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Abstract

The AdS/CFT correspondence defines a sector with universal strongly

coupled dynamics in the field theory as the dual of pure gravity in AdS de-

scribed by Einstein’s equation with a negative cosmological constant. We

explain here, from the field-theoretic viewpoint how the dynamics in this sec-

tor gets determined by the expectation value of the energy-momentum tensor

alone. We first show that the Boltzmann equation has very special solutions

which could be functionally completely determined in terms of the energy-

momentum tensor alone. We call these solutions conservative solutions. We

indicate why conservative solutions should also exist when we refine this ki-

netic description to go closer to the exact microscopic theory or even move

away from the regime of weak coupling so that no kinetic description could

be employed. We argue that these conservative solutions form the universal

sector dual to pure gravity at strong coupling and large N. Based on this ob-

servation, we propose a regularity condition on the energy-momentum tensor

so that the dual solution in pure gravity has a smooth future horizon. We also

study if irreversibility emerges only at long time scales of observation, unlike

the case of the Boltzmann equation.
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1 INTRODUCTION

The AdS/CFT correspondence [1] has opened up new vistas in understanding strongly

coupled phenomena in four-dimensional conformal field theories. At strong cou-

pling and large N, the dual classical theory of gravity admits a consistent truncation

to pure gravity in asymptotically AdS 5 space and is described by Einstein’s equa-

tion with a negative cosmological constant. Any such solution of Einstein’s equa-

tion, which has a smooth future horizon, describes a dual state of the field theory

at finite temperature and its dynamics. The final temperature of the horizon corre-

sponds to the temperature of final equilibrium in the field theory. The dynamics of

gravity is governed only by the five-dimensional Einstein’s equation in this sector.

The dynamics is therefore always universal, i.e. it is completely independent of

the detailed matter content and couplings of the field theory. In fact any conformal

gauge theory at strong ’t Hooft coupling and large N, which has a gravity dual,

must contain this universal sector [2]. This universal sector is practically important

because it can describe, for instance, hydrodynamics of the dual conformal field

theory (for a recent review, please see [4]).

However this universal sector, as described by gravity, covers a variety of phe-

nomena well beyond the hydrodynamic regime. Such phenomena also include

decoherence [5]. It would then be certainly useful to understand the universal sec-

tor completely and also to decipher unambiguously the corresponding phenomena

in the field theory side. This motivates our work.

In the universal sector the dynamics of all gauge fields and higher form fields

have been turned off on the gravity side. This means that in the dual field theory all

chemical potentials vanish and therefore all conserved charge currents are absent.

We strictly restrict ourselves to the case of zero global angular momentum in the

field theory configurations, so that the final equilibrium configuration in gravity is

always a static black brane. We will not explicitly mention this restriction in the

rest of this paper; certainly most of the results here can be readily generalized to

the case of nonzero global angular momentum. We also limit ourselves to the case

of a flat boundary metric, so that the gauge theory is living in (the conformal class

of) flat Minkowski space. The boundary topology then is R4 and the static black

brane is the unique equilibrium configuration in the absence of all other conserved

charges. Metastable configurations like small black holes do not appear with this

choice of boundary topology and boundary metric.

The crucial aspect of the universal sector is that all the solutions in gravity are

uniquely determined by the boundary metric and the boundary stress tensor. In

particular, when the boundary metric is flat, we have good understanding [6–8]

about the general features of the five-dimensional geometry [9]. It follows that all

the states in the dual field theory constituting the universal sector are also uniquely
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specified by the expectation value of the energy-momentum tensor alone. The

dynamics of these states can then be determined by simply following the evolution

of the energy-momentum tensor alone. This necessitates an understanding, from

the field-theoretic point of view, as to how all observables and their time evolution

could be functionally determined by the energy-momentum tensor.

Here we will address this question; first in the regime of weak coupling, so

that we can employ the quasiparticle description and also use kinetic theories,

which are coarse-grained descriptions of microscopic laws. Specifically, we use

the Boltzmann equation which has proven useful [10, 11] in determining the shear

viscosity and higher order hydrodynamic transport coefficients and the relaxation

time in weakly coupled gauge field theories. It has also been shown that an effec-

tive Boltzmann equation can be used to study nonequilibrium phenomena in high

temperature QCD and is equivalent to an exact perturbative treatment [10]. De-

spite being a coarse-grained description, the Boltzmann equation retains the power

to describe nonequilibrium phenomena far away from the hydrodynamic regime

and at length scales and time scales shorter than the mean-free path and the relax-

ation time respectively. However it is not applicable to phenomena at microscopic

length and time scales.

We prove that there exist very special solutions of the Boltzmann equation

which are functionally determined by the energy-momentum tensor alone. We call

such solutions “conservative solutions”. These solutions, although very special,

constitute phenomena far away from equilibrium and well beyond the hydrody-

namic regime. The existence of conservative solutions can be conveniently proven

for nonrelativistic monoatomic gases using some basic structural properties of the

Boltzmann equation and can be easily extended to include relativistic and semi-

classical corrections. We show that these solutions can be constructed even for

multicomponent systems relevant for relativistic quantum gauge theories.

It will thus be natural to make the assumption that the conservative solutions

constitute the universal sector of strongly coupled gauge theories with gravity

duals. This will explain why the states in the universal sector are determinable

functionally by the energy-momentum tensor alone. This assumption, through the

AdS/CFT correspondence, will have powerful consequences for gravity. The same

condition on the energy-momentum tensor,required to make the state in the field

theory a conservative solution, will now be required to make the dual solution

in gravity have a smooth future horizon. In other words, the conservative con-

dition on the energy-momentum tensor in field theory should now transform into

the regularity condition in gravity. We will use this observation (assumption) to

propose five equations which, in combination with the four conservation (or hy-

drodynamic) equations, will provide a framework to determine the evolution of the

energy-momentum tensor. Any energy-momentum tensor satisfying these equa-
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tions will give us solutions in gravity with smooth future horizons. This framework

has sufficient predictive power to determine nonequilibrium states in the universal

sector beyond hydrodynamics in a systematic perturbative manner, given that the

purely hydrodynamic energy-momentum tensor up to second order in the deriva-

tive expansion [7, 12, 13] is known.

The plan of the paper is as follows. In Section 2 we outline the conservative

solutions in the Boltzmann equation. We then state and investigate our proposal for

the regularity condition on the energy-momentum tensor for pure gravity in AdS 5

in Section 3. Finally, in the Discussion we point out the various novel and open

issues that have been raised in the course of development of our results and pro-

posal here; particularly those which we may hope to understand in the near future.

The proof of existence of the conservative solutions in the Boltzmann equation is

slightly technical and elaborate; we present this proof in detail in the Appendix in

a self-contained manner.

2 THE CONSERVATIVE SOLUTIONS OF THE BOLTZ-
MANN EQUATION

The study of equilibrium and transport properties of dilute gases through the dy-

namics of one-particle phase space distribution functions was pioneered by Maxwell

[14] and further developed by Boltzmann [15] in the 19th century. The Boltz-

mann equation provides a successful description of nonequilibrium phenomena in

rarefied monoatomic gases. It is an equation for the evolution of the one-particle

phase space distribution function. It can successfully describe nonequilibrium phe-

nomena in rarefied gases, even at length scales between the microscopic molecular

length scale and the mean-free path, and time scales between the time it takes

to complete binary molecular collisions [17] and the average time between inter-

molecular collisions.

The Boltzmann equation is neither microscopic nor phenomenological, but a

result of averaging the dynamics over microscopic length scales and time scales.

Unlike phenomenological equations, it has no undetermined parameters and is

completely fixed once the intermolecular force law is known. The structural de-

tails of the molecules are however ignored and effectively they are taken to be

pointlike particles. The hydrodynamic equations with all the transport coefficients

can be determined from the Boltzmann equation.

We start with a brief description of the conservative solutions of the Boltzmann

equation for a system of pointlike classical nonrelativistic particles interacting via a

central force. As mentioned in the Introduction, the proof of existence and unique-

ness of such solutions is detailed in the Appendix in a self-contained manner. This
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is followed by a discussion on how to generalize our construction of conservative

solutions to the semiclassical and relativistic versions of the Boltzmann equation.

Finally we show how our results apply to multicomponent systems relevant for

relativistic gauge theories. These generalizations are straightforward and the dis-

cussion on the nonrelativistic Boltzmann equation will be convenient for a first

understanding of the conservative solutions.

2.1 The conservative solutions in brief

A generic solution of Boltzmann equation (20) is characterized by infinite number

of local variables. In general, these could be chosen to be the infinite local velocity

moments ( f (n)(x)’s) of the one-particle phase space distribution f (x, ξ), given by

f
(n)
i1i2 ....in

(x, t) =
∫

dξ ci1 ci2 .....cin f (x, ξ) . (1)

where ci = ξi − ui(x, t) with ui(x, t) being the local average velocity.

However the first ten velocity moments suffice to parametrize the energy-momentum

tensor. The conservative solutions, which are determined by the energy-momentum

tensor alone, are thus a very special class of solutions obtained when the initial

value data satisfy certain constraints.

Another special class of solutions to the Boltzmann equation is actually well

known in the literature. These are the normal solutions, where the local hydrody-

namic variables given by the first five velocity moments of f suffice to describe

the solution even when it is far from equilibrium. Our conservative solutions are

a generalization of these normal solutions. We review the normal solutions below

before describing the conservative solutions.

