
Adaptive Locally Affine-Invariant Shape Matching

Smit Marvaniya, Raj Gupta, Anurag Mittal

Computer Science and Engineering Department,

Indian Institute of Technology Madras,

Chennai, INDIA - 600036.

Abstract

Matching deformable objects using their shapes is an important problem
in computer vision since shape is perhaps the most distinguishable charac-
teristic of an object. The problem is difficult due to many factors such as
intra-class variations, local deformations, articulations, viewpoint changes
and missed and extraneous contour portions due to errors in shape extrac-
tion. While small local deformations has been handled in the literature by
allowing some leeway in the matching of individual contour points via meth-
ods such as Chamfer distance and Hausdorff distance, handling more severe
deformations and articulations has been done by applying local geometric
corrections such as similarity or affine. However, determining which portions
of the shape should be used for the geometric corrections is very hard, al-
though some methods have been tried. In this paper, we address this problem
by an efficient search for the group of contour segments to be clustered to-
gether for a geometric correction using Dynamic Programming by essentially
searching for the segmentations of two shapes that lead to the best matching
between them. At the same time, we allow portions of the contours to remain
unmatched to handle missing and extraneous contour portions. Experiments
indicate that our method outperforms other algorithms, especially when the
shapes to be matched are more complex.
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1. Introduction

Matching of deformable object shapes is an interesting as well as an im-
portant problem in Computer Vision since shape is one of the most dis-
tinguishing characteristics of an object, being unaffected by photometric
changes and background variations. Furthermore, it has been found from
human perception that, in the presence of challenges such as partial oc-
clusions, local articulations, geometric distortions, intra-class variations and
viewpoint changes, it is possible to identify and recognize an object simply
from its shape. Thus, shape matching has been successfully used in various
tasks such as Object Detection and Classification ([1, 2, 3, 4]), Optical Char-
acter Recognition [5], Medical Image Registration [6] and Image Retrieval
[7].

However, the task of modeling such variations as mentioned above in
a computer is quite challenging. Furthermore, in real scenarios, when an
object is segmented out automatically using techniques such as Background
Subtraction or Image Segmentation, the matching of the extracted contours
should be robust to errors introduced by the segmentation process. For
instance, the output of a Background Subtraction technique often misses
out some portions of the object or adds some extra portions such as object
shadows. Sometimes, two objects may be merged into one if they are close
to each other. Similar problems exist due to the use of Image Segmentation
techniques as well. Figure 1 shows the output obtained from standard Image
Segmentation algorithms of Russell et al. [8] and Brox et al. [9] respectively.
Note that the legs of the horse are combined together in Figure 1(a) whereas
some of the leg portions of the horse are missed out in Figure 1(b). A robust
shape matching algorithm must deal with such variations and distractions in
order to be useful in a practical scenario.

Several algorithms have been considered in the past for the problem of
shape matching. As in [10], most of these can be broadly classified into two
categories based on the types of features used: 1. methods that treat the
shape as a blob in order to come up with an approximate representation,
and 2. methods that use the contour boundary information directly.

One of the most popular blob-based approaches is to use a shock graph
or a medial-axis transform for shape representation. Techniques that use
these ([11, 12, 13, 14, 15]), first build a graph that models the skeleton of
a shape. Topological similarity between the graphs helps in identifying the
global shape structure, whereas geometric similarity at every node helps to

2



(a) (b)

Figure 1: Some segmentations obtained from the standard Image Segmentation algorithms
of Russell et al. [8] and Brox et al. [9] respectively.

capture the local shape information. These methods perform well in the
presence of deformations. However, they build the skeleton a-priori and can
only match shapes when there is an overall global similarity between them
and may fail in the presence of articulations, occlusions or noise in shape
extraction.

To deal with such challenges some methods ([16, 17]) segment the shape
into regions or parts that are then used for the task of matching. These meth-
ods capture the local shape variation much better by allowing articulations
of such portions about each other. Felzenszwalb [16] proposed a technique
for shape representation based on triangulated polygons and used Dynamic
Programming to match such representations. However, this method can lead
to errors in the presence of occlusions. To handle partial matching of shapes,
Bronstein et al. [17] proposed a pareto framework to determine an optimal
tradeoff between part similarity and part decomposition. Although the ideas
in this paper are quite close to our work, the method is computationally
expensive due to working on shape blobs. Furthermore, the optimization
method proposed to search over the parts is computationally very expensive
and gives only an approximate solution.

While it may be claimed that blob-based methods are more robust due
to the consideration of the entire 2D space, such methods tend to be com-
putationally very expensive due to the processing of all the pixels enclosed
by a shape. Thus, it is much more efficient to use the boundary information
alone in order to match shapes.

Methods that use only contour boundary information for shape represen-
tation can further be classified into 1. Global 2. Part-based methods.
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Many global methods exist such as shape descriptors ([5, 18, 19]), shape
distances ([20, 21]) and contour matching techniques ([22, 7, 23, 24, 25, 26,
27]), some of which also estimate the affine or projective transformation
required to match the shapes [5, 27]. Among these, Shape Context [5] is
a popular method that builds a shape descriptor using the Euclidean dis-
tance and the relative orientation of the contour points in a log-polar space.
The dissimilarity between two shapes is a weighted sum of the matching
errors, computed using a maximum bipartite algorithms and a measure on
the transformation required to match the two shape contours. The method
works well to match shapes invariant to rigid transformations and deals with
small deformations present in the contour boundary. One of the popular
extensions of Shape Context (proposed by Mori et al. [18]) solves the prob-
lem of shape matching very efficiently using multi-stage pruning techniques.
The first stage is called representative shape contexts that matches very few
shape contexts and identifies the outliers very fast, whereas the second stage
matches the shapes in more details based on vector quantization in the space
of shape contexts that involves clustering of the vectors, called as shapemes.
All these methods rely on global features and hence fail in the presence of
articulations, partial occlusions and noise present in the contour boundary.

To address such problems, Hong et al. [28] and Adamek and O’Connor
[29] represent shapes in terms of local features such as concave or convex
portions of a contour to preserve the local geometry. Even though these
more local methods are robust to some deformations, articulations and noise,
they do not preserve sufficient contour information for a very discriminative
matching. To model shapes better, the techniques mentioned in [30] and [31]
combine local and global features. Felzenszwalb and Schwartz [30] proposed
a hierarchical matching technique for deformable shapes even in the presence
of a cluttered background wherein a tree is built whose leaf nodes capture
the local information and nodes close to the root capture global information.
A Dynamic Programming based matching technique is used to match the
two shape trees. On the other hand, Xu et al. [31] proposed a Contour
Flexibility descriptor that gives a deformation potential to each contour point
so as to deal with deformations. The similarity between shapes is calculated
by considering a linear combination of the local and the global measures.
Although these methods use both local and global features and perform well
against deformations, they do not consider partial matching of shapes and
so may fail in the presence of occlusions.

