR method can

be understood as a generalization of the Richardson [2] and Anderson-Richardson (AR) [28, 29,

30] methods. Specifically, the AR method is recovered for p = 1, while the Richardson iteration is

obtained in the limit p → ∞.

As discussed in the context of AAJ [23], the convergence of the AAR method can be under-

stood through its connection to GMRES. First, we note that with complete history (i.e., m = ∞),

AAR is equivalent to AR for ω 6= 0 and p ≥ 1 since, upon extrapolation, the residual norm is min-

imized over the same Krylov subspace regardless of previous extrapolations (in exact arithmetic).6

Second, it has been shown [28, 29, 30] that AR with complete history is equivalent to GMRES

without restart, in the sense that the iterates of one can be readily obtained from those of the other

(in exact arithmetic).7 Hence, in the above sense, AAR with complete history is equivalent to

GMRES without restart and so must show corresponding convergence.

With finite history and restarts, however, as typical in practice to reduce storage and/or orthog-

onalization costs, both AAR and GMRES can require additional iterations to reach convergence.

And in this context, as demonstrated in Section 3, we typically find shorter times to solution for

AAR than for GMRES, with increasing advantages for AAR in parallel calculations as the number

of processors grows. As discussed in the context of AAJ [23], this may be due in part to the fact

that AAR retains and minimizes over the most recent m-vector history at each extrapolation, while

GMRES begins anew at each restart. The key advantage of AAR, however, in parallel calculations

4In practice, m is limited by available memory and/or finite precision effects as the matrix FT
kFk in Eq. 3 becomes

ill-conditioned.
5Given a scalar α, and vectors x and y, the operation DAXPY refers to: αx+ y.
6Excluding potential differences in stagnation [33, 34].
7Excluding potential differences in stagnation [30].

5

Input

A, b, M, x0

ω, β, m, p, ǫ
k = 0

(k+1)
p

∈ N?

Richardson update

xk+1 = xk + ωfk

Calculate residual

fk = M
−1(b − Axk)

Anderson extrapolation

xk+1 = xk + βfk − (Xk + βFk)(F
T
kFk)

−1
F

T
k fk

rk+1 < ǫ?
Output

x
∗ = xk+1

No

k = k + 1

Yes

No

k = k + 1

Yes

Figure 1: The preconditioned Alternating Anderson-Richardson (AAR) method.

in particular, is that the majority of iterations are simple, computationally local Richardson itera-

tions, with Anderson extrapolations only every p iterations. A study of the mathematical properties

of AAR in relation to GMRES and AR can be found in the recent work of Lupo Pasini [34].

Finally, in finite precision, other considerations come into play. For example, while for com-

plete history and exact arithmetic, the iterates produced by AAR upon extrapolation are indepen-

dent of ω and p, this no longer holds with finite history and floating point arithmetic. Nevertheless,

as shown in the context of AAJ [23], the dependence is generally weak over a broad range of val-

ues so that the method is generally insensitive to the particular choice of values within the range.

Similar insensitivity is found for the Anderson extrapolation parameter β, though larger values can

accelerate convergence in better-conditioned (or well preconditioned) problems, consistent with

findings in the nonlinear context [31]. Finally, while in exact arithmetic, a larger history length m
must generally improve convergence, by providing a larger subspace over which to minimize, in

finite precision, the increasing condition number of the matrix F
T

k
Fk in Eq. 3 with increasing m

limits the effective history length in practice. Given the general insensitivity of the method to the

particular choice of parameter values, we use the same default set {ω, β,m, p} = {0.6, 0.6, 9, 8}

6

for all systems in the present work. While possible to optimize for a particular application area, we

have found these to be sufficient in a broad range of applications, with available preconditioning

in particular, as demonstrated in Section 3.

3. Results and discussion

In this section, we demonstrate the efficiency and scaling of the preconditioned Alternating

Anderson-Richardson (AAR) method in the solution of large, sparse linear systems of equations.