2.1.1 The hydrodynamic equations and normal solutions

It is well-known that the first five velocity moments of the Boltzmann equation

(20), obtained by multiplying with (1, ξi, ξ
2) and integrating over ξ, give the hydro-

dynamic equations as

∂ρ

∂t
+

∂

∂xr

(ρur) = 0 ,

∂ui

∂t
+ ur

∂ui

∂xr

+
1

ρ

∂(pδir + pir)

∂xr

= 0 , (2)

∂p

∂t
+

∂

∂xr

(ur p) +
2

3
(pδir + pir)

∂ui

∂xr

+
1

3

∂S r

∂xr

= 0 ,
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where the hydrodynamic variables (ρ, ui, p) are respectively the local density, com-

ponents of local average molecular velocity and the local pressure of the gas de-

fined in terms of the average root mean square kinetic energy. In terms of the

velocity moments

ρ(x, t) =
∫

f dξ ,

ui(x, t) =
1

ρ

∫

ξi f dξ , (3)

p(x, t) =
1

3

∫

ξ2 f dξ .

The local temperature is defined through the local equation of state, (RT = p/ρ)

[16]. The shear-stress tensor pi j and the heat flow vector S i (defined through S i =

S i jkδ jk) are related to the velocity moments by

pi j =

∫

(cic j − RTδi j) f dξ ,

S i jk =

∫

cic jck f dξ , (4)

where ci = ξi − ui. It can be easily seen from the definition that pi jδi j = 0.

The collision term J( f , f ) (as defined in (21)) does not contribute when deriv-

ing the hydrodynamic equations (2) from the Boltzmann equation. The first five

velocity moments of J( f , f ) are zero owing to particle number, momentum and

energy conservation as proven in the Appendix.

It must be emphasized that, in the hydrodynamic equations (2), the shear-stress

tensor pi j and the heat flow vector S i are functionally independent of the hydro-

dynamic variables. However there exist unique algebraic solutions to these and all

the higher moments f
(n)
i1... in

(x, t), which are functionals of the hydrodynamic vari-

ables. These functional forms contain only spatial derivatives of the hydrodynamic

variables and can be systematically expanded in the so-called derivative expansion

discussed below. This leads to the construction of the normal or purely hydro-

dynamic solutions of the Boltzmann equation, which we discuss below. For a

generic solution of the Boltzmann equation, the higher moments of f will have

explicit time-dependent parts which are functionally independent of the hydrody-

namic variables.

The normal solutions of the Boltzmann equation [18–20] have been exten-

sively discussed in [21]. These solutions can be determined in terms of the five

hydrodynamic variables (ρ, ui, p) alone. They describe situations far away from

equilibrium, such that observables which vanish at equilibrium do not vanish any-

more but are functionally determined in terms of the hydrodynamic variables and
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their spatial derivatives. The existence of such solutions follows from the exis-

tence of unique algebraic solutions (as functionals of the hydrodynamic variables)

to the equations of motion of the higher moments. The functional forms of the

shear-stress tensor and the heat flow vector, for instance, are given by

pi j = ησi j + β1

η2

p
(∂ · u)σi j + β2

η2

p

(

D

Dt
σi j − 2

(

σikσk j −
1

3
δi jσlmσlm

))

+β3
η2

ρT

(

∂i∂ jT −
1

3
δi j�T

)

+ β4
η2

pρT

(

∂i p∂ jT + ∂ j p∂iT −
2

3
δi j∂l p∂lT

)

+β5
η2

pρT

(

∂iT∂ jT −
1

3
δi j∂lT∂lT

)

+ ... , (5)

S i = χ∂iT + ... ,

with the convective derivative D/Dt = ∂/∂t + ui∂i, and

σi j = ∂iu j + ∂ jui −
2

3
δi j∂ · u ,

η =
p

B(2)
+ ... , χ =

15R

2
η + ... ,

where η and ξ, appearing as in the Navier-Stokes equation and the Fourier’s law of

heat conduction, are the shear viscosity and heat conductivity respectively. B(2) is a

specific function of the local thermodynamic variables determined by the collision

kernel of the Boltzmann equation. The β′
i
s are pure numbers that can be determined

from the Boltzmann equation. The time derivative in D/Dt can be converted to

spatial derivatives using the hydrodynamic equations of motion; in fact, up to the

orders shown above, we can assume that the Euler equation is valid and that the

heat conduction is adiabatic.

The functional forms can be expanded systematically in the derivative expan-

sion, which counts the number of spatial derivatives present in the expansion. The

expansion parameter is the ratio of the typical length scale of variation of the hydro-

dynamic variables with the mean-free path. This is true for all the higher moments

of f . The functional forms of pi j and S i (5), when substituted into the hydrody-

namic equations (2), give us systematic corrections to the Navier-Stokes equation

and Fourier heat conduction respectively which can be expanded in the derivative

expansion scheme.

The hydrodynamic equations are now the only dynamical equations. The higher

moments are given algebraically in terms of the hydrodynamic variables and their

spatial derivatives. The phase space distribution function f is completely deter-

mined by the hydrodynamic variables through its velocity moments. The hydro-

dynamic equations thus form a closed system of equations and any solution of this

system can be lifted to a unique solution of the full Boltzmann equation.
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Stewart has shown [22] that such normal solutions exist even for the relativistic

and semiclassical Boltzmann equations.

2.1.2 The conservative solutions

We are able to prove that a more general class of special solutions to the Boltzmann

equation - which we call conservative solutions - exist. Here we outline these

solutions, leaving the details of the proof to the Appendix. These solutions can

be completely determined in terms of the energy-momentum tensor, analogous to

the normal solutions being completely determined in terms of the hydrodynamic

variables. The energy-momentum tensor (as shown later) can be parametrized by

the first ten moments of f :

• i) the five hydrodynamic variables (ρ, ui, p), and

• ii) the five components of the shear-stress tensor pi j in a comoving locally

inertial frame.

Importantly, for a generic conservative solution the shear-stress tensor is an inde-

pendent variable unlike the case of normal solutions, where it is a functional of the

hydrodynamic variables.

These ten independent variables satisfy the following equations of motion

∂ρ

∂t
+

∂

∂xr

(ρur) = 0 ,

∂ui

∂t
+ ur

∂ui

∂xr

+
1

ρ

∂(pδir + pir)

∂xr

= 0 ,

∂p

∂t
+

∂

∂xr

(ur p) +
2

3
(pδir + pir)

∂ui

∂xr

+
1

3

∂S r

∂xr

= 0 , (6)

∂pi j

∂t
+

∂

∂xr

(ur pi j) +
∂S i jr

∂xr

− 1

3
δi j

∂S r

∂xr

+
∂u j

∂xr

pir +
∂ui

∂xr

p jr −
2

3
δi j prs

∂ur

∂xs

+p(
∂ui

∂x j

+
∂u j

∂xi

− 2

3
δi j

∂ur

∂xr

) =

∞
∑

p,q=0;p≥q;(p,q),(2,0)

B
(2,p,q)

i jνρ
(ρ, T ) f

(p)
ν f

(q)
ρ

+B(2)(ρ, T )pi j .

where B
(2,p,q)

i jνρ
are determined by the collision kernel in the Boltzmann equation.

ν and ρ indicate abstractly all the p and q indices of the moments f (p) and f (q),

respectively.
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The above equations are now a closed system of equations, just like the hydro-

dynamic equations were in case of the normal solutions. All the higher moments

appearing in the above equations are given as functionals of the hydrodynamic

variables and the stress tensor. These functional forms are unique and special alge-

braic solutions of the higher moments of f . For instance, the heat flow vector can

be determined from

S i =
15pR

2B(2)

∂T

∂xi

+
3

2B(2)

(

2RT
∂pir

∂xr

+ 7Rpir

∂T

∂xr

− 2pir

ρ

∂p

∂xr

)

+ .... . (7)

The functional forms of all the higher moments, as for the heat flow vector above,

can be expanded systematically in two expansion parameters ǫ and δ. The parame-

ter ǫ is the old derivative expansion parameter – the ratio of the typical length scale

of spatial variation to the mean-free path. The new parameter δ is an amplitude

expansion parameter, defined as the ratio of the typical amplitude of the nonhydro-

dynamic shear-stress tensor with the hydrostatic pressure in the final equilibrium.

The closed system of ten equations (6) are thus the only dynamical equations

and any solution of this system can be lifted to a full solution of the Boltzmann

equation through the unique functional forms of the higher moments.

The normal solutions,being independent of the stress tensor, are clearly a spe-

cial class of conservative solutions. There is another interesting class of conserva-

tive solutions which are homogenous or invariant under spatial translations. The

phase space distribution function f is a function of v only for these homogenous

solutions and the hydrodynamic variables are constants both over space and time

[this can be easily seen from (6)]. The shear-stress tensor and consequently all

the higher moments are functions of time alone. Such solutions have dynamics in

velocity space only and describe relaxation processes.

In a generic solution of the Boltzmann equation, the dynamics at short time

scales is more like the homogenous class, where the initial one-particle distri-

bution relaxes to a local equilibrium given by a local Maxwellian distribution

parametrized by the local values of the hydrodynamic variables. At long time

scales the dynamics is more like the normal solutions, where the system goes to

global equilibrium hydrodynamically. Thus conservative solutions, despite being

mathematically special, capture both relaxation and hydrodynamics which consti-

tute generic nonequilibrium processes in a phenomenological manner. In other

words, the dynamics of the energy-momentum tensor alone given by (6) captures

both relaxation and hydrodynamics in a systematic fashion.
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2.2 Relativistic and semiclassical corrections to conservative solutions

The proof for existence of conservative solutions in the nonrelativistic classical

Boltzmann equation can be readily generalized to its semiclassical and relativistic

versions. This is because all the properties of the collision term J required for the

proof of the existence of conservative solutions carry over to the semiclassical and

relativistic versions as well.

