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Frustration in classical spin models can lead to degenerate ground states without long range order.
In reciprocal space, these degeneracies appear as manifolds of wave vectors, their dimensionality
increasing with the degree of frustration and the robustness of the disordered spin-liquid state. Here,
we present a recipe to explicitly construct Heisenberg models on Bravais lattices with codimension-
one manifolds, i.e., lines in two-dimensions and surfaces with different Euler characteristics in three-
dimensions. Furthermore, we discuss the role of thermal and quantum fluctuations in stabilizing
ordered states.

Many an endeavor in the modern era of quantum
magnetism has centered around finding exciting escape
routes from the seemingly inevitable fate that befalls
an overwhelming majority of magnetic systems; namely,
spontaneous symmetry breaking at low temperatures
and the consequent development of long-range mag-
netic order. The lure is to find exotic phases of mat-
ter called spin liquids—states which lack a local order
parameter down to zero-temperature and thus lie be-
yond the realm of Landau’s symmetry breaking theory1.
Spin liquids occur in two genres, (i) quantum spin liq-
uids2,3—featuring complex patterns of long-range entan-
glement, quasiparticles with fractional quantum numbers
and possibly nonabelian statistics and (ii) classical spin
liquids4,5—cooperative paramagnetic states of classical
(S → ∞) spins featuring nontrivial spin correlations6,
and for certain types, fractionalization7.

The traditional route towards finding quantum spin
liquids involves melting magnetic order via strong quan-
tum fluctuations and preferably occurs in models comb-
ing low spin with geometrically and/or parametrically
frustrated interactions. In the complete absence of quan-
tum fluctuations, as for classical spins, the quenching of
magnetic order is, nevertheless possible, but now cru-
cially hinges on the existence of a macroscopic degen-
eracy of the ground state manifold MGS within which
the system fluctuates in a cooperative fashion giving rise
to the notion of a classical spin liquid6,8,9. A macro-
scopic degeneracy can emerge in two possible scenarios:
(i) The presence of local ice-rule type constraints10 which
define the set of allowed ground states but leave the
ground-state spin configurations underdetermined. This
situation occurs, e.g., in the Heisenberg antiferromagnet
on the pyrochlore lattice, wherein, the zero magnetiza-
tion per tetrahedron constraint gives rise to an exten-
sively degenerate MGS

6 and (ii) If MGS is composed of
a highly degenerate family of incommensurate coplanar
spin-spirals. This situation is realized in the Heisenberg
antiferromagnetic model with first and second nearest-
neighbor interactions on the honeycomb11–15 and dia-
mond lattices8,16,17. The spiral wave vectors Q form,
in the former case, contours, and in the latter, a closed
surface in reciprocal space.

The existence of a macroscopic degeneracy although
being a necessary ingredient to realize classical spin liq-
uids is by no means sufficient. Indeed, only under the
condition that thermal order-by-disorder effects fail to
lift this degeneracy and select a unique ground state,
does one realize a true classical spin liquid as a zero-
temperature phase. However, in the scenario (ii) even if
thermal order-by-disorder mechanism leads to magnetic
ordering (at a particular wave vector Q) at a temper-
ature Tc, there exists a temperature window above Tc
and below the Curie-Weiss temperature in which thermal
fluctuations can restore the spiral surface8,9,17. Within
this cooperative paramagnetic regime the spins engage
in collective motion within this spiral manifold leading
to the appearance of a finite-temperature spiral spin liq-
uid. Given this wealth of phenomena that can poten-
tially emerge from the presence of a spiral surface, our
work provides recipes for constructing frustrated classi-
cal Heisenberg models on the simplest lattices, namely
the Bravais lattices which host a spin spiral surface. We
will illustrate our method on a few frequently encoun-
tered lattices, namely on the square, simple cubic (SC),
and face-centered cubic (FCC) ones.

The classical isotropic Heisenberg model is defined by
the Hamiltonian

H =
1

2

∑
i,δ

JδSi · Si+δ , (1)

where Si are three-dimensional unit vectors at the sites
Ri of a Bravais lattice Λ, with N sites and periodic
boundary conditions. The Jδ are the exchange couplings
between spins at sites separated by δ, the neighbor vec-
tors of Λ. The Jδ can be sorted by the increasing norm
of δ, and hence it is convenient to adopt the notation
wherein J1, J2, J3, . . . denote first-, second-, third-, . . .
nearest-neighbor exchange couplings, respectively.