Specifically, we consider an assortment of nonsymmetric systems from Matrix Market8 as well as

Poisson and complex-valued Helmholtz equations arising in real-space electronic structure calcu-

lations, and use the default parameters {ω, β,m, p} = {0.6, 0.6, 9, 8} in AAR for all systems.

3.1. Matrix Market: assortment of nonsymmetric systems

In order to demonstrate the robustness and efficiency of AAR, we first study the relative per-

formance of AAR, GMRES, and Bi-CGSTAB in MATLAB9 for nonsymmetric linear systems

available in the Matrix Market repository.10 Specifically, we consider ten matrices that arise in

various areas of computational physics, including oil reservoir modeling, fluid dynamics, and the

study of plasmas. In cases where b is not provided, we use a random vector with unit norm. We

use the default MATLAB parameters for GMRES (restart frequency of 30) and Bi-CGSTAB, with

a vector of all ones as the starting guess x0 in all cases. The simulations are performed on a work-

station with the following configuration: Intel Xeon Processor E3-1220 v3 (Quad Core, 3.10GHz

Turbo, 8MB), 16GB (2x8GB) 1600MHz DDR3 ECC UDIMM.

In Table 1, we present the timings (in seconds) obtained for achieving a convergence tolerance

of ǫ = 10−6 for two cases: (i) Jacobi preconditioner and (ii) ILU(0) preconditioner. We first note

that the simple Jacobi preconditioner is insufficient to obtain convergence for a number of these

systems, though AAR is able to converge for more systems than GMRES and Bi-CGSTAB. On

the other hand, we see that ILU(0) preconditioning is sufficient to obtain convergence for all ten

systems for AAR, all but one for GMRES, but only half the systems for Bi-CGSTAB. Moreover,

we see that when ILU(0) preconditioning is employed, AAR outperforms GMRES significantly

for all but one system; while Bi-CGSTAB can outperform both AAR and GMRES significantly

when it converges, but even then outperforms AAR in only two of those five cases. We thus

find that AAR shows comparable robustness to GMRES while often outperforming it, while Bi-

CGSTAB, though highly competitive when it converges, shows considerably less robustness in the

applications considered.

To better understand the timings in Table 1, we show in Table 2 the numbers of matrix-vector,

inner product, and DAXPY vector operations for cases where all methods converge and the number

of iterations is at least p. From the results, it is clear that Bi-CGSTAB requires the fewest oper-

ations, resulting in high efficiency when it does converge. By profiling, we find that the similar

8http://math.nist.gov/MatrixMarket/
9https://www.mathworks.com/

10The MATLAB implementation of AAR is available as part of the code accompanying this paper. For GMRES

and Bi-CGSTAB, the inbuilt functions in MATLAB are utilized.

7

timings of AAR and Bi-CGSTAB for sherman5 are due to AAR’s ability to leverage Level 2 and

Level 3 BLAS to compute inner products, as well as the inbuilt checks performed by MATLAB for

Bi-CGSTAB. In contrast, the superior performance of AAR relative to GMRES for utm1700b is

due to the substantially smaller number of operations, while for sherman5 it is again due to AAR’s

ability to leverage Level 2 and Level 3 BLAS to compute inner products as well as inbuilt checks

performed by MATLAB for GMRES.

Importantly, we note that while the default parameters for AAR work well for a wide range

of applications, as demonstrated above, the flexibility to tune the parameters can be leveraged to

tailor AAR for particular applications areas. For example, by simply tuning β, the solution times

for the utm3060, utm1700b, and sherman5 applications above can be brought down to 0.087 s,

0.026 s, and 0.010 s for β = 1.7, 1.3, and 0.8, respectively. More importantly, however, by virtue of

the superior parallel scaling of AAR, times to solution can be brought down substantially further

still relative to standard solvers such as GMRES and Bi-CGSTAB, as we now show.