Let us consider the semiclassical version of the collision term which takes into

account quantum statistics. This was first obtained by Uehling and Uhlenbeck [23]

to be

J( f , g) =

∫

J(ξ, ξ∗)B(θ,V)dξ∗dǫdθ ,

J(ξ, ξ∗) =
[

f (x, ξ
′
)g(x, ξ∗

′
)F (ξ)G(ξ∗) − f (x, ξ)g(x, ξ∗)F (ξ

′
)G(ξ∗

′
)
]

,

F (ξ) =

(

1 ± h3 f (ξ
′
)

(2s + 1)

)

, G(ξ) =

(

1 ± h3g(ξ)

(2s + 1)

)

, (8)

where the + sign applies for bosons, the − sign for fermions and s is the spin of

the particles comprising the system. The final velocities ξ
′

and ξ∗
′

are determined

by the velocties ξ and ξ∗ before the binary molecular collision according to the

intermolecular force law. Importantly, now J( f , f ) vanishes if and only if f is

the Bose-Einstein or the Fermi-Dirac distribution in velocity space for bosons and

fermions respectively, instead of being the Maxwellian distribution [24].

The proof for the existence of conservative solutions in the nonrelativistic clas-

sical case does not require any explicit form of the collision kernel J. Only certain

key properties suffice, as will be evident from the proof. We can pursue the same

strategy with the semiclassical corrections as well [25].

One has to employ the Sonine polynomials, which are generalizations of Her-

mite polynomials, to find solutions of the required algebraic solutions of the higher

moments as in [26]. The main objection could be that for the proof of existence of

solutions, we use a theorem due to Hilbert which is explicitly stated for the non-

relativistic classical J. However the details are exactly the same as that for con-

structing the normal solutions. It has been seen that normal solutions can indeed

be constructed in the semiclassical case [22], so there ought to be no obstruction

to the construction of conservative solutions also. Indeed, our proof shows that we

can construct the conservative solutions given that the normal solutions exist.

The generalization in the relativistic case again holds on similar grounds as

above. It is more convenient to use a covariant description now. Normal solutions

of the semiclassical relativistic Boltzmann equation have also been constructed

[22]. So there should be no obstruction in constructing conservative solutions as

well.
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In fact the same arguments could be used to state that any solution of the rela-

tivistic semiclassical Boltzmann equation at sufficiently late times can be approxi-

mated by an appropriate conservative solution, since the maximum speed of prop-

agation of linearized modes increases monotonically [27] as more and more higher

moments are included.

2.3 Multicomponent systems

So far we have pretended as if our system is composed of only one component

or particle. However gauge theories have many species of particles and internal

degrees of freedom, hence we need to understand how to extend our results to

multicomponent systems.

Let us consider the example of N = 4 super Yang-Mills theory. In the weakly

coupled description we need to deal with all the adjoint fermions and scalars along

with the gauge bosons; all these particles form a SUSY multiplet. We note that in

the universal sector all charge densities or currents corresponding to local (gauge)

and global [S O(6)R] charges are absent. Similarly we should not have any multi-

pole moments of local or global charge distributions, because in the gravity side we

have pure gravity only. Therefore, most naturally we should have that all members

of theN = 4 SUSY multiplet, distinguished by their spin, global charge and color,

should be present in equal density at all points in phase space. So we are justified

in our analysis in dealing with a single phase space distribution f . The Boltzmann

equation we have considered above is obtained after summing over interactions in

all possible spin, charge and color channels.

The situation should be similar in any other conformal gauge theory. We can

still treat the spin, color and charge as internal degrees of freedom owing to mass

degeneracy even though the particles do not form a SUSY multiplet. In the absence

of any chemical potential, there should be equipartition at all points in phase space

over these internal degrees of freedom. This should be the most natural weak

coupling extrapolation of the situation in the universal sector, dual to pure gravity,

where gravity is blind to all the internal degrees of freedom of the particles.

3 APPLICATIONS TO PURE GRAVITY IN ADS

We will now argue that conservative solutions should exist even in the exact micro-

scopic theory. In the exact microscopic theory, we do not make any approximation

over the microscopic degrees of freedom and their dynamics unlike the Boltzmann

equation, though an appropriate averaging over the environmental degrees of free-

dom is required to get the final equilibrium configuration.
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To begin with, consider the BBGKY heirarchy of equations [28] which de-

scribes a hierarchy of coupled semiclassical nonrelativistic equations for the evo-

lution of multiparticle phase space distributions. This hierarchy is useful for devel-

oping kinetic theory of liquids. If the hierarchy is not truncated, then it is equivalent

to the exact microscopic description. It has been shown that normal or purely hy-

drodynamic solutions to the untruncated hierarchy exist. These solutions lead to

the determination of viscosity of liquids which behave correctly as a function of

density and temperature [29]. It is therefore likely that the conservative solutions

also exist for this system which means they are likely to exist for the microscopic

nonequilibrium theory of nonrelativistic classical systems constituted by pointlike

particles.

Experiments at the Relativistic Heavy Ion Collider (RHIC) suggest that the

evolution of quark-gluon plasma (QGP) can be well approximated by hydrody-

namic equations, very soon after its formation from the fireball [30]. Given that

the perturbative nonequilibrium dynamics of hot QCD for temperatures greater

than the microscopic scale Λ is equivalent to a relativistic semiclassical Boltzmann

equation [10], we know perturbatively normal or purely hydrodynamic solutions

exist for these microscopic theories. In fact any generic solution of the relativistic

semiclassical Boltzmann equation can be approximated by an appropriate normal

solution at a sufficiently late time. The quick approach to almost purely hydrody-

namic behavior for the strongly coupled QGP in RHIC suggests that even nonper-

turbatively a normal solution should exist which could approximate the late-time

behavior for any generic nonequilibrium state. It is also true that not all transport

coefficients of generic conformal higher derivative hydrodynamics can be defined

through linear response theory. The plausible route of defining these higher or-

der transport coefficients could be through the construction of normal solutions

in nonequilibrium quantum field theories. Extremely fast relaxation dynamics in

quark-gluon plasma similarly suggest that conservative solutions should capture

generic nonequilibrium behavior. This is because in such systems the approach

to the conservative regime, where the dynamics is given in terms of the energy-

momentum tensor alone, should be faster than in weakly coupled systems, where

even the corrections to Navier-Stokes hydrodynamics are hard to determine exper-

imentally.

If we accept that conservative solutions exist in the exact microscopic theory,

it is only natural to identify the conservative solutions with the universal sector at

large N and strong coupling in gauge theories with gravity duals. Such an iden-

tification explains the dynamics in the universal sector being determined by the

energy-momentum tensor alone. We emphasize, however, that the conservative

solutions become universal only at strong coupling and large N.

An appropriate AdS/CFT argument can also be provided for the existence of

12



conservative solutions for finite N and coupling. In such cases, we need to consider

higher derivative corrections to Einstein’s equation and the full ten − dimensional

equations of motion. There is no guarantee of a consistent truncation to pure grav-

ity anymore. However, we can use holographic renormalization with Kaluza-Klein

reduction to five dimensions [31] to argue that we can readily extend the solutions

in the universal sector, perturbatively in the string tension (≈ 1/
√
λ in appropriate

units) and string coupling (whose N dependence is 1/N). This can be done by turn-

ing off the normalizable mode of the dilaton while keeping its non-normalizable

mode constant, turning off the normalizable and non-normalizable modes of all

other fields while keeping the boundary metric flat and perturbatively correcting

the energy-momentum tensor to appropriate orders of the string tension and string

coupling, so that the gravity solution still has a future horizon regular up to desired

orders in the perturbation expansion. These solutions, again by construction, are

determined by energy-momentum tensor alone. Our claim that the conservative

solutions exist in the exact microscopic theory at any value of coupling and N is

therefore validated.

The identification of conservative solutions with the universal sector at strong

coupling and large N for conformal gauge theories with gravity duals allows us to

create a framework for solutions of pure gravity in AdS with regular future hori-

zons. We first study the parametrization of the boundary stress tensor which will

allow us to make the connection with nonequilibrium physics. Then we will pro-

ceed to give a framework for regular solutions, with the only assumption being the

identification of conservative solutions with the universal sector at strong coupling

and large N. Finally we will make some connections with known results.

3.1 The energy-momentum tensor and nonequilibrium physics

A general parametrization of the energy-momentum tensor allows us to connect

gravity to the nonequilibrium physics of conformal gauge theories. This parametriza-

tion has been first applied in the AdS/CFT context in [12]. The energy-momentum

tensor is first written as

tµν = t(0)µν + πµν , (9)

where t(0)µν is the part of the energy-momentum tensor in local equilibrium. It can

be parametrized in conformal theories by the hydrodynamic variables, the timelike

velocity (uµ) and the temperature (T ), as

t(0)µν = (πT )4(4uµuν + ηµν) , (10)

and πµν is the nonequilibrium part of the energy-momentum tensor.
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If we define the four velocity uµ to be the local velocity of energy transport

and the temperature T such that 3(πT )4
= uµuνtµν is the local energy density, then

in the local frame defined through uµ, the energy-momentum tensor must receive

nonequilibrium contributions in the purely spatial block orthogonal to the four ve-

locity. This means

uµπµν = 0 . (11)

The constraints in Einstein’s equations impose the tracelessness and conserva-

tion condition on the energy-momentum tensor so that

∂µtµν = 0 ⇒ ∂µ
(

(πT )4(4uµuν + ηµν)
)

= −∂µπµν ,

Tr(t) = 0⇒ Tr(π) = 0 . (12)

In the second equation above, the implication for the tracelessness for πµν comes

from the fact that the equilibrium energy-momentum tensor as given by (10) is by

itself traceless.

In the dual theory these conditions are satisfied automatically owing to the full

S O(4, 2) conformal invariance. Note that the first of the equations above is just

the forced Euler equation and can be thought of as the equation of motion for the

hydrodynamic variables.