In the spirit of the Luttinger-Tisza method18, the
ground state of the model [Eq. (1)] can be found by min-
imizing the Fourier transform J(q) of the exchange in-
teractions. The energy in reciprocal space is given by

H =
N

2

∑
q∈BZ

J(q)Sq · S−q , (2)
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where the summation runs over the Brillouin-zone (BZ),

J(q) =
∑
δ

Jδe
ıq·δ , (3)

and Sq = 1
N

∑
i Sie

ıq·Ri . We denote the ground state
manifold by MGS = {Q}, the set of points where J(q)
takes its minimal value. Generally MGS is only a set
of discrete points, and they correspond to the order-
ing vectors of the ground-state spin configuration Si =∑

Q SQe
−ıQ·Ri . The constraint |Si| = 1 can usually

be satisfied by a proper selection of complex amplitudes
SQ

19–23. In particular, models are known in whichMGS

consist of lines13,24, surfaces8,16,25, or even the complete
BZ for certain non-Bravais lattices26,27. The dimension-
ality ofMGS is known to be a crucial ingredient in deter-
mining the physical behavior of the model, with higher
dimensionality being associated with increased frustra-
tion. Here, we present a systematic method to con-
struct exchange models J(q) that have codimension-one
MGS’s, i.e., a curve for a 2D lattice or a surface for a 3D
lattice.

To ensure that the minimum of J(q) is on a
codimension-one MGS defined by f(Q) = 0, we make
the following Ansatz:

J(q) = f2(q)− C, f(q) =
∑
ξ∈Ξ

cξe
ıq·ξ , (4)

where Ξ is a set of points in real space, and f(q) is a real
function of the wave-vector28. J(q) then takes the form

J(q) =
∑

ξ,ξ′∈Ξ

cξcξ′e
ıq·(ξ+ξ′) − C. (5)

What are the possible choices of the Ξ sets, for which
the J(q) above provides a genuine Heisenberg model in
Fourier space, as defined in Eq. (3)? Since the reality of
f(q) requires that for any ξ ∈ Ξ, the −ξ is also in Ξ,
and c−ξ = c∗ξ, we may substitute ξ′ → −ξ′ in Eq. (5)

yielding ξ − ξ′ ∈ Λ. Therefore, Ξ is, by definition, an
inversion symmetric finite subset of an affine lattice Λ∗,
i.e., Λ shifted by some vector δ∗:

Λ∗ = Λ + δ∗, with 2δ∗ ∈ Λ , (6)

where the condition for δ∗ follows from Eq. (5) by sub-
stituting ξ′ → ξ. There are four choices for Λ∗ in two
dimensions and eight in three dimensions.

To get a model having the full symmetry of Λ, the site
symmetry group of δ∗ (or any other point in Λ∗) needs to
be isomorphic to the point group G of Λ. While δ∗ = 0
gives a correct model for every Bravais lattice, the site
symmetry of a δ∗ 6= 0 can be looked up in crystallo-
graphic tables29, and it turns out that such δ∗ exists for
all Bravais lattices except for the triangular lattice in 2D
and body-centered cubic lattice in 3D.

To also utilize the point symmetry G in our Ansatz,
we first decompose Λ∗ into orbits (shells) Ξα under the

FIG. 1. Constructions of the codimension-one ground state
manifold MGS, given by the minima of J(q) defined by
f(q) = 0 via Eq. (4), on the square lattice Λ. (a) Affine
lattice construction with Λ∗ = Λ + δ∗1 . The red arrows con-
nect the origin with the points of set Ξ1 ⊂ Λ∗ (red dots), dark
green dots are the nearest-neighbor points to the origin (black
dot) of Λ with exchange coupling J1, light green dots show
the second nearest-neighbor points with J2 = J1/2. (b) Con-
struction when Ξ0,Ξ1 ⊂ Λ, the Ξ0 has one point, the origin
(black dot) and the Ξ1 is the orbit of δ1 = a1 (dark green
dots). We get a Heisenberg model with nearest-neighbor
exchanges J1 (dark green) and further neighbor exchanges
J3 = J2/2 (denoted by lighter colors). (c) MGS (red square)
for Λ∗ = Λ+δ∗1 , which corresponds to the zeros of the function
f(q) in Eq. (9), is pinned to the Brillouin zone boundary. (d)
MGS for Λ∗ = Λ, given by f(q) = 0 in Eq. (12), are shown
as thick colored curves for J1/J2 = 2, 0, and −2.