Matrix N
Jacobi preconditioner ILU(0) preconditioner

AAR GMRES Bi-CGSTAB AAR GMRES Bi-CGSTAB

utm3060 3060 15.104 - 1.805 0.283 0.191 0.043

utm1700a 1700 - - - 0.004 0.013 0.006

utm1700b 1700 4.733 - - 0.045 0.159 0.023

fidap029 2870 0.004 0.019 0.007 0.005 0.016 0.008

sherman5 3312 0.028 0.095 0.016 0.014 0.025 0.014

mcfe 765 - 0.392 - 0.007 0.018 -

memplus 17758 0.521 1.344 - 0.735 2.185 -

add32 4960 0.021 0.070 - 0.021 0.061 -

mcca 180 0.019 0.023 0.008 0.013 0.021 -

fs_680_3 680 0.211 - - 0.004 - -

Table 1: Time taken in seconds by AAR, GMRES, and Bi-CGSTAB in MATLAB for nonsymmetric linear systems

from Matrix Market. The symbol ‘-’ is used to indicate that convergence was not achieved within 1000 sec.

Matrix
AAR GMRES Bi-CGSTAB

MVP IP* DAXPY* MVP IP DAXPY MVP IP DAXPY

utm3060 1809 12204 7686 474 7299 7299 203 406 609

utm1700b 479 3186 2020 645 9900 9900 157 314 471

sherman5 73 486 308 28 434 434 47 94 141

Table 2: Number of matrix-vector products (MVP), inner products (IP), and DAXPY vector operations required by

AAR, GMRES, and Bi-CGSTAB in MATLAB employing the ILU(0) preconditioner. IP and DAXPY denote that all

operations are performed using Level 1 BLAS. IP* denotes that operations are performed using Level 2 (17%) and

Level 3 (83%) BLAS. DAXPY* denotes that operations are performed using Level 1 (76%) and Level 2 (24%) BLAS.

8

3.2. Orbital-free Density Functional Theory: Helmholtz equation

Next, we study the relative performance of AAR, GMRES with standard restarts [3], GMRES

with augmented restarts [35] (LGMRES), and Bi-CGSTAB [36] in PETSc [37, 38]11. We consider

the periodic Helmholtz problem arising in real-space orbital-free Density Functional Theory (OF-

DFT) calculations [39, 40, 41]:

− 1

4π
∇2V (r) +QV (r) = P ρα(r) in Ω,

{

V (r) = V (r+ Liêi) on ∂Ω ,

êi · ∇V (r) = êi · ∇V (r+ Liêi) on ∂Ω ,
(7)

where V (r) is the kernel potential [42, 43], ρ(r) is the electron density, α = 5
6
+

√
5
6

, P =

0.003277− i0.009081, Q = −0.134992− i0.070225, i =
√
−1, and Ω is a cuboidal domain with

side lengths Li, unit vectors êi along each edge, and boundary ∂Ω. The equation is discretized

using sixth-order accurate finite-differences on a uniform grid with mesh-size h. The computa-

tions are parallelized by decomposing the domain into cubical subdomains of equal size, with

communication between processors handled via Message Passing Interface (MPI) in the PETSc

framework.

In the Anderson extrapolation step of AAR, we perform only one global communication call

(i.e., MPI_Allreduce) to simultaneously determine r and the complete matrix F
T

k
Fk. Since

the matrix F
T

k
Fk is generally ill-conditioned, we compute its inverse using the Moore-Penrose

pseudoinverse [44]. We employ the default PETSc parameters for GMRES, LGMRES, and Bi-

CGSTAB. In all the simulations, we use a vector of all zeros as the starting guess x0 and a conver-

gence tolerance of ǫ = 10−6 on the relative residual. We perform the calculations on a computer

cluster consisting of 16 nodes with the following configuration: Altus 1804i Server - 4P Interlagos

Node, Quad AMD Opteron 6276, 16C, 2.3 GHz, 128GB, DDR3-1333 ECC, 80GB SSD, MLC,

2.5" HCA, Mellanox ConnectX 2, 1-port QSFP, QDR, memfree, CentOS, Version 5, and connected

through InfiniBand cable.