We can reinterpret a class of known solutions of pure gravity in AdS as the du-

als of the normal solutions in the exact microscopic theory at strong coupling and

large N. These solutions are the ”tubewise black-brane solutions” [13] which, in

any radial tube ending in a patch at the boundary, are approximately boosted black

brane solutions corresponding to local equilibrium and can be parametrized by the

hydrodynamic variables corresponding to the patch at the boundary. These solu-

tions can be constructed perturbatively in the derivative expansion. The expansion

parameter, being the ratio of length and time scale of variation of the local hydro-

dynamic parameters and the mean-free path in final equilibrium, simply counts the

number of boundary derivatives. We can identify these solutions as duals of normal

solutions because the nonequilibrium part of the energy-momentum tensor πµν can

be parametrized by the hydrodynamic variables and their derivatives alone.

The complete parametrization of the purely hydrodynamic πµν in any con-

formal theory is known up to second order in the derivative expansion.In this

parametrization, aside from the shear viscosity four higher order transport coef-

ficients appear [12,13], which can be fixed by requiring the regularity of the future

horizon giving us the tubewise black-brane solutions [13].

Let us define the projection tensor Pµν which projects on the spatial slice locally

orthogonal to the velocity field, so that

Pµν = uµuν + ηµν .
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The hydrodynamic shear strain rate σµν is defined as

σµν =
1

2
PµαPνβ

(

∂αuβ + ∂βuα
)

− 1

3
Pµν(∂ · u) . (13)

We also introduce the hydrodynamic vorticity tensor,

ωµν =
1

2
PµαPνβ(∂αuβ − ∂βuα) . (14)

The purely hydrodynamic πµν up to second order in the derivative expansion,

for the tubewise black-brane solutions, with all nonvanishing transport coefficients

fixed by regularity is

πµν = −2(πT )3σµν

+(2 − ln 2)(πT )2

[

(u · ∂)σµν +
1

3
σµν(∂ · u) − (uνσµβ + uµσνβ)(u · ∂)uβ

]

+2(πT )2

(

σαµσ ν
α −

1

3
Pµνσαβσ

αβ

)

+(ln 2)(πT )2(σαµω ν
α + σ

αµω ν
α ) + O(∂3u) . (15)

Having identified the normal solutions in the universal sector with a class of

solutions which could in principle be constructed up to any order in the derivative

expansion, we will now naturally extend this observation to a framework which

captures all regular solutions in certain expansion parameters.

3.2 The complete framework

In the hydrodynamic case we had four hydrodynamic variables, so the conservation

of the energy-momentum tensor alone is sufficient to determine the evolution in the

boundary. However in the generic case we need an independent equation of motion

for πµν.

The regularity condition must be an equation for the evolution of πµν similar

to the last equation of (6), This is because, as per our argument, the conservative

solutions should be identified with the universal sector at large N and strong cou-

pling. However Eq. (6) came from an underlying Boltzmann equation. At strong

coupling, we have no kinetic equation to guide us because a valid quasiparticle

description at strong coupling is not known even for N = 4 supersymmetric Yang-

Mills theory. Moreover an entropy current cannot be probably constructed beyond

the class of purely hydrodynamic solutions, hence we cannot use any formalism

like the Israel-Stewart-Muller formalism [32] to guess an equation for πµν. This is
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because we should not expect a monotonic approach to equilibrium, as in the case

of the Boltzmann equation, when we go to the exact microscopic description [33].

The safest strategy therefore, will be to use only the following basic inputs

without resorting to guesswork.

• The first input is that the equation for πµν has to be conformally covariant

because the dual gauge theory is conformal.

• The second input is that the solutions in the purely hydrodynamic sector

are known exactly up to second order in the derivative expansion and, be-

ing identified with the normal solution, should be special cases of our com-

plete framework. The equation for πµν must therefore have (15), the purely

hydrodynamic energy-momentum tensor known up to second order in the

derivative expansion, as a solution up to those orders.

With only these inputs, we will be able to propose the equation for πµν only

up to certain orders of expansion in both the hydrodynamic and nonhydrodynamic

expansion parameters about the equilibrium state. However we should consider

the most general equation for πµν which satisfies the above criteria. The expansion

parameters are again the derivative expansion parameter (as in the purely hydro-

dynamic sector, but with the spatio-temporal variation of πµν taken into account

additionally) and the amplitude expansion parameter, which is the ratio of a typical

value of πµν divided by the pressure in final equilibrium.

Our proposal then amounts to the following equation of motion for πµν, whose
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solutions should give all the regular solutions of pure gravity in AdS 5 :

(1 − λ3)

[

(u · ∂)πµν +
4

3
πµν(∂ · u) −

(

πµβuν + πνβuµ
)

(u · ∂)uβ

]

= − 2πT

(2 − ln 2)

[

πµν + 2(πT )3σµν

−λ3(2 − ln 2)(πT )2

(

(u · ∂)σµν +
1

3
σµν(∂ · u) −

(

uνσµβ + uµσνβ
)

(u · ∂)uβ

)

−λ4(ln 2)(πT )2(σαµω ν
α + σ

αµω ν
α )

−2λ1(πT )2

(

σαµσνα −
1

3
Pµνσαβσαβ

) ]

−(1 − λ4)
ln2

(2 − ln 2)
(π
µ
αω

αν
+ πναω

αµ)

− 2λ2

(2 − ln 2)

[

1

2
(πµασνα + π

νασ
µ
α) − 1

3
Pµνπαβσαβ

]

+
1 − λ1 − λ2

(2 − ln 2)(πT )3

(

πµαπνα −
1

3
Pµνπαβπαβ

)

+O
(

π3, π∂π, ∂2π, π2∂u, π∂2u, ∂2π, ∂3u, (∂u)(∂2u), (∂u)3
)

, (16)

where the O(π3, π∂π, ...) term indicates the corrections which lie beyond our inputs.

The corrections can only include terms of the structures displayed or those with

more derivatives or containing more powers of πµν or both. We cannot say much

about these corrections because for purely hydrodynamic solutions, they contribute

to the energy-momentum tensor at the third derivative order only and the general

structure of the hydrodynamic energy-momentum tensor at third order in deriva-

tives is not known. The four λi’s (i = 1, 2, 3, 4) are pure numbers. Though we

have not been able to specify their values, they are not free parameters. Once their

values are fixed by regularity of the future horizon for certain configurations, they

should give the complete framework for the whole class of regular solutions.

As we have already mentioned, this equation of motion (16) for the shear-

stress tensor πµν has to be supplemented by the conservation of energy-momentum

tensor in the form given in (12) so that we have nine equations for the nine vari-

ables (including the hydrodynamic variables) parametrizing the general nonequi-

librium energy-momentum tensor. The tracelessness of the energy-momentum ten-

sor begets the tracelessness of πµν as in (12) and this, as we have mentioned before,

has led to the requirement that our equation of motion for πµν should be Weyl co-

variant.

This equation is thus a phenomenological framework for the universal sector

as a whole up to certain orders in perturbation about the final equilibrium state.
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This framework governs both hydrodynamic and nonhydrodynamic situations and

goes much beyond linear perturbation theory. This is however, only valid within

the universal sector. Beyond this sector we need many other inputs other than the

boundary energy-momentum tensor to specify the boundary state or the solutions

in gravity.

3.3 Checks, comparisons and comments

We will begin with a couple of comments. The first comment is that our Eq. (16)

does not hold well at early times in the generic case. At early times the terms

with time derivatives of various orders coming from the higher order corrections to

our equation would become important. We will soon see the effect of such time-

derivative terms in a simple example. We give an argument why such terms with

time-derivatives must appear in the higher order corrections [34]. Any data at early

times in the bulk, which will result in smooth behavior in the future, should get

reflected in terms of an infinite set of variables in the boundary. The only way we

can represent this in terms of the energy-momentum tensor alone is to include its

higher order time derivatives in the initial data, so the equation for evolution of the

energy-momentum tensor should contain higher order time derivatives.

The second comment is that, in the particular case of boost-invariant flow, we

have a better structural understanding of the hydrodynamic behavior at higher or-

ders in the derivative expansion [35]. We can, in principle, use our procedure to

give a framework for general boost-invariant flows at late times. However we will

leave this for future work. Moreover, the basic logic of our proposal is to use the

purely hydrodynamic behavior as an input and then extend this to the complete

framework. So our proposal and its extension at higher orders, by construction,

reproduce the hydrodynamic sound and shear branches of the quasinormal modes.

We now develop a straightforward strategy to check our proposal. We could

look at simple nonhydrodynamic configurations first and construct the bulk so-

lution perturbatively in the amplitude expansion parameter to determine some of

the λ’s. Once these have been determined, we can construct bulk solutions cor-

responding to a combination of hydrodynamic and nonhydrodynamic behaviors

perturbatively in both the amplitude and derivative expansion parameters and then

check if the regularity fixes those λ’s to the same values.

The simplest nonhydrodynamic configurations are the analogs of homogenous

conservative solutions of the Boltzmann equation we have mentioned before and

which describe pure relaxation dynamics. Such configurations are homogenous in

space, but time dependent and satisfy the conservation equation trivially. In such

configurations the flow is at rest, so that uµ = (1, 0, 0, 0) and the temperature T is

also a spatiotemporal constant. The nonequilibrium part of the energy-momentum
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tensor satisfies the following conditions

(i) the time-time component π00 and the time-space components π0i for i = 1, 2, 3

vanish and

(ii) the space-space components πi j for i, j = 1, 2, 3 are dependent only on time.