In order to handle occlusions, Latecki et al. [23] developed an elastic
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shape matching algorithm based on an efficient Dynamic Programming based
matching approach. This method identifies the outliers that may be present
in the query shapes by allowing skips while matching. However, this method
fails to capture the part structure of a shape and so may perform poorly in
the presence of articulations.

There have been numerous research efforts ([32, 33, 34, 35, 24]) to deal
with the local shape variations of an object shape and solve the problem of ar-
ticulations. Cao et al. [24] proposed an approach for matching shape contours
using the “procrustes” distance between shapes [36] and handles occlusions
and shape segmentation by an MCMC (Markov chain Monte Carlo)-based
search for the matching segments in two contours. However, this method
is computationally quite expensive due to the consideration of individual
point-point matchings across the shapes and the MCMC iterations required
for optimizing such point-point matchings for the whole shape. Ma et al. [35]
proposed a technique for partial matching using geometric relations of shape
context as shape descriptor followed by maximal clique inference based hy-
pothesis used to identify the best possible part correspondences. Although,
this method handles the problem of partial occlusions, it may fail in the pres-
ence of articulations as the local descriptors are not restricted to capturing
information only within a part. Furthermore, the method is computationally
very expensive due to the use of sampling methods.

Another popular approach for handling articulations is the Inner Distance
Shape Context (IDSC) proposed by Ling and Jacobs [37] that solves the
problem of articulation in certain scenarios and can be considered as an
improvement over Shape Context [5]. This method builds a descriptor based
on the relative spatial distribution of the contour points using the Inner
Distance instead of the Euclidean distance, and the Inner Angle instead of
the regular angle. The Inner Distance (ID) between a pair of contour points
is defined as the length of the shortest path between them while totally
remaining within the shape and the Inner Angle is the angle from one point
to the other that is in the direction of this shortest “inner” path. A Dynamic
Programming-based algorithm instead of a bipartite matching approach was
also introduced by taking advantage of the ordering constraint in order to
solve the point correspondence problem. This method is invariant to the 2D-
articulations of a shape as it captures the part structure effectively. However,
it is not invariant to affine changes of individual parts and also fails under
partial occlusions as all the contour points are considered while building the
descriptor and while matching.
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In order to handle local affine changes, Gopalan et al. [38] proposed a
shape-decomposition technique that divides a shape into convex parts using
Normalized Cuts [39]. These parts are then individually affine normalized
and combined into a single shape that is matched using IDSC. As a result,
this method is able to capture more deformations of local portions, such as
a 3D part articulation that may be modeled by a 2D affine transformation
of its projection. This yields a significant improvement over IDSC in many
cases. It nevertheless assumes an a-priori shape decomposition from a single
shape that may be inconsistent in the presence of occlusions or noise in shape
extraction. Furthermore, the matching is still global and hence one will be
unable to handle partial occlusions of the shapes.

In this work, we propose a locally deformable matching technique that
does not require one to make an a priori assumption about the decomposition
of a shape contour. Rather, the contour decomposition is determined during
matching by an efficient search for the decompositions of two contours (into
Groups-of-Segments (GSs)) that yield the best matching. The technique
not only handles articulations, but also models occlusions and extraneous
segments explicitly by skipping non-matching segments during matching.
Furthermore, each such Group-of-Segments (GSs) is affine-corrected before
matching which uses a robust contour matching technique that handles de-
formations well. As a result, our method is robust in the presence of various
challenges such as intra-class variations, articulations, deformations, partial
occlusions and errors in the shape extraction process. This is illustrated by
results that show significant improvement over the state-of-the-art, especially
in the case of partial occlusions and errors in shape extraction.

The remainder of the paper is organized as follows: Section 2 describes
the processes of shape representation and the extraction of possible GSs
from shapes. The cost function for shape similarity given a particular GS
correspondence across shapes is described in Section 3. Section 4 describes
the process of efficiently determining the best GS correspondence that mini-
mizes this cost function using Dynamic Programming. Finally, in Section 5,
we show some promising results obtained by our method.

2. Shape Representation

The first task for any shape matching technique is to come up with a
representation of shapes such that they can be matched efficiently and accu-
rately. In our problem, the inputs are assumed to be outer shape contours,
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(a) (b)

Figure 2: Best viewed in color. Part-decomposition obtained from Gopalan et al. [38]
using a single shape above.

that may be obtained from automatic techniques such as background sub-
traction and Image Segmentation or in some cases, they may be manually
drawn.

Shape Contours have often been represented by decomposing them into
small parts so that local transformations can be determined for each part.
While decomposition of a shape is important, it is, however, a very challeng-
ing task, especially under occlusions or noise. For example, results of shape-
decomposition using a single shape using the method proposed by Gopalan
et al. [38] are shown in Figure 2 and it may be inferred that the method more
or less fails in consistently segmenting a shape into the same parts in different
shape instances. This lead to errors when the individual parts across such
shapes are attempted to be matched. To deal with this problem, in this work,
we consider multiple decomposition possibilities in our shape representation
and chose the shape decomposition pair that matches best across two given
shapes.

First, we break the whole shape contour into small straight line-like seg-
ments. Then, Groups of such Segments (GSs) are created. Then, the shape
decompositions that are allowed for a given shape are taken to be collections
of such GSs such that they don’t overlap, with some skips/unassigned seg-
ments allowed in the shape decomposition. We next discuss how to extract
possible break-points from a shape contour that will form the possible start
and end points of GSs. This is done in order to restrict the number of points
at which the GSs can start and end.

2.1. Computing Possible Break Points for GSs

Typically, points at which a local geometric transformation changes are
coincident with points of high curvature. Hence, the points of high curva-
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(a) (b)

Figure 3: (a) Some of the possible neighborhood points around the contour point qi to
calculate Angle Sharpness. Pairs of the neighborhood points are shown in the same color.
(b) The Gaussian weighting function.

ture are determined first. Several approaches [40, 41, 42, 43, 44] have been
proposed in the literature for high curvature point detection on contours. In
this work, we try to detect an optimal number of points that are distributed
across the entire contour and are also robust to possible noise in the contour.
To this end, we first calculate Angle Sharpness Sa at a contour point qi using
NL (Neighborhood point list) which contains Ns points on either side of qi.
Angle Sharpness Sa for a contour point qi is defined as:

Sa(qi) =
∑

(qi−j ,qi+j)∈NLqi

wj · (180− A(qi−j, qi, qi+j)), (1)

where A(qi−j, qi, qi+j) is the angle between the contour points qi−j, qi and
qi+j. To calculate the curvature at a certain scale which depends on Ns, we
introduce a scheme whereby two Gaussians centered at qi+(Ns/2) and qi−(Ns/2)

respectively are used. The Gaussian weighting function makes the whole
procedure quite robust to noise since the result depends on many points and
not on a single point alone. Figure 3 shows an example of such a computation.