action of G: for a δ∗α ∈ Λ∗ let Ξα : = {gδ∗α| g ∈ G}, the
index α enumerates the shells. Based on an orbit we
define symmetry adapted functions30:

fΓ
α (q) =

∑
g∈G

χΓ(g)eıq·(gδ
∗
α) , (7)

where χΓ(g) = ±1 are the characters of a 1D real irre-
ducible representation Γ. We then choose a set of orbits
Ξα and corresponding constants cα ∈ R or iR to get the
real

fΓ(q) =
∑

α∈orbits

cαf
Γ
α (q) . (8)

From Eq. (4) with C =
∑
α zα|cα|2, where zα = |Ξα|

and Ξ =
⋃
α Ξα, we get a Heisenberg model with aMGS

defined by fΓ(q) = 0. The number of free parameters as
well as the range of exchange couplings grows with the
number of shells in fΓ(q). In what follows we will only
use the totally symmetric representation (χΓ(g) = 1) of
G, and therefore drop the index Γ.

As an illustration, we show how the method works for
the square lattice Λ with primitive vectors a1 = (1, 0)
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and a2 = (0, 1), shown in Fig. 1. Out of the four choices
for δ∗, only the cases when δ∗ = 0 and δ∗ =

(
1
2 ,

1
2

)
have

G = D4 as the site symmetry group.
First, let us consider the δ∗ =

(
1
2 ,

1
2

)
case [Fig. 1(a)].

We choose the first shell Ξ = Ξ1 with cardinality z1 = 4
and consisting of the orbit of δ∗1 = δ∗. Eqs. (7) and (8)
give

f(q) = f1(q) = 4 cos
qx
2

cos
qy
2
, (9)

and theMGS coincides with the BZ boundary Q = (π, q)
and (q, π) parametrized by q ∈ [−π, π], [see Fig. 1(c)].
Following Eq. (4),

J(q) = 4(cos qx + cos qy)

+ 2 [cos (qx + qy) + cos (qx − qy)] (10)

defines a J1–J2 Heisenberg model with exchange cou-
plings J1 = 2 and J2 = 131. The Hamiltonian is the
sum of edge sharing four-site complete graphs (squares
with diagonals) over the lattice Λ:

H =
∑
�

[
(S1 + S2 + S3 + S4)

2 − 4
]
, (11)

which is minimized when the spins sum up to zero in
every graph. We note that an alternative approach to
construct this MGS was presented in Ref.16.

When δ∗ = 0, Λ∗ = Λ, and we choose Ξ = Ξ0 ∪ Ξ1,
where Ξ0 = {0} and Ξ1 = {a1,a2,−a1,−a2}, with z0 =
1 and z1 = 4, to construct

f(q) = f1(q) + c0 = 2(cos qx + cos qy) + c0 (12)

following Eq. (8) with c1 = 1. Eq. (4) then generates a
model with J1 = 2c0, J2 = 2, and a constrained J3 =
J2/2 [see Fig. 1(b)], also discussed in32. By tuning the
parameter c0 = J1/J2 one can control the shape and
topology of MGS, as shown in Fig. 1(d).

In what follows, we construct models for the SC and
FCC lattices based on the affine lattice construction Λ∗

with δ∗ 6= 0, both having G = Oh as a point group,
and calculate their free energies on the resulting MGS-
s in order to find the states stabilized by thermal and
quantum fluctuations8.