The above conditions on πµν result in the conservation equation being trivially

satisfied. It follows from our proposal (16) that regularity in the bulk implies that

πi j satisfy the following equation of motion :

(1 − λ3)
dπi j

dt
+

2πT

(2 − ln2)
πi j −

1 − λ1 − λ2

(2 − ln2)(πT )3

(

πikπk j −
1

3
δi jπlmπlm

)

= O(
d2πi j

dt2
) .

(17)

If we look at the linearized solution, we have

πi j = Ai jexp(− t

τπ
), τπ = (1 − λ3)

2 − ln 2

2πT
, (18)

whereAi j is a spatiotemporally constant matrix such thatAi jδi j = 0. This implies

that we have a nonhydrodynamic mode such that when the wave vector k vanishes,

the frequency ω becomes purely imaginary and equals −iτ−1
π , i.e ω = −iτ−1

π as

k → 0. There is however, no such mode in the quasinormal spectrum of black

branes [36]. This makes us conclude that λ3 = 1, so that at the linearized level the

only solution of (17) is πi j = 0.

However, at the nonlinear level we still have nonhydrodynamic solutions given

by

2πT

(2 − ln2)
πi j −

1 − λ1 − λ2

(2 − ln2)(πT )3

(

πikπk j −
1

3
δi jπlmπlm

)

= O(
d2πi j

dt2
) . (19)

In fact, up to the orders explicitly given above, the equation is nondynamical and

predicts that we should, at least perturbatively, have tensor hair on the black-brane

solution in pure gravity in AdS. This gives us the simplest nontrivial test of our

proposal and also a means of determining λ1 + λ2.

In this connection, we also note that the possible second order in the time-

derivative correction in (19) implies that we need not have a monotonic approach

to equilibrium as we should have in the presence of an entropy current.

We end here with some comments on the issue of connecting our proposal

with physics of quasinormal modes of the black brane. The linearized limit of

the conservation equation, along with our proposed Eq. (16), supports at most

three branches of linearized fluctuations. We have further argued that the third

branch giving pure relaxation dynamics is not present. However, we know that

the quasinormal modes have infinite branches of higher overtones other than the
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hydrodynamic sound and shear branches. This naive comparison is somewhat mis-

placed [37] because, as we know, nonlinearities do affect linearized propagation in

quantum field theories. Since our equations are actually equivalent to the nonequi-

librium field theory equation of motion of the state in the gauge theory, we must

take into account nonlinearities of our equation in the propagation of the energy-

momentum tensor before making any comparison. We leave this for future work.

We would also like to mention here that it is only natural that the higher over-

tones are more like resonances and are built out of the dynamics of the nine degrees

of freedom of the conformal energy-momentum tensor, as it would have been sur-

prising if infinite branches in the spectrum in the universal sector would have been

blind to the microscopic details of the theory like the matter content and couplings.

Our framework suggests that these infinite branches could be obtained from the

nonlinear dynamics of the energy-momentum tensor. However we should exhibit

caution here because although these nonhydrodynamic higher overtones of quasi-

normal modes are indeed regular linear perturbations of the black brane, it is yet

to be demonstrated that these can be developed into complete regular solutions of

Einstein’s equation nonlinearly.

4 DISCUSSION

We will mention some of the developments on which we would like to focus in the

future. The first could be in the realm of early-time dynamics, especially in the un-

derstanding of decoherence. This should be convenient because we can understand

a lot by just considering the higher order corrections to the homogenous nonhy-

drodynamic configurations which solve (19). We have already observed the possi-

bility of an oscillatory approach to equilibrium here. To uncover the physics, we

need to compare with homogenous conservative solutions in quantum kinetic the-

ories which can capture the physics of decoherence. We can test whether the same

dynamics of the energy-momentum tensor in conservative solutions of quantum

kinetic theories which captures decoherence, also gives rise to horizon formation

in the bulk.

A second important issue would be a better understanding of whether the hy-

drodynamic limit of nonequilibrium dynamics always leads to generation of an

entropy current. The tubewise black-brane solutions, which by our logic should

constitute the normal or purely hydrodynamic solutions at large N and strong cou-

pling, indeed demonstrate the existence of a family of entropy currents [38]. How-

ever, unlike for the normal solutions of the Boltzmann equation, or in the Israel-

Stewart-Muller formalism, these entropy currents are not of the form suµ, where s

could be interpreted as the nonequilibrium entropy density. We hope to get a better
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understanding of the physics of this entropy current by investigating the existence

and form of the entropy currents in the normal solutions of untruncated BBGKY

heirarchy which, as mentioned before, are solutions of exact microscopic dynam-

ics.

Finally, we have given a framework for general universal nonequilibrium be-

havior in strongly coupled gauge theories with gravity duals. It would be inter-

esting to see how much of this framework may apply to physics of quark-gluon

plasma at the RHIC.
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APPENDIX : PROOF OF EXISTENCE OF CONSERVA-
TIVE SOLUTIONS

We will now present the details of our proof for the existence and uniqueness of

conservative solutions of the Boltzmann equation. In order to keep the proof rea-

sonably self-contained, we give further details on the Boltzmann equation and how

one can obtain the hydrodynamic equations seen earlier. We follow the notation

of [21,43] mostly for this part of the discussion. This will be followed by the proof

in full detail.

A.1 A short description of the Boltzmann equation

The Boltzmann equation for the one-particle phase space distribution f (x, ξ) for

a gas of nonrelativistic monoatomic molecules of unit mass interacting through a

central force is

(
∂

∂t
+ ξ · ∂

∂x
) f (x, ξ) = J( f , f )(x, ξ) , (20)

where

J( f , g) =

∫

(

f (x, ξ
′
)g(x, ξ∗

′
) − f (x, ξ)g(x, ξ∗)

)

B(θ,V)dξ∗dǫdθ , (21)
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is the collision integral. (ξ, ξ∗) are the velocities of the molecules before a binary

collision and (ξ
′
, ξ∗

′
) are their corresponding velocities after the collision. The

angular coordinates (θ, ǫ) are the coordinates related to the collision, and V = ξ−ξ∗
is the relative velocity with magnitude V . We assume that the collision takes place

due to a central force acting between the molecules.

V’

V

r

r

εrdrd 

n

θ

Figure 1: The collision coordinates

Figure 1 illustrates the coordinates (θ, ǫ) used for describing the collision. The

black dot in the center of the figure refers to the first molecule–the target molecule.

The dotted line indicates the trajectory of the second molecule which we call the

bullet molecule, with respect to the target molecule. The target molecule is placed

at the center where its trajectory comes closest to that of the bullet molecule. We

have drawn a sphere around the target molecule and n is the unit vector in the

direction of the point of closest approach of the bullet molecule. The beginning of

the trajectory asymptotes in the direction opposite V and the end of the trajectory

asymptotes in the direction opposite V
′
, which is the relative velocity ξ

′ − ξ∗′ after

the collision. The co-ordinates (r, ǫ) are polar co-ordinates in the plane orthogonal

to the plane containing the trajectory of the bullet molecule and the target molecule

as shown in the figure. The radial coordinate r is just the impact parameter as
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shown in the figure. The angular coordinate θ is the angle between n and the initial

relative velocity V. Thus the unit vector n is determined by the angular coordinates

θ and ǫ.

Solving Newton’s second law for the given central force, we can determine r

as a function of θ and V , i.e. if the force is known we know r(θ,V). The collision

kernel B(θ,V) is defined as

B(θ,V) = Vr
∂r(θ,V)

∂θ
. (22)

Finally the velocities of the target and bullet molecule are related to the initial

velocities of the target and bullet molecule kinematically through

ξ
′
i = ξi − ni(n · V) ,

ξ∗
′

i = ξ∗i + ni(n · V) , (23)

so that V
′ · n = V · n.

This completes our description of the Boltzmann equation. When the molecules

interact via an attractive or repulsive central force which is proportional to the fifth

inverse power of the distance ρ between the molecules, we say the system is a gas

of Maxwellian molecules. The simplification for Maxwellian molecules is that r is

independent of θ which can be seen from the fact that the trajectories of both the

target and the bullet molecules lie on the circumference of a circle in the center of

mass frame. As a consequence, B is also independent of θ.

To proceed further we need to develop some notation. Let φ(ξ) be a function

of ξ. We will call it a collision invariant if

Φ(ξ, ξ∗, ξ
′
, ξ∗

′
) ≡ φ(ξ) + φ(ξ∗) − φ(ξ

′
) − φ(ξ∗

′
) = 0 . (24)

Clearly there are five collision invariants - (1, ξi, ξ
2) - which we will collectively

denote as ψα.

Let us also define, for convenience of notation,

J( f , g) =
J( f , g) + J(g, f )

2
. (25)

Notation: We will use the following notation in the rest of this section. Let

A(m) and B(n) be two tensors of rank m and n respectively, completely symmetric in

all their indices. Then,

• A(m)B(n) will denote the symmetric product of the tensors so that it is com-

pletely symmetric in all its m + n indices.
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• A(m)B
(n)

i
will denote a tensor of rank (m+ n) where all indices except the i-th

index in B(n) have been completely symmetrized.

• We will use ν as in Aν to denote all the m indices in A

• If Ai j and Bkl are symmetric second rank tensors, then (Ai jBkl + + + ++)

will denote the combination of all the six terms required to make the sum

symmetric in its indices i, j, k and l.

The above notations will hold even when A or B is a tensorial operator containing

spatial derivatives.