We first consider a 3 × 3 × 3 aluminum supercell based on a face-centered cubic (FCC) unit

cell having lattice constant 7.78 Bohr, with atoms randomly displaced from ideal positions. We

discretize the domain using a finite-difference grid with a mesh-size of h = 0.486 Bohr, which is

sufficient to achieve chemical accuracy in the energy and atomic forces. For the resulting linear

system, we employ block Jacobi preconditioning with ILU(0) factorization on each block. Fig. 2a

shows the wall time taken by AAR, GMRES, LGMRES, and Bi-CGSTAB on 1, 8, 27, 64, 216,

512, and 1000 cores. We observe that even though the performances of all approaches are similar

at low core counts (a consequence of requiring similar number of iterations), AAR starts demon-

strating superior performance as the core count is increased. In particular, the minimum wall time

achieved by AAR is a factor of 1.38, 1.43, and 1.90 smaller than GMRES, LGMRES, and Bi-

CGSTAB, respectively. This is a consequence of the significantly less global communication in

AAR compared to the other methods.

We next periodically replicate the above 3 × 3 × 3 aluminum system along one direction by

factors of 1, 2, 4, 8, and 16, i.e., we generate 3 × 3 × 3, 6 × 3 × 3, 12 × 3 × 3, 24 × 3 × 3, and

11The PETSc implementation of AAR for complex-valued systems is available as part of the code accompanying

this paper. For GMRES, LGMRES, and Bi-CGSTAB, the inbuilt functions in PETSc are utilized.

9

100 101 102 103
10-2

10-1

100

101

AAR
GMRES
LGMRES
Bi-CGSTAB

(a) Strong scaling

1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

105

AAR
GMRES
LGMRES
Bi-CGSTAB

(b) Weak scaling

Figure 2: Strong and weak scaling of AAR, GMRES, LGMRES, and Bi-CGSTAB for the periodic Helmholtz equation

using block Jacobi preconditioning with ILU(0) factorization on each block in PETSc. In strong scaling, the minimum

wall time taken by AAR is 1.38, 1.43, and 1.90 times smaller than GMRES, LGMRES, and Bi-CGSTAB, respectively.

In weak scaling, the CPU time taken by AAR, GMRES, LGMRES, and Bi-CGSTAB scales with system size as

O(N1.28), O(N1.57), O(N1.51), O(N1.59), respectively.

48 × 3 × 3 supercells. Correspondingly, we choose 64, 128, 256, 512, and 1024 computational

cores. Again, we select h = 0.486 Bohr and employ block Jacobi preconditioning with ILU(0) fac-

torization on each block. We plot the results of this weak scaling study in Fig. 2b, from which we

obtain O(N1.28), O(N1.57), O(N1.51), and O(N1.59) scaling with system size for AAR, GMRES,

LGMRES, and Bi-CGSTAB, respectively. Notably, all approaches demonstrate slightly superlin-

ear scaling even though the number of iterations remain constant. This is due to the increased cost

of global communications at larger core counts. Therefore, the performance of AAR relative to the

other methods is expected to further improve as the number of cores increases.

It is worth noting that the performance gap between AAR and other approaches increases as

the linear system becomes less well conditioned, as demonstrated in previous work for AAJ vs.

GMRES in serial computations [23]. In order to verify this result for AAR in parallel computations,

we consider the Helmholtz equation for a 1 × 1 × 1 Al supercell with lattice constant of 7.78
Bohr and randomly displaced atoms. To demonstrate the effect of conditioning, we choose a

simple Jacobi preconditioner M−1 = D
−1, where D is the diagonal part of A. In Fig. 3, we

present the strong scaling of AAR, GMRES, LGMRES, and Bi-CGSTAB for mesh-sizes of h =
0.216 and h = 0.108 Bohr. We observe that as the mesh gets finer and condition number of A

becomes larger, the speedup of AAR over the other methods increases at both small and large core

counts. Specifically, for h = 0.216 Bohr, the minimum wall time taken by AAR is 3.70, 3.26, and