Candidate curvature points are identified by considering local maxima of
the Angle Sharpness above a certain threshold. Furthermore, lower maxima
close to a higher maximum are removed as they provide more or less duplicate
information. We call the points thus detected as high curvature points.

We further notice that all possible break points between local groups of
segments cannot be modeled using only high curvature points as GS junc-
tions. Figure 4 shows points (in green) across which articulation occurs and
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Figure 4: Possible non-convex articulated points (opposite points) extracted by our algo-
rithm.

the local transformation of the object shape often changes. Thus, we detect
additional points known as opposite points in this work.

To detect an opposite point, we first determine concave points based on
the complexity measure proposed by Gopalan et al. [38]. It has been observed
in several prior works ([45, 46, 47, 38]) that each part of a shape is typically
convex. Any two points within a convex region have the same Euclidean
Distance (ED) and Inner Distance (ID) while a concave region has different
ID and ED where the inner-distance (ID)[37] is defined as the length of the
shortest path within the shape boundary. The shortest path is a collection of
line segments and the intermediate vertice(s) on such shortest paths between
points lying in two different convex regions represent the concave points.
Although these concave points typically coincide with high curvature points
detected in our approach, they help in extracting opposite points since they
are at the joint of two convex parts. Figure 5 shows such a concave point
with a square.

For a given concave point p, we consider all the contour points at Geodesic
distance less than or equal to a distance d as candidate opposite points. This
distance d is fixed as 20 percent of the total number of contour points in the
contour. The candidate opposite point c, for which the distance between
p and c is a local minimum and the ED and geodesic distance (GD) is
sufficiently large, is considered as the opposite point for concave point p.
The green point in Figure 5(a) is such an opposite point. If there is any
high curvature point in a close neighborhood of c, then c represents the same
information as that point and it is therefore taken to be the opposite point
instead of point c. This is again demonstrated in Figure 5(a) using a blue
opposite point and red high curvature point. The procedure for extracting the

9



(a) (b)

Figure 5: (a) An example of computing the opposite point for a given concave point. (b)
Opposite points determined for a horse shape contour.

opposite point is very similar to [48]. Both opposite points and high curvature
points are considered as possible break-points in this work.

There are cases where either the shapes or its portions are simple and
hence, the possible break points in them cannot be determined, especially
from a single shape. For e.g. if the hand of a person is straight, it is very hard
to determine from a single shape that it can bend at the elbow. Similarly,
there is a need for break-points at the points of occlusions which cannot be
determined a priori. Thus, we ensure that at least one breakpoint exists
within a certain range of the contour which ensures that the set of possible
GSs has enough number of possibilities that can be used to match with their
counterparts in the other shapes. Therefore, we also add extra points known
as ’max-size points’ to our break-points to handle the case of insufficient
number of break-points. These are added in such a way that the geodesic
distance dk between consecutive break-points is maintained. It is taken to be
a fraction of the total number of points on the contour (value of dk is 0.1 used
in our experiments). The portion between consecutive break-points is defined
as a segment. The process of creating possible GSs using these break-points
is described next.

2.2. Computing Possible Groups-of-Segments (GSs)

We determine possible GSs by considering portions of the contour between
any two break-points. A portion pi,j between any two break-points i and j

is taken to be a possible GS if it satisfies a certain complexity range: CMIN

≤ C(pi,j) ≤ CMAX . The Complexity C is defined as the sum of the angles
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Figure 6: Angles between adjacent segments for an extracted GS. The complexity is the
sum of such angles: θ1 + θ2 + θ3 + θ4.

between consecutive segments constituting the GS.

C(pi,j) =

j−1
∑

l=i

(180− A(Segl, Segl+1)) (2)

Eq. 2 measures the Complexity of a GS gsi,j. A(Segi, Segi+1) gives the
angle between the segments, Segi and Segi+1, where the angle is calculated
from the lines joining the end points of the segments. Figure 6 shows an
example of such a computation. A less complex GS is too simple to match and
can match with anything whereas considering a highly complex GS leads to
rigid matching and a very significant computational expense while matching.
Thus, the range of CMIN and CMAX helps in choosing a subset of all GS
possibilities that is computationally efficient and is sufficient for most cases.
Values of CMIN = 40 and CMAX = 600 are used for the experiments in this
paper. Using the above complexity limit, some GS examples thus extracted:
p1,3, p1,4, p1,5 and p1,6 for a butterfly shape in Figure 7(a) are shown in Figure
7(b).

2.3. Affine Shape Normalization of each GS

As object and their GSs may appear different in different images due to
viewpoint changes or intra-class variations, we perform an affine normaliza-
tion of each GS. Figure 8 shows an example of shape contours that may look
globally different due to intra-class variations, but their affine normalized
GSs look quite similar. Non-rigid deformations that may still exist within
the affine normalized GSs are handled by contour matching techniques such
as the Fast Directional Chamfer Matching as detailed in the next section.

An affine normalization is done using the second order moment matrix
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Figure 7: (a) Possible break-points on a butterfly contour. (b) Some possible GSs obtained
for (a).

Figure 8: Affine normalization of GSs of some example shapes for a device-1 category of
MPEG-7 dataset [19].
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M of the contour points:

M =

[
∑

(x− x̄)2
∑

(x− x̄) (y − ȳ)
∑

(y − ȳ) (x− x̄)
∑

(y − ȳ)2

]

=
∑

xµx
T
µ

By making both the eigenvalues equal, one can estimate the affine-normalization
matrix in a manner similar to Cohignac et al. [49] using :

A = M−1/2

Such a normalization corrects the affine transformation, but only up to a
rotation as it can also be shown that an arbitrary rotation applied to the
contour points does not affect the eigenvalues of the Moment Matrix. Hence,
rotation normalization is applied to make it rotation invariant, using a tech-
nique based on whether the GS contour is open or closed. For an open GS
contour, rotation transformation is estimated by aligning the start and the
end points to some fixed points on the horizontal axis. This handles the scale
variation as well. On the other hand, for a closed contour, the rotation is
estimated by aligning the start point of the contour and the centroid of the
contour to some fixed points on the horizontal axis as the centroid remains
the same under an affine transformation.