The hydrodynamic equations can be derived from the Boltzmann equation as

follows. Using symmetry one can easily prove that
∫

φ(ξ)J( f , g)dξ =
1

4

∫

Φ(ξ, ξ∗, ξ
′
, ξ∗

′
)J( f , g)dξ . (26)

Using (24) it is clear that if φ(ξ) is a collision invariant, that is φ(ξ) = ψα(ξ),

then
∫

ψα(ξ)J( f , g)dξ = 0 . (27)

A special case of the preceding result gives
∫

ψα(ξ)J( f , f )dξ = 0 . (28)

The Boltzmann equation [on multiplying by ψα(ξ) and integrating] implies

∂ρα

∂t
+

∂

∂xi

(∫

ξiψα f dξ

)

= 0 , (29)

where ρα are the locally conserved quantities defined by

ρα =

∫

ψα f dξ . (30)

These equations are equivalent to the hydrodynamic equations (2) once we

make the identifications [ρ0 = ρ, ρi = ρui (i = 1, 2, 3), ρ4 = (3p/2)].

The next few velocity moments, needed for later reference, are

pi j =

∫

(cic j − RTδi j) f dξ ,

S i jk =

∫

cic jck f dξ , (31)

Qi jkl =

∫

cic jckcl f dξ ,

where ci = ξi − ui.
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A.2 The moment equations

Multiplying both sides of the Boltzmann equation by higher polynomials of ξ and

integrating over ξ, we find the equations satisfied by the moments f (n)’s for n ≥ 2

to be

∂ f (n)

∂t
+

∂

∂xi

(

ui f (n)
+ f

(n+1)
i

)

+
∂u
∂xi

f
(n)
i
− 1

ρ
f (n−1)

∂ f
(2)

i

∂xi

= J(n) , (32)

where

J(n)
=

∫

cnB( f
′
f
′
1 − f f1)dθdǫdξdξ1 , (33)

is the n-th velocity moment of the collision kernel.

It can be shown that

J
(n)
µ =

∞
∑

p,q=0;p≥q

B
(n,p,q)
µνρ (ρ, T ) f

(p)
ν f

(q)
ρ , (34)

with a particular simplification for B
(2,2,0)

i jkl
, which can be written as

B
(2,2,0)

i jkl
(ρ, T ) = B(2)(ρ, T )δikδ jl . (35)

For Maxwellian molecules, there is yet another remarkable simplification that

B(n,p,q)’s are nonzero only if p + q = n. This happens essentially because the

collision kernel B(θ,V) in (21) is independent of θ in this case (for more details

please see [43]).

We will also denote f
(4)

i jkl
as Qi jkl and its explicit form will be useful.

A.3 Formal Proof of Existence of Conservative Solutions

We now outline the proof that demonstrates existence of conservative solutions

for the Boltzmann equation. The one-particle phase space distribution f will be

functionally determined by the hydrodynamic variables and the shear-stress tensor

(and their spatial derivatives). It must be emphasized that we proceed exactly along

the same lines as used by Enskog in proving the existence of the normal (or purely

hydrodynamic solutions) of the Boltzmann equation.

The proof for the existence of normal solutions of the Boltzmann equation [18–

21] (first given in Enskog’s thesis) rests on the following theorem due to Hilbert

[21, 39].

Theorem: Consider the following linear integral equation for g:

J( f0, g) + J(g, f0) = K , (36)
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where J( f0, g) is defined through (21) and f0 is a locally Maxwellian distribution.

This equation has a solution if and only if the source term K is orthogonal to the

collision invariants ψα so that:

∫

ψαKdξ = 0 , (37)

provided the potential U(ρ) satisfies the condition that |U(ρ)| ≥ O(ρ−n+1) as ρ→ 0

for n ≥ 5. [That is, when the distance (ρ) between molecules vanishes, the abso-

lute value of the potential should grow faster than (1/ρ)4.] Further the solution is

unique up to an additive linear combination of the ψα’s.

This theorem will be important in proving the existence of conservative solu-

tions too, wherein we have to actually solve for the functional dependence on the

hydrodynamic variables and the shear-stress tensor. For any conservative solution,

we will just need to specify the initial data for the hydrodynamic variables and the

shear-stress tensor. The only requirement will be that these initial data are analytic,

because the functional dependence of f on the hydrodynamic variables and the

shear-stress tensor will involve spatial derivatives of all orders. Clearly all normal

solutions are conservative solutions, but not vice versa.

The method of proof can be briefly outlined thus. We will extract a purely non-

hydrodynamic part from the shear-stress tensor pi j, and denote it as p
(nh)
i j

. This p
(nh)
i j

will satisfy a simpler equation of motion which schematically reads (∂p(nh)/∂t) =
∑∞

n=1 cn(p(nh))n, involving just a single time derivative [although the initial data for

p
(nh)

i j
can have any (analytic) spatial dependence]. The full shear-stress tensor pi j

can be solved as a functional of the hydrodynamic variables and the p
(nh)
i j

. One can

functionally invert this to reinstate pi j as the independent variable in place of p
(nh)

i j

and also determine the equation for pi j. In the process we will see that there is

an interesting class of nontrivial homogenous conservative solutions, where all the

hydrodynamic variables are constants over space and time, while the shear-stress

tensor is exactly p
(nh)
i j

, which is just a function of time. This class of solutions is

thus purely nonhydrodynamic, representing equilibration in velocity space.

The proof begins by writing the Boltzmann equation abstractly as

D = J( f , f ) , (38)

where

D = ∂ f

∂t
+ ξ · ∂ f

∂x
, (39)

and J( f , f ) is as defined through (21).
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For a conservative solution, f is a functional of the nonhydrodynamic shear-

stress tensor, p
(nh)
i j

(x, t) and the five hydrodynamic variables, namely ui(x, t), ρ(x, t)
and T (x, t). We expand f in two formal expansion parameters ǫ and δ such that

f =

∞
∑

n=0

∞
∑

m=0

ǫnδm f(m,n) . (40)

The physical meanings of the expansion parameters will soon be made precise.

For the moment, if the reader so pleases, she can think of ǫ as a hydrodynamic

and δ as a nonhydrodynamic expansion parameter. Following Enskog, we will also

expand the time derivative in powers of ǫ and δ as :

∂

∂t
=

∞
∑

n=1

∞
∑

m=0

ǫnδm ∂
(n,m)

∂t
. (41)

The above expansion of the time derivative might seem a little strange, but it will

be necessary for us precisely for the same reason it was necessary for Enskog - the

solutions of the equations of motion of hydrodynamic variables and p
(nh)

i j
cannot be

expanded analytically in ǫ and δ, though their equations of motion could be through

the subdivision of the partial time derivative. The proof will actually rely on the

subdivision of the equations of motion just as in Enskog’s purely hydrodynamic

normal solutions and will not require the solutions to have analytic expansions [40].

This automatically results in a similar expansion for D, such that

• For n ≥ 1 and for all m

D(n,m) ≡
n

∑

k=1

m
∑

l=0

∂(k,l) f(n−k,m−l)

∂t
+ ξ ·

∂ f(n−1,m)

∂x
. (n ≥ 1; m = 0, 1, 2, ...)

(42)

• For n = m = 0,

D(0,0)
= 0 . (43)

With the assumption that f is a functional of the hydrodynamic variables and

p
(nh)
i j

, the time derivative acts on f schematically as

∂ f

∂t
=

∞
∑

k=0

∂ f

∂(∇kρ)

∂(∇kρ)

∂t
+

∞
∑

k=0

∂ f

∂(∇kui)

∂(∇kui)

∂t

+

∞
∑

k=0

∂ f

∂(∇kT )

∂(∇kT )

∂t
+

∞
∑

k=0

∂ f

∂(∇k p
(nh)
i j

)

∂(∇k p
(nh)

i j
)

∂t
. (44)
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Above, ∇k schematically denotes k-th order spatial derivatives. Any time derivative

acting on a hydrodynamic variable can be replaced by a functional of the hydrody-

namic variables and the nonhydrodynamic shear-stress tensor by using the hydro-

dynamic equations of motion. These functional forms have a systematic derivative

expansion in terms of the number of spatial derivatives present and contain only

spatial derivatives and no time derivatives. So the expansion of the time derivative

in ǫ is actually a derivative expansion, where the expansion parameter ǫ is the ratio

of the typical length scale of spatial variation of f and the mean-free path. This

naturally “explains” (42).

On the other hand, it will be seen that the time derivative of the nonhydro-

dynamic shear-stress tensor can be replaced, using its equation of motion, by an

infinite series of polynomials of the nonhydrodynamic shear-stress tensor. Thus

the expansion of the time derivative in δ as in (43); but we expand the solution of

the equation of motion as an amplitude expansion with the expansion parameter

δ identified as the ratio of the typical amplitude of the nonhydrodynamic shear-

stress tensor with the pressure in final equilibrium. For the moment, these are just

claims, to be borne out by an appropriate definition of the expansion of f and the

time derivative.

A.3.1 Subdivisions in terms of ǫ and δ

We outline here the expansion of the various quantities in the Boltzmann equation

and the full Boltzmann equation itself in terms of the two expansion parameters

ǫ and δ and thereby arrive at various constraints that must be satisfied by these

expansions. Our proof eventually will involve recursion while expanding the full

Boltzmann equation in these expansion parameters.

1. In close analogy with Enskog’s original subdivision of f , we impose some

further properties on the subdivision of f .

• First we require, as in the case of normal solutions of Enskog and

Chapman, that the hydrodynamic variables are unexpanded in ǫ and δ

and therefore are exactly the same as in the zeroth-order solution f(0,0),

which will turn out to be locally Maxwellian. This is required because

solutions of the hydrodynamic equations cannot be expanded analyt-

ically in these expansion parameters though the hydrodynamic equa-

tions themselves could be, as mentioned above. Therefore we should

have
∫

ψα f(n,m)dξ = 0; (n + m ≥ 1;α = 0, 1, 2, 3, 4) (45)
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where ψα are the collision invariants (1, ξi, ξ
2). It follows that

ρα =

∫

ψα f(0,0)dξ . (46)

ρα are the locally conserved quantities defined through (30). We may

recall that these are just some combinations of the hydrodynamic vari-

ables.