3.28 times smaller than GMRES, LGMRES, and Bi-CGSTAB, respectively. The corresponding

numbers for h = 0.108 Bohr are 6.13, 4.08, and 3.04, respectively. Therefore, we conclude

that as the solution of the linear system becomes more challenging (e.g., in the absence of an

effective preconditioner), the speedup of AAR over Krylov subspace approaches like GMRES and

10

100 101 102 103
10-2

10-1

100

101

AAR
GMRES
LGMRES
Bi-CGSTAB

(a) h = 0.216 Bohr

100 101 102 103
10-1

100

101

102

AAR
GMRES
LGMRES
Bi-CGSTAB

(b) h = 0.108 Bohr

Figure 3: Strong scaling of AAR, GMRES, LGMRES, and Bi-CGSTAB for the periodic Helmholtz equation with

Jacobi preconditioning in PETSc. For h = 0.216 Bohr, the minimum wall time taken by AAR is 3.70, 3.26, and 3.28
times smaller than GMRES, LGMRES, and Bi-CGSTAB, respectively. For h = 0.108 Bohr, the minimum wall time

taken by AAR is 6.13, 4.08, and 3.04 times smaller than GMRES, LGMRES, and Bi-CGSTAB, respectively.

Bi-CGSTAB is expected to become more substantial in both the serial and parallel settings.12

3.3. Density Functional Theory: Poisson equation

Next, we study the relative performance of AAR and Conjugate Gradient (CG) methods for

solving the periodic Poisson problem arising in real-space Density Functional Theory (DFT) cal-

culations [45, 46, 47, 48]:

− 1

4π
∇2φ(r) = ρ(r) + b(r) in Ω,

{

V (r) = V (r+ Liêi) on ∂Ω ,

êi · ∇V (r) = êi · ∇V (r+ Liêi) on ∂Ω ,
(8)

where φ(r) is the electrostatic potential, ρ(r) is the electron density, b(r) is the pseudocharge den-

sity [45, 49, 50, 51], and Ω is a cuboidal domain with side lengths Li, unit vectors êi along each

edge, and boundary ∂Ω. The Poisson equation is discretized using sixth-order accurate finite-

differences on a uniform grid with mesh-size h = 0.486 Bohr, which is sufficient to achieve

chemical accuracy in the energy and atomic forces. The computations are parallelized by decom-

posing the domain into cubical subdomains of equal size, with communication between processors

handled via Message Passing Interface (MPI).

In the Anderson extrapolation step of AAR, we again perform only one global communication

call (i.e., MPI_Allreduce) to simultaneously determine r and the complete matrixFT

k
Fk, whose

inverse in computed using the Moore-Penrose pseudoinverse. In all calculations, we again choose

12The upturns in strong scaling plots at largest core counts arise due to insufficient computational work per core

relative to local inter-processor communications when the chosen computation is spread beyond a certain number of

cores. This indicates the strong scaling limit of the current implementation for the chosen problem size.

11

a vector of all zeros as the starting guess x0, and a convergence tolerance of ǫ = 10−6 on the

relative residual. Calculations on up to 1,024 cores were carried out on the same computer cluster

as for the Helmholtz problem in Section 3.2. Larger calculations, up to 110,592 cores, were carried

out on the Vulcan IBM BG/Q machine at the Lawrence Livermore National Laboratory, consisting

of 24,576 compute nodes, with 16 computational cores and 16 GB memory per node, for a total of

393,216 cores and 1.6 PB memory.

We first consider a 3 × 3 × 3 Al supercell based on a FCC unit cell with lattice constant

7.78 Bohr, with atoms randomly displaced from ideal positions, and again employ block Jacobi

preconditioning with ILU(0) factorization on each block (default in PETSc) in the solution of the

resulting linear systems. In Fig. 4a, we plot the wall time taken by AAR and CG as implemented

in PETSC13 on 1, 8, 27, 64, 216, 512, and 1000 computational cores. At small core counts,

CG demonstrates better performance than AAR by virtue of requiring fewer iterations to achieve

convergence. However, as the number of cores is increased, the performance of AAR relative to

CG improves, with the minimum wall time taken by AAR being a factor of 1.31 smaller than CG

by virtue of the lesser global communication required by AAR.