Such normalization yields locally affine and rotation normalized GSs. Fig-
ures 9(a) and 9(b) show some examples of affine shape normalization for open
and closed GS contours respectively.

Given such possible GSs for any two shapes, the cost function for match-
ing them is explained next.

3. Shape Similarity

Given possible GSs in Images I1 and I2, we define a match between the
shapes as a set of GS correspondences across such possible GS sets that
satisfy certain constraints. Specifically, there must be non-overlap, i.e. two
matched GSs in an image should not intersect with each other. Next, the
order between GSs must be preserved, i.e. if one GS is before another GS in
an image, such an order must be preserved in the other image.

For a given GS match list (ML) that satisfies these constrains, we define
the cost function that evaluates the goodness of a match. How to optimize
such a cost function to determine the best matching will be discussed in later
section (Section 4).
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(a)

(b)

Figure 9: Affine Shape Normalization for (a) an open and (b) a closed GS.

Let the GS match list ML contain GSs gs1i,j and gs2l,m of Images I1 and
I2 respectively and let the entry in ML before gs1i,j and gs2l,m be denoted as
gs1prev(i,j) and gs2prev(l,m), which we refer to as previous GSs. The similarity

score for ML is defined using three components: Unary Cost (Cuc), Binary
Cost (Cbc) and the Skip Cost (Cskip).

C(ML) =
∑

pair(gs1i,j ,gs
2
l,m

)∈ML

(Cuc(gs
1
i,j, gs

2
l,m)+Cipc(gs

1
i,j, gs

2
l,m, gs

1
prev(i,j), gs

2
prev(l,m)))+Cskip

(3)

3.1. Unary cost

The Unary cost (Cuc) has two components: the Matching Cost (Cmatch)
and the Complexity Cost (Ccomplex). The Unary Cost of each GS evaluates
how similar and complex these GSs are, considered individually.

Cuc(gs
1
i,j, gs

2
l,m) = Cmatch(gs

1
i,j, gs

2
l,m) + Ccomplex(gs

1
i,j, gs

2
l,m) (4)

The Matching Cost (Cmatch) between the GSs measures their relative
similarity. In this work, we have used Fast Directional Chamfer Distance

14



(FDCM) proposed by Liu et al. [21] for matching the GS contours which
works reasonably well as it captures the edge orientation information better
compared to the traditional Chamfer matching [50] or the Oriented Chamfer
matching [51]. Such a matching module can deal with non-rigid deformations
or noise present in the affine normalized GSs. In our experiments, we have
empirically chosen the number of orientations as 20 for calculating the direc-
tional distance transform. To make the matching computationally efficient,
we individually precompute the directional distance transform for each GS
of a shape contour. Then, the match of another GS with this GS can be
computed in an extremely efficient manner.

The average FDCM score between affine normalized versions of gs1i,j and
gs2l,m is represented as Cdc(gs

1
i,j, gs

2
l,m) and the Matching Cost Cmatch between

them is defined as:

Cmatch(gs
1
i,j, gs

2
l,m) = wp(i,j),(l,m)

· Cdc(gs
1
i,j, gs

2
l,m) (5)

where

wp(i,j),(l,m)
= w1

i,j + w2
l,m where (6)

wk
i,j =

N(gski,j)

Nk
(7)

where w1
i,j and w2

l,m are the weights for the matched GSs gs1i,j and gs2l,m in
Images I1 and I2 respectively and it can be seen that the weights normalize to

1: wk
n,1+

∑nk−1
j=1 wk

j,j+1 = 1. nk represents the number of break-points in Image

k, N(gski,j) represents the number of contour points in GS gski,j whereas Nk

represents the total number of contour points in Image k. Such a weighting
scheme helps in bringing different matches to the same scale regardless of the
number of contour points in each shape or the number of GSs in a match.

The matching cost alone does not tell the full picture as some GSs are
easier to match than other. Hence, we introduce a Complexity Cost, where
the complexity is defined as before. This helps in choosing the GSs that are
relatively more complex and discriminative in terms of their shape structures.
The Complexity Cost between GSs gs1i,j and gs2l,m is defined as:

Ccomplex(gs
1
i,j, gs

2
l,m) = wgs(i,j),(l,m)

· (
αc

C(gs1i,j)
+

αc

C(gs2l,m)
) (8)

where wgs(i,j),(l,m)
is the weight of the GSs obtained from Eq. 6. C(gski,j)
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(a) (b)

Figure 10: Best viewed in color. Some example shapes look globally quite different but
their affine-corrected GSs are similar. Note that non-matching portions are skipped, which
are shown with a light blue color.

represents the Complexity measure for a GS gski,j (the same as in Section
2.2, Eq. 2). Such a definition defines the complexity of matching a GS much
better than simply counting the number of segments in it. The value of αc

that controls the weight given to the Complexity Cost is empirically set to
300 in our experiments.

The Unary Cost (Cuc) as defined in Eq. 4 helps in choosing sufficiently
similar, complex GSs between the two images. Generally, the Unary Cost
is sufficient to distinguish between two shapes under articulations and view-
point changes. However, there are cases where the individual GSs are similar
even though the shapes themselves are globally different. Some cases are
shown in Figure 10. It may therefore be useful to consider some constraints
between adjacent GSs as too much size variation or too much articulation
at the joint points can lead to a significant distortion in the shape. This is
considered next, although the weight for these factors is taken to be much
less than the unary costs in our standard implementation, although this can
be easily varied as per the requirements of a given application.

3.2. Binary Cost

Binary Costs account for Angle and Scale Inconsistencies between adja-
cent GSs. Enforcing the preservation of these consistencies helps in limiting
the possible articulations at the joint points of these GSs that can sometimes
change the shape perspective very drastically. The Binary Cost does not give
full global shape matching perspective like some other methods which enforce
global constraints, but does so in a soft way giving a shape a second-level
perspective beyond individual GS level which helps in improving the results
in most cases. The relative weights of these costs can be varied as per the
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shape variations present in a given application. For more deformable shapes,
a much lower cost for binary costs compared to the unary costs should be
applied to ensure that flexibility while for more rigid shapes, unary costs
should be given a higher weight.