• We also require that the purely nonhydrodynamic part of the shear-

stress tensor, p
(nh)

i j
has no expansion in ǫ and δ, analogous to the hy-

drodynamic variables. Being purely nonhydrodynamic, it determines

f(0,m) for all m, i.e. the part of f which is zeroth order in ǫ, but con-

tains all orders of δ in the conservative solutions. Since it vanishes at

equilibrium, it is of first order in δ and is given exactly by f(0,1). More

explicitly, for m ≥ 2 and n = 0, we should have

∫

(cic j − RTδi j) f(0,m)dξ = 0 (m ≥ 2) , (47)

so that

p
(nh)

i j
=

∫

(cic j − RTδi j) f(0,1)dξ . (48)

2. The subdivision of the time derivative is defined next. Following Enskog,

we impose on the time-derivative the condition that

∂(0,m)ρα

∂t
= 0 ,

∫

D(n,m)ψαdξ = 0; (n ≥ 1,m = 0, 1, 2, ...) . (49)

Using (45), the second equation above can be simplified to

∂(n,m)ρα

∂t
+

∂

∂xi

(∫

ξiψα f(n−1,m)dξ

)

= 0 (n ≥ 1,m = 0, 1, 2, ..) . (50)

Since the ρα are a redefinition of the hydrodynamic variables, this above

condition amounts to expanding the hydrodynamic equations in a particular

way. From this expansion we know how each subdivision of the time deriva-

tive acts on the (unexpanded) hydrodynamic variables. It is clear from (44)

that if we now specify how the subdivisions of the time derivative act on

p
(nh)
i j

, we have defined the time derivative. Indeed, we have to solve for the

action of the time-derivative because specifying this amounts to proving the

existence of conservative solutions [41].
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3. The next thing is to note that the full shear-stress tensor pi j (just like any

other higher moment) has an expansion in both ǫ and δ. If we denote δpi j =

pi j − p
(nh)

i j
, then for n ≥ 1

δp
(n,m)
i j
=

∫

(

cic j − RTδi j

)

(

f(n,m) − f(0,1)

)

dξ , (51)

need not vanish. The expansion of δp
(n,m)
i j

as a functional of the hydrody-

namic variables and p
(nh)

i j
in ǫ is the derivative expansion, with the power of

ǫ essentially counting the number of spatial derivatives (which act both on

hydrodynamic variables and the nonhydrodynamic shear-stress tensor). The

expansion in δ is the “amplitude” expansion in terms of p
(nh)
i j

, which we may

recall is first order in δ.

4. On the basis of the above subdivisions one can now expand both sides of

(38) and equate the terms of the same order on both sides. This enables

us to write down the following set of equations that J( f , f ) must satisfy for

different values of (n,m).

• For n = m = 0, substituting (42), (43) and (40) in (38) we get

J( f(0,0), f(0,0)) = 0 , (52)

so that f(0,0) has to be a locally Maxwellian distribution.

• Using the above fact, for n = 0 and m ≥ 1, we get

J( f(0,0), f(0,m)) + J( f(0,m), f(0,0)) −
∂(0,0)

∂t
f(0,m)

=

m
∑

l=1

∂(0,l)

∂t
f(0,m−l) − S (0,m); (m ≥ 1) . (53)

• Finally, for n ≥ 1 and for all m

J( f(0,0), f(n,m)) + J( f(n,m), f(0,0)) =
n

∑

k=1

m
∑

l=0

∂(k,l) f(n−k,m−l)

∂t
+ ξ ·

∂ f(n−1,m)

∂x
− S (n,m); (n ≥ 1). (54)
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• The S (n,m) are given by, for (n + m ≥ 2)

S (n,m) =

n−1
∑

k=1

m−1
∑

l=1

J( f(k,l), f(n−k,m−k))

+

n−1
∑

k=1

J( f(k,0), f(n−k,m)) +

m−1
∑

l=1

J( f(0,l), f(n,m−k)) (55)

+

n−1
∑

k=1

J( f(k,m), f(n−k,0)) +

m−1
∑

l=1

J( f(n,l), f(0,m−k))

+J( f(n,0), f(0,m)) + J( f(0,m), f(n,0)); (n + m) ≥ 2

and

S (0,1) = S (1,0) = 0 . (56)

A.3.2 A recursive proof

With all of the above, we will now prove the existence and uniqueness of conser-

vative solutions recursively. Recall that the key idea in this proof is to understand

how the time derivative operator ∂
∂t

acts on the hydrodynamic variables and the

nonhydrodynamic part of the shear-stress tensor, p
(nh)

i j
. We already know the ac-

tion of this operator on the hydrodynamic variables from Eqs.(49) and (50). Now

we will solve for the action of this operator on p
(nh)

i j
. The action of the time deriva-

tive, when expanded in ǫ and δ, can be understood by analyzing the subdivisions

of the Boltzmann equation given by Eqs. (52), (53) and (54).

1. It is clear from (52) that at the zeroth-order in m and n, f(0,0) is a locally

Maxwellian distribution which is uniquely fixed by the choice of the five

hydrodynamic variables (46) and hence can uniquely be specified as

f(0,0) =
ρ

(2πRT )
3
2

exp

(

− c2

2RT

)

. (57)

2. Next let us consider (53). The usual trick here is to rewrite f(0,m) as f(0,0)h(0,m).

The advantage is that since f(0,0) contains hydrodynamic variables only,

∂(0,m)

∂t
f(0,0) = 0 . (58)
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Therefore (53) can be rewritten as

J( f(0,0), f(0,0)h(0,m)) + J( f(0,0)h(0,m), f(0,0)) − f(0,0)

∂(0,0)

∂t
h(0,m) (59)

= f(0,0)

m
∑

l=1

∂(0,l)

∂t
h(0,m−l) −

m−1
∑

l=1

J( f(0,0)h(0,l), f(0,0)h(0,m−l)); (m ≥ 2).

Now we analyze (59) for m = 1 and m = 2.

• m=1:

For m = 1, (59) reduces to

J( f(0,0), f(0,0)h(0,1)) + J( f(0,0)h(0,1), f(0,0))

= f(0,0)
∂(0,0)

∂t
h(0,1) , (60)

while it follows from (48) that

h(0,1) =
1

2!

p
(nh)

i j
(x, t)

pRT
(cic j − RTδi j) . (61)

These two equations imply that

∂(0,0)

∂t
p

(nh)

i j
= B(2)(ρ, T )pi j , (62)

where B(2) has been defined in (35) [42].

• m=2:

At the second order, (59) implies

J( f(0,0), f(0,0)h(0,2)) + J( f(0,0)h(0,2), f(0,0))

= f(0,0)

∂(0,0)

∂t
h(0,2) + f(0,0)

∂(0,1)

∂t
h(0,1) − J( f(0,0)h(0,1), f(0,0)h(0,1)) .

(63)

We then need to solve for two things, h(0,2) and the operator
(

∂(0,1)/∂t
)

.

To do this we first write h(0,2) as
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h(0,2) =
1

3!

S
(0,2)

i jk

p(RT )2

(

cic jck − RT (ciδ jk + +)
)

(64)

+
1

4!(RT )2



















Q
(0,2)

i jkl

p(RT )
−



















p
(nh)

i j

p
δkl + + + ++



















−
(

δi jδkl + +

)



















×
[

cic jckcl − RT (cic jδkl + + + ++) + (RT )2(δi jδkl + +)
]

.

The idea behind guessing this form is to expand h(0,2) in two higher

order Hermite polynomials of c’s and reexpressing the Hermite coef-

ficients through the ordinary moments. This method of expansion is

due to Grad [43]. For the moment we can just take it as the most gen-

eral possible form of h(0,2), since if higher Hermite polynomials are

included here, the coefficients would have vanished. It also turns out

that S
(0,2)

i jk
vanishes. Similarly all the other higher odd moments vanish,

so far as their purely nonhydrodynamic parts (or expansion in m for

n = 0) is concerned. Obviously this does not mean that these higher

odd moments have no dependence on p
(nh)

i j
. For n > 0 there is indeed a

nonvanishing expansion in m for these moments. We can now compare

the coefficients of Hermite polynomials on both sides of our Eq. (63).

For Maxwellian molecules (thus determining the form of J) we have

∂(0,1)

∂t
p

(nh)
i j

= B
(2,2,2)

i jklmn
(ρ, T )p

(nh)

kl
p

(nh)
mn + B

(2,4,0)

i jklmn
(ρ, T )Q

(0,2)

klmn
, (65)

∂(0,0)

∂t
Q

(0,2)

i jkl
= B

(4,4,0)

i jklmnpq
(ρ, T )Q

(0,2)
mnpq + B

(4,2,2)

i jklmnpq
(ρ, T )p

(nh)
mn p

(nh)
pq .

Since we know the action of (∂(0,0)/∂t) on p
(nh)

i j
and the hydrodynamic

variables, we can solve for Q
(0,2)

i jkl
as a functional of p

(nh)

i j
and the hydro-

dynamic variables; the solution turns out to be

Q
(0,2)

klmn
= Xklmnpqrs p

(nh)
pq p

(nh)
rs , (66)

where Xklmnpqrs satisfies the equation [44]

2B(2)Xklmnpqrs = B
(4,4,0)

klmni jtu
Xi jtupqrs + B

(4,2,2)

klmnpqrs
. (67)

This in turn provides the solution for the operator
(

∂(0,1)/∂t
)

:
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∂(0,1)

∂t
p

(nh)

i j
= B

(2,2,2)

i jklmn
p

(nh)

kl
p

(nh)
mn + B

(2,4,0)

i jklmn
Xklmnpqrs p

(nh)
pq p

(nh)
rs . (68)

The equation above shows the action of the operator on p
(nh)

i j
; we al-

ready know how it acts on the hydrodynamic variables. This implies

that we have solved for this operator at this order. Note that the solution

for the operator corroborates the intuitive understanding that this oper-

ator is the next order in amplitude expansion. Another important point

is that the solution of the operator is not independent of the solution

for Q
(0,2)

i jkl
and is just given by the logic of our expansion once Q

(0,2)

i jkl
has

been solved as a functional of p
(nh)
i j

. This feature is the same for all the

higher terms in the expansion of the time derivative operator as well.