100 101 102 103
10-2

10-1

100

101

AAR
CG

(a) Strong scaling

1 2 4 8 16
0.00

0.05

0.10

0.15

105

AAR
CG

(b) Weak scaling

Figure 4: Strong and weak scaling of AAR and CG for the periodic Poisson equation using block Jacobi precondition-

ing with ILU(0) factorization on each block in PETSc. In strong scaling, the minimum wall time taken by AAR is 1.31
times smaller than CG. In weak scaling, the CPU time taken by AAR and CG scales with system size as O(N1.33)
and O(N1.38), respectively.

We next perform a weak scaling study by periodically replicating the above 3 × 3 × 3 system

along one direction by factors of 1, 2, 4, 8, and 16, i.e., we generate 3×3×3, 6×3×3, 12×3×3,

24 × 3 × 3, and 48 × 3 × 3 supercells. Correspondingly, we choose 64, 128, 256, 512, and 1024

computational cores. Again, we employ block Jacobi preconditioning with ILU(0) factorization on

each block. In Fig. 4b, we plot the wall time taken by AAR and CG for the resulting systems, from

13The PETSc implementation of AAR for real-valued systems is available as part of the code accompanying this

paper. For CG, the inbuilt function in PETSc is utilized.

12

which we obtain the weak scaling with system size to be O(N1.33) and O(N1.38), respectively.

As before, even though the number of iterations does not vary with system size, the increasing

cost associated with global communications results in superlinear scaling for both approaches14.

Therefore, the performance of AAR relative to CG is expected to further improve as core counts

are increased, a result which we verify next.

To assess the efficiency and scaling of AAR in larger-scale parallel calculations, up to 110,592

cores, we consider strong and weak scaling on the Vulcan IBM BG/Q machine at the Lawrence

Livermore National Laboratory. We implement AAR and CG using C and MPI directly15, and

choose a simple Jacobi preconditioner for parallel scalability. For the strong scaling study, we

choose a 12 × 12 × 12 Al supercell with atoms randomly displaced, and a maximum of 110,592

computational cores. For the weak scaling study, we go from 6×6×6 supercell on 1728 processors

to 24× 24× 24 supercell on 110,592 processors, with atomic displacements, electron density, and

pseudocharge density periodically repeated from the 6 × 6 × 6 system. We present the results

obtained in Fig. 5. We find that the minimum wall time achieved by AAR within the number

of cores available for this study is 1.91 times smaller than that achieved by CG. In addition, the

weak scaling with system size for AAR and CG are O(N1.01) and O(N1.07), respectively. This

demonstrates again the increased advantage of AAR over current state-of-the-art Krylov solvers in

parallel computations as the number of processors is increased.

102 103 104 105
10-2

10-1

100

101 AAR
CG

(a) Strong scaling

1 2 4 8 16 32 64
0

0.1

0.2

0.3

106

AAR
CG

(b) Weak scaling

Figure 5: Strong and weak scaling of AAR and CG for the periodic Poisson problem with Jacobi preconditioning. In

strong scaling, the minimum wall time taken by AAR is 1.91 times smaller than CG. In weak scaling, the CPU time

taken by AAR and CG scales with system size as O(N1.01) and O(N1.07), respectively.

14Another factor contributing to the superlinear scaling for both AAR and CG is the inefficiency of communications

between processors in the computer cluster used for the study.
15The standalone implementation of AAR for real-valued systems using C and MPI directly is available as part of

the code accompanying this paper.