We define the Binary Cost as:

Cbc(gs
1
i,j, gs

2
l,m, gs

1
prev(i,j), gs

2
prev(l,m)) = Cs(gs

1
i,j, gs

2
l,m, gs

1
prev(i,j), gs

2
prev(l,m))+

Ca(gs
1
i,j, gs

2
l,m, gs

1
prev(i,j), gs

2
prev(l,m))

(9)

Scale Inconsistency Cs at the joint between adjacent GSs is evaluated by
measuring the changes in the scale ratios of consecutive GSs. The scale ratio
of consecutive GSs is a more appropriate criterion for representing shapes
than using the scale of the whole shape for normalization since the latter
may be unreliable especially in the presence of occlusions or noise. The Scale
Inconsistency for two consecutive pairs of GSs is defined as:

Cs(gs
1
i,j, gs

2
l,m, gs

1
prev(i,j), gs

2
prev(l,m)) = αs ·wip(i,j),(l,m)

·(1−e−βs·△s(i,j),(l,m)) (10)

where

wip(i,j),(l,m)
= w1

prev(i,j) + w1
i,j + w2

prev(l,m) + w2
l,m (11)

△s(i,j),(l,m) = abs(
N(gs1prev(i,j))

N(gs1i,j)
−

N(gs2prev(l,m))

N(gs2l,m)
) (12)

Here, △s(i,j),(l,m) represents the change of relative scale between consecutive
GSs: gs1i,j and gs1prev(i,j) in I1 and their corresponding GSs in I2. Thus,
from Eq. 12, we see that large changes in the relative scale of adjacent
corresponding GS pairs incur a large penalty. Weights are as defined in Eq.
7.

Similarly, the Angular Inconsistency is defined as:

Ca(gs
1
i,j, gs

2
l,m, gs

1
prev(i,j), gs

2
prev(l,m)) = αa ·wip(i,j),(l,m)

· (1− e−βa·∆θi,j,l,m) (13)

where, ∆θi,j,l,m =max(|θ1prev(i,j),(i,j)−θ1
′

prev(l,m),(l,m)|, |θ
2
prev(i,j),(i,j)−θ2

′

prev(l,m),(l,m)|)

represents the change in the relative angle between consecutive GSs gs1i,j and
gs1prev(i,j) of Image I1 with respect to the corresponding GSs in Image I2.

The method of measuring θ1prev(i,j),(i,j), θ
2
prev(i,j),(i,j) in Image I1 and their cor-
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(a) (b)

Figure 11: Best viewed in color. GS correspondences (a) with scale and angular con-
straints, (b) without scale and angular constraints. Note that non-matching portions are
skipped, which are shown with a light blue color.

Figure 12: Portions of shapes can be very different in two matching shapes due to (a) intra-
class variation, (b) viewpoint change and (c) occlusions and errors in shape extraction.

responding angles θ1
′

prev(l,m),(l,m) and θ2
′

prev(l,m),(l,m) in Image I2 is shown in
Figure 11. Constant values of αa = 200, αs =200, βa = 0.09 and βs = 1.5
are used in the experiments.

3.3. Skip Cost

There are scenarios where some portions of the contour can be missing in
either one or both of the images. Such scenarios arise due to self-occlusions
and/or viewpoint changes. Furthermore, for certain categories, some portions
of the contour look totally different due to intra-class shape variations. Also,
shape contours can appear as combinations of multiple other shapes when the
input contours are obtained using segmentation or Background Subtraction
techniques. These cases are demonstrated in Figure 12. To handle such
challenges, Skip Cost (Cskip) that facilitates partial matching of the shapes
is considered.

The Skip Cost is a penalty for segments that have been skipped because
they do not have a match. It is calculated using the skipped contours in both
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the images as:
Cskip = C1

skip + C2
skip (14)

where
Ck

skip =
∑

Segi∈SSLk

βskip · ω
k
i (15)

where SSLk(Skipped Segments List) is the list that contains the segments in
Image k which do not have a match and the weight ωk

i is as defined before.
Value of βskip = 210 is used in our experiments.

Given the possible GSs in Images I1 and I2, the procedure for extract-
ing the best matching list between two given shapes in terms of the energy
function is described next.

4. Dynamic Programming-based Matching

The problem of contour matching is defined in terms of determining a
Match List that minimizes the energy function. The value of the energy
function of a particular configuration depends both on how well the corre-
sponding GSs match and the binary relationships between the consecutively
matched GSs. We realize that the entries of ML (in Eq. 3) are circular which
makes the problem hard. However, if one neglects the binary constraints be-
tween the last and the first GS, one can break the cycle and solve the problem
exactly using Dynamic Programming(DP). This approach is used in our work
due to its much greater efficiency. The problem thus obtained is similar to
the Longest Common Sub sequence (LCS) [52] problem, where one needs to
match a common subsequence of tokens across two given sequences. How-
ever, there are some additional considerations due to the non-overlap and
the binary constraints between the matched GSs.

More precisely, let the sets of possible GSs of Images I1 and I2 be GS1 and
GS2 respectively. Then, we require a one-to-one mapping from GS1 to GS2

in an order-preserving manner such that the matched GSs should not have
any overlapping segments between them. Using the cost function defined in
the previous section, we define the best matching between two contours as:

ML∗ = argmin
ML

(

∑

pair(gs1i,j ,gs
2
l,m

)∈ML

(Cuc(gs
1
i,j, gs

2
l,m)+Cipc(gs

1
i,j, gs

2
l,m, gs

1
prev(i,j), gs

2
prev(l,m))+Cskip

)

(16)
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wherfe ML is a match list that contains matched GS correspondences as
defined in the previous section. To solve the problem exactly for the cost
function defined in Eq. 16, one needs to search over all possible GS combina-
tions. The solution space becomes very large if one considers all possible skips
between the GSs while maintaining order constraints. For that, one would
need to build a 2D matrix T such that each element T (gs1i,j, gs

2
l,m) represents

the minimum total cost of matching the two shapes up to the matching GS-
pair (gs1i,j,gs

2
l,m), to compute which, one would have to search over a large

set of combinations of the previous matching GS pairs (gs1prev(i,j), gs
2
prev(l,m))

due to the possibility of skipped segments. The running time of such an
algorithm would be M × N × S2, where M and N are possible number of
GSs in Images I1 and I2 respectively and S is the maximum skip allowed.

This is quite expensive and impractical and hence, we consider an ap-
proximate solution to the problem that is much faster and works reasonably
well in practice. The approximation is done by minimizing the cost function
at a block level. A block is considered as a set of possible GS correspondences
whose ending break-points are the same. Only the best match within a block
is saved for the next step in the optimization. This approximation helps in
reducing the number of possible skips from quadratic to linear. More pre-
cisely, we propose a memory-efficient solution where we store only an m× n

matrix T such that each element T (i, j) represents the minimum total cost
of matching between Images I1 and I2 up to the matches of the ith and the
jth segments of Images I1 and I2 respectively. Note that since we now work
on segments and not GSs, the dimensions m and n of the matrix T are the
possible number of break-points or segments in Images I1 and I2 and not the
number of GSs which is much higher.