For non-Maxwellian molecules things are a bit complicated because

the equation for Qi jkl in (65) also contains a term linear in p
(nh)
i j

, so that

now

∂(0,1)

∂t
p

(nh)

i j
= δB(2) p

(nh)

i j
+ B

(2,2,2)

i jklmn
p

(nh)

kl
p

(nh)
mn

+B
(2,4,0)

i jklmn
Xklmnpqrs p

(nh)
pq p

(nh)
rs . (69)

However this feature also appears in the usual derivative expansion (the

expansion in ǫ) of the time-derivative. Despite appearance, δB(2) p
(nh)

i j

is a small quantity as (δB(2)/B(2)) is a pure number which is smaller

than unity (for a proof of this and also for the statement of convergence

of such corrections in the context of normal solutions, please see [19,

20]). This result can be translated here, as the normal solutions are

just special cases of our conservative solutions and at a sufficiently late

time our solutions will be just appropriate normal solutions [45].

This is indeed remarkable considering that we have no parametric sup-

pression here. Formally however, aside from the convergence problem,

there is no obstruction because δ is just a formal parameter and is only

intuitively connected to the amplitude expansion.

• Higher m:

We can proceed in the same way to the next order in m when n is

zero. At every stage we have to deal with f(0,m) which we may write

as f(0,0)h(0,m) and further expand h(0,m) in a series containing up to m-th
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order Hermite polynomial in c’s. We have to solve for the coefficients

of these Hermite polynomials, which depend on x only, and this leads

to the definition of the m-th subdivision of the time derivative operator

in the δ expansion when the ǫ expansion is at the zeroth order. The

equation for evolution of p
(nh)
i j

(x, t) thus finally involves only a single

time derivative which we have expanded in δ. This is highly nonlinear,

involving an infinite series of p
(nh)

i j
. The presence of just a single time

derivative in the equation of motion for p
(nh)
i j

(x, t) makes it essentially

an ordinary differential equation in one variable and so for any initial

data existence and uniqueness of solution is guaranteed.

We note that we can consistently truncate our solution at n = 0 so that

there is no expansion of f in ǫ, provided all the hydrodynamic variables

are constants over both space and time and p
(nh)

i j
is constant over space

but a function of time. This gives us the simplest class of conserva-

tive solutions which is homogenous in space; the Boltzmann equation

becomes equivalent to an ordinary differential equation involving a sin-

gle time derivative for pi j. Physically this solution corresponds to the

most general conservative solution which is homogenous in space, but

generically far away from equilibrium in the velocity space (so that the

velocity distribution is far from being Maxwellian).

3. The next task is to prove the existence of solutions for the recursive series of

equations in (54). To see if solutions will exist we need to employ Hilbert’s

theorem. S (n,m) contains either pairs of the form J( f(p,q), f(r,s))+J( f(p,q), f(r,s))

or just J( f(l,l), f(l,l)). So when the collision invariants are integrated with

S (n,m), as in
∫

ψαS (n,m)dξ, the integrals vanish as a consequence of (27).

Therefore, the existence of the solution to f(n,m) follows from Hilbert’s theo-

rem as a consequence of (49). The solution is unique because the condition

(45) fixes the arbitrariness of the dependence of f(n,m) on the collision in-

variants ψα. The details for n ≥ 1, are thus, exactly the same as in the case

of normal solutions. The action of (∂(n,m)/∂t) on p
(nh)

i j
is also determined as

soon as the functional dependence of δpi j and the relevant higher moments

on p
(nh)

i j
and the hydrodynamic variables are determined.

The explicit calculations become extremely complex even when, say n =

2,m = 0 or n = 1,m = 1. We give some explicit results for the first few

terms in the expansion for δpi j as
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δp
(1,0)

i j
=

p

B(2)
(
∂um

∂xn

+
∂un

∂xm

− 2

3
δmn

∂ur

∂xr

) , (70)

δp
(1,1)

i j
=

1

B(2)

(

∂

∂xr

(ur p
(nh)

i j
) +

∂u j

∂xr

p
(nh)

ir
+
∂ui

∂xr

p
(nh)

jr
− 2

3
δi j p

(nh)
rs

∂ur

∂xs

)

−
2pB

(2,2,2)

i jklmn

(B(2))2
p

(nh)

kl
(
∂um

∂xn

+
∂un

∂xm

− 2

3
δmn

∂ur

∂xr

) .

It is clear that the terms in the expansion involve spatial derivatives of both

the hydrodynamic variables and p
(nh)

i j
. From the expression for δp

(1,0)

i j
one

can determine the shear viscosity η which is of course the same as in the

purely hydrodynamic normal solutions, so that

η ≈ p

B(2)
(ρ, T ) . (71)

We also give some terms in the expansion for the heat flow vector

S
(1,0)

i
=

15pR

2B(2)

∂T

∂xi

, (72)

S
(1,1)

i
=

3

2B(2)















2RT
∂p

(nh)
ir

∂xr

+ 7Rp
(nh)

ir

∂T

∂xr

−
2p

(nh)
ir

ρ

∂p

∂xr















,

It is clear that the heat conductivity χ is also the same as in purely hydrody-

namic normal solutions so that

χ ≈ 15R

2

p

B(2)
(ρ, T ) ≈ 15R

2
η . (73)

Corrections to the above relation appear in the higher order for non-Maxwellian

molecules but again these are the same as in the case of normal solutions.

This completes our proof for the existence of conservative solutions for the

nonrelativistic Boltzmann equation. As mentioned before, we can now reinstate

pi j as the independent variable. Our independent variables satisfy the following

equations of motion
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∂ρ

∂t
+

∂

∂xr

(ρur) = 0 ,

∂ui

∂t
+ ur

∂ui

∂xr

+
1

ρ

∂(pδir + pir)

∂xr

= 0 ,

∂p

∂t
+

∂

∂xr

(ur p) +
2

3
(pδir + pir)

∂ui

∂xr

+
1

3

∂S r

∂xr

= 0 , (74)

∂pi j

∂t
+

∂

∂xr

(ur pi j) +
∂S i jr

∂xr

− 1

3
δi j

∂S r

∂xr

+
∂u j

∂xr

pir +
∂ui

∂xr

p jr −
2

3
δi j prs

∂ur

∂xs

+p(
∂ui

∂x j

+
∂u j

∂xi

− 2

3
δi j

∂ur

∂xr

) =

∞
∑

p,q=0,p≥q;(p,q),(2,0))

B
(2,p,q)

i jνρ
(ρ, T ) f

(p)
ν f

(q)
ρ

+B(2)(ρ, T )pi j .

The first three equations are just the hydrodynamic equations, while the equa-

tion for pi j can be obtained from (32).

The crucial point of this proof is that we have now solved for all higher mo-

ments f
(n)
ν ’s for n ≥ 3 (which includes, of course, S i jk and thus S i) as functionals

of our ten variables (ρ, ui, p, pi j) with T = p/(Rρ). Any solution of these ten equa-

tions of motion can be uniquely lifted to a full solution of the Boltzmann equation

as all the higher moments are dependent on these ten variables through a unique

functional form. Also, some solutions for pi j in the last of our system of equations

are purely hydrodynamic and these constitute the normal solutions [46].
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Gasmolekülen, Sitzungsberichte Akad. Wiss. Vienna, part II, 6 (1872),

275-370.

[16] If we refine the kinetic description beyond the Boltzmann equation, we need

to refine this equation of state which holds for ideal gases. The gaseous

equation of state assumes that the potential energy density is negligible

compared to the kinetic energy density which could be true only if the

number density of particles is sufficiently small.

[17] Classically this is just the typical time it takes the trajectories of the

molecules to straighten out after collision; a good estimate of this is r/cs,

where r is the range of the force and cs is the thermal speed (the average root

mean square velocity of the particles).

[18] D. Enskog, Dissertation, Uppsala (1917): ”Arkiv. Mat., Ast. och. Fys” 16, 1,

(1921).

[19] D. Burnett, Proc. Lond. Math. Soc. s2-39, 385, 1935.

[20] S. Chapman and T. Cowling, “The Mathematical Theory of Non-Uniform

Gases”, (Cambridge University Press, Cambridge, England), Chapters 7, 8,

10, 15 and 17.

[21] C. Cercignani, “The Boltzmann Equation and its Applications”,

Springer-Verlag, New York, 1988, Chapters 2, 4 and 5.

[22] J. M. Stewart, Ph. D. dissertation, University of Cambridge, 1969.

39



[23] E. A. Uehling and G. E. Uhlenbeck, Phys. Rev. 43, 552 (1933).

[24] The proof follows along exactly the same lines as shown in Appendix. The

Boltzmann equation still takes the same form as in (20). The semiclassical

form of J then readily follows from (28), which in turn follows from (26)

and (27), all of which are true for the semiclassical form of J too. The

hydrodynamic equations will take the same form as before and the

shear-stress tensor, pi j and the heat flow vector S i can be defined as before.

[25] The explicit solutions in the recursive expansion series will be more

complicated now. In the nonrelativistic proof, one uses the Hermite

polynomials which can no longer be conveniently employed.
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