13

4. Concluding remarks

We generalized the recently proposed Alternating Anderson-Jacobi (AAJ) method to include

preconditioning and make it particularly well suited for scalable high-performance computing, and

demonstrated its efficiency and scaling in the solution of large, sparse linear systems on parallel

computers. Specifically, the AAR method employs Anderson extrapolation at periodic intervals

within a preconditioned Richardson iteration to accelerate convergence while maintaining its un-

derlying parallel scalability and simplicity to the maximum extent possible. In serial applications

to nonsymmetric systems, we find that AAR is comparably robust to GMRES, using the same

preconditioning, while often substantially outperforming it in time to solution; and find AAR to

be more robust than Bi-CGSTAB for the problems considered. In parallel applications to the

Helmholtz and Poisson equations, we find that AAR shows superior strong and weak scaling to

GMRES, Bi-CGSTAB, and Conjugate Gradient (CG) methods, using the same preconditioning,

with consistently shorter times to solution at larger processor counts. Finally, in massively par-

allel applications to the Poisson equation, on up to 110,592 processors, we find that AAR shows

superior strong and weak scaling to CG, with shorter minimum time to solution.

Our findings suggest that the AAR method provides an efficient and scalable alternative to cur-

rent state-of-the-art preconditioned Krylov solvers for the solution of large, sparse linear systems

on high performance computing platforms, with increasing advantage as the number of processors

is increased. Moreover, the method is simple and general, applying to symmetric and nonsym-

metric systems, real and complex alike. Additional mathematical analysis which provides further

insights into the performance of the AAR method and therefore enables the development of ef-

fective preconditioners tailored to it will enable still larger-scale applications, and so constitutes a

potentially fruitful direction for future research.

5. Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence

Livermore National Laboratory under Contract DE-AC52-07NA27344. We gratefully acknowl-

edge support from the Laboratory Directed Research and Development Program. P.S. and P.P. also

gratefully acknowledge the support of National Science Foundation under Grant Number 1333500.

References

[1] T. A. Davis, Direct Methods for Sparse Linear Systems, SIAM, 2006.

[2] Y. Saad, Iterative Methods for Sparse Linear Systems (2nd ed), SIAM, 2003.

[3] Y. Saad, M. H. Schultz, SIAM Journal on Scientific and Statistical Computing 7 (1986) 856–

869.

[4] J. R. Shewchuk, An introduction to the conjugate gradient method without the agonizing

pain, 1994.

14

[5] X. Jing, N. Troullier, D. Dean, N. Binggeli, J. R. Chelikowsky, K. Wu, Y. Saad, Physical

Review B 50 (1994) 12234.

[6] F. Shimojo, R. K. Kalia, A. Nakano, P. Vashishta, Computer Physics Communications 167

(2005) 151–164.

[7] D. Osei-Kuffuor, J.-L. Fattebert, Physical Review Letters 112 (2014) 046401.

[8] P. Suryanarayana, P. P. Pratapa, A. Sharma, J. E. Pask, Computer Physics Communications

224 (2018) 288 – 298.

[9] J. P. Perdew, M. Ernzerhof, K. Burke, The Journal of Chemical Physics 105 (1996) 9982–

9985.

[10] L. Lin, Journal of Chemical Theory and Computation 12 (2016) 2242–2249.

[11] E. de Sturler, H. A. van der Vorst, in: International Conference on High-Performance Com-

puting and Networking, Springer, pp. 190–195.

[12] I. S. Duff, H. A. Van Der Vorst, Parallel Computing 25 (1999) 1931–1970.

[13] L. T. Yang, R. P. Brent, in: Parallel and Distributed Processing Symposium, 2003. Proceed-

ings. International, IEEE, pp. 11–pp.

[14] X.-Y. Zuo, T.-X. Gu, Z.-Y. Mo, Applied Mathematics and Computation 215 (2010) 4101–

4109.

[15] P. Ghysels, T. J. Ashby, K. Meerbergen, W. Vanroose, SIAM Journal on Scientific Computing

35 (2013) C48–C71.

[16] L. C. McInnes, B. Smith, H. Zhang, R. T. Mills, Parallel Computing 40 (2014) 17–31.

[17] E. De Sturler, H. A. van der Vorst, Applied Numerical Mathematics 18 (1995) 441–459.

[18] P. Ghysels, W. Vanroose, Parallel Computing 40 (2014) 224–238.

[19] W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations, volume 40, Springer,

1994.

[20] G. H. Golub, H. A. Van Der Vorst, The State of the Art in Numerical Analysis (2001) 63–92.