The minimum total cost of matching up to the entry (i, j) can be calcu-

20



Figure 13: Best viewed in color. Skipping is shown in read circle and some of the possible
matches are shown in green color.

lated using Dynamic Programming using the following recurrence relation:

T (i, j) =



















































∞ if i = 0‖j = 0

min
[

min
gs1i−t,i∈P

1,gs2j−q,j∈P
2

[

T (i− t, j − q)) + Cuc(gs
1
i−t,i, gs

2
j−q,j)

+Cipc(gs
1
i−t,i, gs

2
j−q,j, lastGS(i− t, j − q, 1),

lastGS(i− t, j − q, 2))
]

,

T (i− 1, j) + skip1i ,

T (i, j − 1) + skip2j

]

otherwise

(17)

where (lastGS(i− t, j − q, 1),lastGS(i− t, j − q, 2)) is the best matched GS
correspondence, ending with segment indexes i− t and j − q, where t and q

represent the number of segments in GSs gs1i−t,i and gs2j−q,j of Images I1 and
I2 respectively. skip

k
i represents the skip cost for skipping the ith segment in

Image k. The computation of T (i, j) as described above can be arranged in
a sequence as shown in Figure 13, such that all the necessary terms for the
calculation of T (i, j) are already available at the time of its computation and
is stored in a table along with the least total cost at each stage. We also store
the last best matched GS correspondence (lastGS(i− t, j − q, 1),lastGS(i−
t, j − q, 2)) for each T (i, j), which not only helps in the next stage of the
algorithm but also to trace the best GS correspondences in the end, as is
typically done in Dynamic Programming solutions [52].

Let N and M be the number of GSs in the Images I1 and I2 respectively.
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Then, the time complexity of matching two shape contours is O(N × M)
using this algorithm when both the shape contours are already aligned. For
handling rotations, one has to consider all possible starting points. Since we
extract break-points such that the number of starting points in the Image I1
can be restricted to only the break-points, the algorithm is much more efficient
compared to other contour point-based approaches ([37, 5]) which have to
search over all the contour points for the starting point correspondence. Fur-
thermore, the required memory storage in our approach is O(m× n), where
m and n are the number of segments in Images I1 and I2 respectively, which
is much less compared to the number of contour points. To give some idea
of the actual processing time of our DP-based matching, we ran our code on
a 64-bit 2.4Ghz single-core i7 processor machine for matching 100 different
preprocessed shape pairs of MPEG-7. Our DP-based matching took 0.355
second to compare two shapes where average number of extracted possible
GSs was 126.

In the next section, we compare the performance of our algorithm with
other existing approaches on some standard datasets.

5. Experiments

We evaluate our algorithm for shape matching for the task of shape re-
trieval when the objects are represented only by contours or silhouettes. This
is typically the output from many automatic segmentation techniques such
as Background Subtraction or Image Segmentation. First, we show results on
the popular MPEG-7 shape dataset [19] and compare against other methods
that have been considered in the past. Apart from the original dataset, we
also show results of matching when the shape extraction has some errors due
to missed portions or merged segmentation. This is done by simulating such
errors on the MPEG-7 dataset. Then, we evaluate our algorithm against
IDSC [37] and Gopalan et al. [38] on a dataset provided by Gopalan et
al. [38] created using a real Background Subtraction algorithm on different
human and robot poses. The results obtained on such a dataset would be
indicative of the performance of the algorithms in scenarios involving real
3D articulated objects. Finally, we show visual results on the 2D Mytholog-
ical Creatures dataset provided by Bronstein et al. [17] that contains shapes
obtained by artificially merging contours of different creatures.
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5.1. MPEG-7

The MPEG-7 is a widely used dataset for evaluation of contour-based
shape recognition and retrieval methods. It contains 1400 images - 20 shapes
per class from 70 different classes. The dataset is challenging because of the
presence of deformations, articulations, GS-wise affine changes and missed
or altered contour segments in the images.

5.1.1. Results on the Basic MPEG-7 Dataset

Figure 14 shows some matching results depicting also the best matching
shape-decompositions obtained by our algorithm on the MPEG-7 dataset.
Similar GS color corresponds to a matched GS between the two images.
Note that non-matching portions are skipped, which are shown with a light
blue color.

Table 1 compares our approach with various existing methods such as
[30, 53, 34] for the shape retrieval task on the MPEG-7 dataset. The figures
are taken from the respective papers which have reported the Bulleye score
for this dataset. The proposed method performs reasonably well as compared
to many other techniques. The methods proposed in [54, 55] do not perform
individual shape-to-shape matching in isolation, but learn the shape varia-
tions present in the dataset in order to improve their performance, taking into
account not just the similarity between the shapes of the same category but
also the dissimilarity between shapes in different categories in order to train
their matching function. Thus, it may be claimed that it is unfair to compare
our approach with these learning-based methods that depend heavily on the
use of a classified database which may not always be available. Furthermore,
it is not clear how the methods would perform on other shapes of a category,
such as articulated shapes, if shapes close to those are not present in the
database. The method proposed by Gopalan et al. [38] performs the best by
affine normalizing each of the convex parts before matching using IDSC.

While the results on the entire dataset are interesting, they provide lit-
tle insight into the strengths and weaknesses of each method and there is
no guarantee that the same ordering of the methods would be obtained on
another dataset. A more refined evaluation may be performed by dividing
the dataset into 3 categories depending on the type of the shape variations
present: the first containing mostly rigid objects, with possible rotations or
scale changes; the second containing articulations, deformations and GS-wise
affine changes and the last containing missed or altered contour portions. Ex-
amples of such categories of shapes are shown in Figure 15.
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Figure 14: Best viewed in color. Some matchings and best shape decompositions obtained
between pairs of shapes.
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Table 1: Comparative retrieval results on the entire MPEG-7 dataset [19].

Algorithm Bullseye Score(in %)

Visual Parts [19] 76.45
SC+TPS [5] 76.51
Curve Edit [56] 78.14
Generative models [57] 80.03
Curvature scale space [58] 81.12
Chance Probability Function [59] 82.69
Fixed Correspondence [60] 84.05
Polygonal Multiresolution [61] 84.33
Multiscale Representation [29] 84.93

Shape L’Âne Rouge [62] 85.25
IDSC + DP [37] 85.40
Symbolic Representation [22] 85.92
Hierarchical Procrustes [32] 86.35
IDSC + DP +EMD [53] 86.86
Triangle area [15] 87.23
Shape-tree [30] 87.70
IDSC + AspectNorm. + StrandRemoval [34] 88.39
Contour flexibility [31] 89.31
Label Propagation [54] 91.61
Locally constrained diffusion [55] 93.32
IDSC + Affine Normalization [38] 93.67
Ours 88.82
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(a) Rigid (b) Articulated (c) Missed or altered contour portions.