The SC lattice is defined by the primitive vectors
(1, 0, 0), (0, 1, 0) and (0, 0, 1). In the affine construction,
we start with the orbit of the vector δ∗ =

(
1
2 ,

1
2 ,

1
2

)
, and

from Eqs. (7) and (8) we get

f(q) = 8 cos
qx
2

cos
qy
2

cos
qz
2
. (13)

This generates a J1–J2–J3 model [see Fig. 2(a)], with
J3 = J2/2 = J1/4 = 1. The resulting MGS is the cubic
BZ boundary shown in Fig. 3(a). As in Eq. (11), the
Hamiltonian is the sum of face sharing eight-site complete
graphs (elementary cubes with face and body diagonals),
which is minimized when the spins sum up to zero in
every graph. In comparison, the construction with δ∗ =

FIG. 2. Affine lattice constructions for the simple cubic (a)
and face centered cubic (b) lattices. The shift vector δ∗ (red
arrow) defines the affine lattice Λ∗ = Λ + δ∗. Red balls with
a cage show the set Ξ1 ⊂ Λ∗. Dark balls are the nearest
neighbor points to the origin (black ball) of Λ, with exchange
couplings J1. Lighter balls depict the second neighbor points
with exchange strengths J2 = J1/2 for both lattices. For the
simple cubic lattice a third neighbor exchange J3 = J2/2 is
also generated.

0 and two shells gives J4 = J2/2 = 1 and an adjustable
J1 = 2c0.

The face centering generators of the FCC lat-
tice are

(
1
2 ,

1
2 , 0
)
,
(

1
2 , 0,

1
2

)
and

(
0, 1

2 ,
1
2

)
. In the

affine construction δ∗ =
(
0, 0, 1

2

)
and Ξ1 ={(

± 1
2 , 0, 0

)
,
(
0,± 1

2 , 0
)
,
(
0, 0,± 1

2

)}
with z1 = 6, such

that

f1(q) = 2
(

cos
qx
2

+ cos
qy
2

+ cos
qz
2

)
. (14)

We get a J1–J2 model with J2 = J1/2 = 1 [see Fig. 2(b)].
This construction provides MGS studied in Ref.25 and
shown in Fig. 3(b). Similar to Eq. (11), the Hamiltonian
is the sum of edge sharing six-site complete graphs (octa-
hedra with diagonals). In contrast, the construction with
δ∗ = 0 provides a model with J4 = J3/2 = J2/4 = 1 and
adjustable J1 = 4 + 2c0, and the minimal energy surface
is the same as for the diamond lattice8.

At zero temperature any of the different Q can be se-
lected as a good ground state, and even multiple Q states
are allowed at points with high symmetry19. At finite
temperature the spins start to fluctuate, and this con-
tributes to the explicitly Q-dependent free energy F(Q).
In the harmonic approximation, the fluctuations can be
integrated out in the partition sum, and give rise to a lin-
ear T dependence in F(Q). Following Ref. [8], the free
energy above the spiral surface is

F(Q) = E0 −NT lnT +NTA(Q) +O(T 2) , (15)

where E0 is the ground state energy and −A(Q) is the Q-
dependent part of the low temperature entropy density,
defined as

A(Q) =
1

N

∑
q∈BZ

lnω2
q(Q), (16)



4

FIG. 3. Two examples of the ground state manifolds of 3D
lattices colored according to their free energies for the affine
lattice construction with δ∗ 6= 0. Brighter colors correspond
to states with smaller values of A (Q) [Eq. (16)], and the min-
ima are selected by thermal fluctuations. (a) Simple cubic lat-
tice: the ground state manifold is the Brillouin zone boundary,
the degenerate minima are the inequivalent points (π, 0, 0),
(π, π, 0) and (π, π, π) and their symmetry related partners.
(b) Face centered cubic lattice: the degenerate minima are
the points 〈π, π, π〉. The Brilloin zone boundary is shown as
a light wireframe, the enclosing cube is a guide to the eye.

with

ωq(Q) =

(
1

2
[J(q+Q) + J(q−Q)− 2J(Q)]

× [J(q)− J(Q)]

)1/2

. (17)

The state which has the minimal value of A(Q) corre-
sponds to the minimum of the free energy — this is the

entropic order-by-disorder selection mechanism discussed
in Refs. [33–36]. We plot A(Q) for the SC and FCC lat-
tice in Fig. 3. Furthermore, the energy of the spin-wave
modes is ~Sωq(Q) in the semi-classical description for
spins of length S � 1. Quantum fluctuations then choose
the state with the lowest zero-point energy

EZP(Q) =
∑
q∈BZ

~S
2
ωq(Q). (18)

The EZP(Q) behaves qualitatively like the A(Q) and se-
lects the same ordering vectors.