[21] R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,

C. Romine, H. Van der Vorst, Templates for the solution of linear systems: building blocks

for iterative methods, volume 43, SIAM, 1994.

[22] X. I. Yang, R. Mittal, Journal of Computational Physics 274 (2014) 695–708.

[23] P. P. Pratapa, P. Suryanarayana, J. E. Pask, Journal of Computational Physics 306 (2016)

43–54.

15

[24] D. G. Anderson, Journal of the Association for Computing Machinery 12 (1965) 547–560.

[25] P. Pulay, Chemical Physics Letters 73 (1980) 393–398.

[26] V. Ganine, N. Hills, B. Lapworth, International Journal for Numerical Methods in Fluids 71

(2013) 939–959.

[27] J. Willert, W. T. Taitano, D. Knoll, Journal of Computational Physics 273 (2014) 278–286.

[28] T. Rohwedder, R. Schneider, Journal of Mathematical Chemistry 49 (2011) 1889–1914.

[29] H. F. Walker, P. Ni, SIAM Journal on Numerical Analysis 49 (2011) 1715–1735.

[30] F. A. Potra, H. Engler, Linear Algebra and its Applications 438 (2013) 1002–1011.

[31] A. S. Banerjee, P. Suryanarayana, J. E. Pask, Chemical Physics Letters 647 (2016) 31–35.

[32] M. Benzi, Journal of Computational Physics 182 (2002) 418–477.

[33] M. L. Pasini, Deterministic and stochastic acceleration techniques for Richardson-type itera-

tions, Ph.D. thesis, Emory University, 2018.

[34] M. L. Pasini, Preprint (2018).

[35] A. H. Baker, E. R. Jessup, T. Manteuffel, SIAM Journal on Matrix Analysis and Applications

26 (2005) 962–984.

[36] H. A. Van der Vorst, SIAM Journal on Scientific and Statistical Computing 13 (1992) 631–

644.

[37] S. Balay, J. Brown, , K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,

L. C. McInnes, B. F. Smith, H. Zhang, PETSc Users Manual, Technical Report ANL-95/11 -

Revision 3.4, Argonne National Laboratory, 2013.

[38] S. Balay, W. D. Gropp, L. C. McInnes, B. F. Smith, in: E. Arge, A. M. Bruaset, H. P. Lang-

tangen (Eds.), Modern Software Tools in Scientific Computing, Birkhäuser Press, 1997, pp.

163–202.

[39] N. Choly, E. Kaxiras, Solid State Communications 121 (2002) 281–286.

[40] S. Ghosh, P. Suryanarayana, Journal of Computational Physics 307 (2016) 634–652.

[41] P. Suryanarayana, D. Phanish, Journal of Computational Physics 275 (2014) 524–538.

[42] Y. A. Wang, N. Govind, E. A. Carter, Physical Review B 58 (1998) 13465.

[43] Y. A. Wang, N. Govind, E. A. Carter, Physical Review B 60 (1999) 16350.

[44] A. J. Laub, Matrix Analysis for Scientists and Engineers, SIAM, 2005.

16

[45] J. E. Pask, P. A. Sterne, Physical Review B 71 (2005) 113101.

[46] P. Suryanarayana, K. Bhattacharya, M. Ortiz, Journal of the Mechanics and Physics of Solids

61 (2013) 38–60.

[47] J. E. Pask, N. Sukumar, S. E. Mousavi, International Journal for Multiscale Computational

Engineering 10 (2012) 83–99.

[48] S. Ghosh, P. Suryanarayana, Computer Physics Communications 216 (2017) 109 – 125.

[49] P. Suryanarayana, V. Gavini, T. Blesgen, K. Bhattacharya, M. Ortiz, Journal of the Mechanics

and Physics of Solids 58 (2010) 256–280.

[50] P. Suryanarayana, K. Bhattacharya, M. Ortiz, Journal of Computational Physics 230 (2011)

5226–5238.

[51] S. Ghosh, P. Suryanarayana, Computer Physics Communications 212 (2017) 189 – 204.

17