Figure 15: Categorized example shapes from the MPEG-7 dataset.

For these categories, we compare our approach with IDSC and IDSC+Aff
[38] for the task of shape retrieval. IDSC is used since the code was freely
available1 and it ran reasonably fast. The implementation of the best report-
ing one, IDSC+Aff proposed by [38], is not publicly available. Hence, we have
re-implemented the paper with the code for shape-decomposition available
from the author 2 and tried to reproduce the results as best as possible, test-
ing for different possible parameters. However, we weren’t able to reproduce
the exact results on the overall dataset as reported by the authors and got
slightly lower results (86.9% compared to 93.67%). The category-wise results
were not reported in their paper and hence the category-wise comparisons as
also the comparisons in the next two sections (MPEG-7 Merged and Partial
Occlusion datasets) are done using our re-implementation. However, in spite
of such differences in the implementations, the overall pattern of the results
should still be the same.

Figure 16(a) visually shows the retrieved results while Figure 16(b) quan-
titatively compares the category-wise average Bullseye scores for shapes that
are mostly rigid but have some deformations. The Bullseye score for a query

1http: // www. dabi. temple. edu/ ~ hbling/ code/ idsc_ distribute. zip
2http: // www. umiacs. umd. edu/ ~ raghuram/ Segmentation_ FULL_ NCut.

zip
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(a) The 5 most similar shapes retrieved by IDSC, IDSC+Aff and our method.

(b) Shape-wise average Bullseye scores.
Average: IDSC: 100%, IDSC+Aff : 100%, Ours: 100%.

Figure 16: Performance of IDSC vs. IDSC+Aff vs. our approach on the rigid shapes of
the basic MPEG-7 dataset which contain little intra-class variations.
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shape is measured by identifying the number of correct retrievals in the top
40 retrieved shapes. As can be seen, all three methods - ours, IDSC and
IDSC+Aff - achieve a retrieval rate of 100 percent on all the rigid query
shapes. A high performance for this category of shapes for both methods
may be attributed to very little intra-class variations. Most of the methods,
including those that match shapes rigidly such as the Chamfer Distance ([50])
or the Hausdroff Distance ([20]), should do well on this category of shapes.

Figure 17(a) visually demonstrates the retrieval results, while Figure
17(b) shows the average Bullseye score for the shapes that contain defor-
mations, pose variations, and GS-wise affine changes. It can be seen that
IDSC+Aff and our method significantly outperform IDSC by 5 to 20 percent
in the average Bullseye score on some of the shapes such as ‘turtle’,‘octopus,
‘pocket’, ‘lizard’, ‘device0’, ‘device1’, ‘device2’, ‘device7’, ‘classic’, ‘horse-
shoe’ and ‘tree’. The main reason for the improvement seems to be the
ability of these algorithms to allow the shapes to undergo different GS-wise
affine changes. While articulations can be handled by IDSC itself, it fails to
handle these affine variations in the GSs and so scores low on many categories
of shapes that have these variations. Our method and IDSC+Aff perform
almost the same since both are able to handle such variations. Furthermore,
since most of the shapes in the MPEG-7 dataset appear to be in this cate-
gory, it is not surprising that IDSC+Aff reports good numbers for the entire
dataset.

The retrieval performance for shapes with missed or altered contour por-
tions is shown visually in Figure 18(a) and quantitatively in Figure 18(b)
where one can note that the improvement in the performance of our method
is nearly 10 percent compared to that of both IDSC and IDSC+Aff. Even
affine correction of the parts seems to give very little improvement for these
categories as the main challenge seems to be the missing portions and hence
partial matching of the shapes with skips is required as opposed to a global
matching utilized by both IDSC and IDSC+Aff. Examples of such shape
alternations include the handle of the ‘cup’ and the horns of the ‘deer’ (Fig.
18(a)). Furthermore, global methods may miss important local differences,
such as between ‘cup’ and ‘faces’, or ‘device-9’ and ‘apples’ as shown in Fig-
ure 18(a), due to which they confuse between these shapes while more local
GS-based matching as is utilized in our work, is able to do much better in
such circumstances.

A study of the MPEG-7 dataset shows that 90 percent of the shapes in
this dataset belong to the first two categories where global matching meth-
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(a) The 5 most similar shapes retrieved by IDSC, IDSC+Aff and our method.

(b) Shape-wise average Bullseye scores.
Average: IDSC: 84.8%, IDSC+Aff : 86.8%, Ours: 88.3%.

Figure 17: Performance of IDSC vs. IDSC+Aff vs. our approach on articulated shapes of
the basic MPEG-7 dataset which contains deformations, articulations, and GS-wise affine
changes.
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ods can perform well, especially if they handle articulations and some GS-
wise normalizations and corrections. Thus, it is not surprising that many
of these methods ([30, 34, 31]) report good overall performance numbers
for this dataset. However, as we have seen for IDSC and IDSC+Aff, their
performance is probably not as good on the shapes in the third category,
for which more advanced adaptive matching methods are needed. Indeed,
the comparative numbers for our algorithm would have been much better if
the dataset had more shapes in the third category. The method proposed
by Bronstein et al. [17], while being an interesting solution to the problem
with good results reported for such cases, is unfortunately computationally
extremely expensive and testing on large datasets such as MPEG-7 is pro-
hibitively slow. Thus, our method with much lower running times due to the
usage of appropriate approximations and the resulting Dynamic Program-
ming solution seems to be a much better practical solution for handling such
more complex shape variations.

Apart from natural shape variations, automatic shape extraction tech-
niques such as Background Subtraction and Image Segmentation may have
errors in the contour extraction process due to which some portions may
be occluded/missing, some extra portions may be added or two shapes may
merge together. We next simulate the effect of such errors on the MPEG-
7 dataset to study the ability of contour matching algorithms to deal with
them.

5.1.2. Partially Occluded MPEG-7 Dataset

In order to validate the proposed technique in the presence of errors due to
occlusions, we modified the standard MPEG-7 dataset by randomly removing
n consecutive segments from a shape, where n = k% of the total number of
segments in the shape, k being randomly chosen from 5− 15.

Figure 19 shows some visual results of our matching algorithm on this
dataset illustrating the shape decompositions, that may be claimed to be
quite reasonable since they skip not non-matching portions while matching.
Figure 20 visually illustrates the results for the task of shape retrieval for
this dataset. Row number 2 presents an interesting instance for the query
shape of ’occluded octopus’ where IDSC+Aff [38] retrieves only one shape
correctly and IDSC retrieves none, while our method results in all but one
correct retrievals.