For the SC lattice with J1 = 2J2 = 4J3 the selected
minima are the inequivalent points (π, 0, 0), (π, π, 0)
and (π, π, π) and their symmetry related partners (seven
points in all)37. In these high symmetry points multi-Q
states are allowed, they correspond to an ordering in real
space where in a cube formed by eight neighboring lattice
sites the spins sum up to zero, and this cube is repeated
through the whole lattice (the magnetic superlattice is
SC, with doubled lattice constant). We have performed
low-T expansion for such ordering patterns, and found
that the minima of the free energy correspond to any
8-sublattice collinear state, including the single-Q states
with 〈π, 0, 0〉, 〈π, π, 0〉 and 〈π, π, π〉. In fact, more is true:
any collinear ground state has exactly the same entropy
in the harmonic approximation. We believe that higher
order corrections will split this degeneracy.

For the FCC lattice with J1 = 2J2 the selected min-
ima are the point (π, π, π) and its three symmetry re-
lated partners. The multi-Q states correspond to an
eight-sublattice order where every second neighbor spin
pair is antiferromagnetically coupled, but otherwise the
spins are oriented arbitrarily (the state consists of four in-
terpenetrating antiferomagnetically ordered SC lattices).
Here again entropy selects the collinear, single-Q states
forming the type-II AFM structure.38

We may ask the question whether MGS’s obtained by
different Λ∗ can be continuously deformed into each other
by, e.g., including more shells. The f(q) for Λ∗ = Λ is
fully periodic in the reciprocal lattice, while the f(q) in
Eqs. (13) and (14) changes sign when translated by a
unit reciprocal lattice vector. This even–odd property
cannot be changed continuously, therefore the two solu-
tions provide two different topological classes of MGS.
The odd parity of f(q) also pins the f(Q) = 0 surface
to the boundary of the Brillouin zone for the SC lattice
(i.e., the 〈π, q1, q2〉 planes) and to the 〈π/2, q, π − q〉 lines
in the case of the FCC lattice, while no such restriction
exists for the even f(q) function when δ∗ = 0.

The topological distinction is further exemplified by
the Euler characteristics χ of these triply periodic sur-
faces39. Let’s focus on the FCC lattice. The f(Q) = 0
surface from Eq. (14) is homotopic to the so called
Schwarz-P surface with χ = −4. On the other hand,
the extension of Eq. (12) to FCC lattice will make a de-
formed sphere for −12 < c0 < 0, with χ = 4. At c0 = 0,
a Lifshitz transition occurs40, and for 0 < c0 < 4 the
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f1(Q) = −c0 surface changes into a topologically differ-
ent shape, homotopic to Schoen IWP, with χ = −12.
The surfaces in the case of the diamond lattice [8] belong
to this latter class.

To conclude, we have provided a recipe to construct
classical Heisenberg models on Bravais lattices having
degenerate ground state manifolds consisting of spin-
spirals. As opposed to non-Bravais lattices, the models
are fine tuned, with none, or few free parameters. In
their simplest case, these models can be written as the
sums of interacting spins on complete graphs, providing
a natural explanation for the large degeneracy of their
ground state manifolds. Both thermal and quantum fluc-
tuations select collinear states in the semiclassical, S � 1
limit. We also show that the ground state manifolds are
topologically distinct and can be classified by their Euler
characteristics, however, at finite-temperatures one may
expect different types of defects to appear. The mod-
els proposed herein can potentially serve as testbeds for

future analytical and numerical studies aimed at inves-
tigating the effects of strong frustration on the critical
behavior and the universality class of phase transitions,
which remains to a large degree terra incognita. It also
opens new avenues towards the realization of quantum
spin liquids as has been pointed out in a recent work32,
and it will be a worthwhile endeavor to employ state-of-
the-art numerical methods to the corresponding models
with small spin-S to uncover possible existence of quan-
tum spin liquid regimes.
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