Additionally, we quantitatively evaluate our method on 15 different cat-
egories of the Partially Occluded MPEG-7 dataset. We have chosen these
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(a) The 5 most similar shapes retrieved by IDSC, IDSC+Aff and our method.

(b) Shape-wise average Bullseye scores.
Average: IDSC: 57.03%, IDSC+Aff: 58.28%, Ours: 66.63%.

Figure 18: Performance of IDSC vs. IDSC+Aff vs. our approach on shapes having missed
or altered contour portions in the basic MPEG-7 dataset.

Figure 19: Best viewed in color. Some matching results and shape decompositions obtained
between pairs of shapes that have partial occlusions.

31



Figure 20: The 10 most similar shapes retrieved by IDSC (second column), by IDSC+Aff
(third column) and by our method (four column) for the partially occluded MPEG-7
dataset.

15 categories as IDSC performs reasonably well on these categories in the
original MPEG-7 dataset. Figure 21 illustrates the category-wise average
Bullseye scores and the overall average scores. The performance of IDSC
may be claimed to be quite unsatisfactory as the Inner Distance computa-
tion is severely affected by the partial occlusions present in the shapes and
the global shape is also quite different. The method proposed by [38] im-
proves the result over IDSC but it does not explicitly model occlusions while
matching and has a global approach towards shape similarity. On the other
hand, our method performs significantly better due to its ability to model
occlusions by skipping certain segments. This way of modeling improves the
performance on an average by 38 percent and 14 percent improves over IDSC
and the method proposed by [38] respectively.

5.1.3. Merged MPEG-7 Dataset

The other type of error that often arises in the case of contour extraction
is the merging of two shapes with each other that can be typically seen as a
result of many Background Subtraction or Image Segmentation techniques.
In order to simulate this error, we generated 100 different combined shapes
by merging two randomly chosen ones. Examples of such shapes are shown
in Figure 22.

Figure 23 shows some matchings with their shape decompositions ob-
tained by our algorithm on this dataset where one can see that our method
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Figure 21: Performance of IDSC vs. IDSC+Aff vs. our approach on the 15 categories
of the partially occluded MPEG-7 dataset. Average Bullseye score for IDSC = 47.28 %,
IDSC+Aff = 70.92 %, and Ours = 85.2 %.

Figure 22: Some examples from our ’Merged MPEG-7‘ dataset.

Figure 23: Best viewed in color. Some results of matching and extracted shape decom-
positions between pairs of shapes when two different shapes merge into a single object
shape.
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Figure 24: The 20 most similar shapes retrieved by IDSC (second column), by IDSC+Aff
(third column) and by our method (four column) for the Merged MPEG-7 dataset.

identifies the correct GS correspondences even if the queries are combined.
Figure 24 visually compares the retrieval results obtained by our method,
with those of IDSC and IDSC+Aff [38]. Since a query is a combined shape,
the retrieved result is classified as a correct match if it contains any of the
two shapes present in the query. As can be seen, for most of the queries,
while IDSC fails to identify even one correct shape, and the performance of
IDSC+Aff [38] is quite unsatisfactory, as our method retrieves mostly correct
shapes.

In addition to the visual results, Table 2 compares the recognition rate
of our method with IDSC and [38] in a leave-one out environment[37] by
comparing the Top-1, Top-5 and Top-10 recognition rates for 100 combined
query shapes on the MPEG-7 dataset. IDSC and the method proposed by
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Table 2: Comparative retrieval results on 100 different combined shapes from
the MPEG-7 dataset.

Method Top-1 Recognition Top-5 Recognition Top-10 Recognition
rate (in %) rate (in %) rate (in %)

IDSC [37] 0.19 0.146 0.141

IDSC+Aff [38] 0.27 0.234 0.21

Ours 0.85 0.899 0.843

Figure 25: Some example shapes from a real Background Subtraction dataset [38].

[38] can be said to totally fail in this experiment while our method performs
reasonably well. This is due to a global criteria for matching and all methods
that do not explicitly handle partial matchings should fail miserably on this
dataset.

5.2. A Real Background Subtraction Dataset

We next evaluate our algorithm on a real Background Subtraction dataset
provided by Gopalan et al. [38]. This dataset contains 50 images of 10
shapes per class from 5 different classes. The dataset has a wide range of
non-planar articulations with significant self-occlusions and the images are
captured under different viewpoint variations. Many real world scenarios are
characterized by such variations. Some examples of such shapes are shown
in Figure 25.

Table 3 compares our retrieval results with those of IDSC [37] and Gopalan
et al. [38] in a leave-one out environment by listing the Top-1 recognition
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Table 3: Comparative retrieval results on a real Background Subtraction dataset.

Method Top-1 Recognition rate (in %) Bullseye score (in %)

IDSC [37] 58 39.4

IDSC + Aff [38] 80 63.8

Ours 94 81.5

rate and the Bullseye score. In addition to its shortcomings already dis-
cussed, IDSC [37] also fails to capture the 3D articulations of these shapes.
Gopalan et al. [38] attempt to do so by performing an affine normalization
of GSs. However, many shape variations still remain unmodeled because of
the lack of handling occlusions. Thus, it is not surprising that our method
significantly outperforms [37] and [38].

5.3. 2D Mythological Creatures dataset

To further test the ability of our algorithm in shape decomposition and
matching in the presence of occlusions, we test it on the 2D Mythological
Creatures dataset [17]. This dataset contains fifteen shapes of horses, humans
and centaurs, that have different articulations and partial occlusions. Figure
26 shows the visual results of our matching algorithm in the presence of
articulations, deformations and occlusions. As can be seen, we are able to
identify the GS-correspondences across the shapes even in the presence of a
lot of distractions. Thus, it may be claimed that our algorithm can be used
for such contour correspondence problems.

6. Conclusion

We have introduced an adaptive approach for shape matching that al-
lows for a different affine variation in different portions of a shape. The
method does not assume a given shape decomposition a priori but deter-
mines such decomposition while matching, which makes the matching quite
robust. Efficiency is achieved via Dynamic Programming by enforcing an
ordering constraint. Further, partial occlusions and errors in contour extrac-
tion are handled by allowing skips while matching. Experiments indicate
that the method might be useful compared to existing techniques, especially
in the case of partial occlusions, extra contour portions and merged shapes
that might arise in many situations, including automatic shape extraction
using techniques such as Background Subtraction and Image Segmentation.
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Figure 26: Best viewed in color. Some results of extracted shape decompositions between
pairs of shapes on the 2D Mythological Creatures dataset [17]. Note that non-matching
portions are skipped.
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