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Elucidating the extent of energetic coupling between residues in single-domain proteins,
which is a fundamental determinant of allostery, information transfer and folding coopera-
tivity, has remained a grand challenge. While several sequence- and structure-based
approaches have been proposed, a self-consistent description that is simultaneously
compatible with unfolding thermodynamics is lacking. We recently developed a simple
structural perturbation protocol that captures the changes in thermodynamic stabilities
induced by point mutations within the protein interior. Here, we show that a fundamental
residue-specific component of this perturbation approach, the coupling distance, is
uniquely sensitive to the environment of a residue in the protein to a distance of ∼15 Å.
With just the protein contact map as an input, we reproduce the extent of percolation of
perturbations within the structure as observed in network analysis of intra-protein interac-
tions, molecular dynamics simulations and NMR-observed changes in chemical shifts.
Using this rapid protocol that relies on a single structure, we explain the results of statis-
tical coupling analysis (SCA) that requires hundreds of sequences to identify functionally
critical sectors, the propagation and dissipation of perturbations within proteins and the
higher-order couplings deduced from detailed NMR experiments. Our results thus shed
light on the possible mechanistic origins of signaling through the interaction network
within proteins, the likely distance dependence of perturbations induced by ligands and
post-translational modifications and the origins of folding cooperativity through many-
body interactions.

Introduction
Signal transmission is at the core of chemical reactions that drive biological processes in the cellular milieu,
not just through the protein–protein interaction network but also within a single protein domain [1–7].
The network of physically interacting residues within proteins plays two vital roles: they stabilize the
protein structure by making numerous short-range van der Waals (vdW) interactions and, importantly,
serve as conduits for the long-range transmission of signals. These signals generally involve information
transfer or propagation of energy from the binding site of one ligand (protein, DNA or cofactor) to a distal
site where another ligand binds or conveys the information of cellular status through post-translational
modifications. These so-called perturbations at one site can have positive, negative or no effects (i.e.
neutral) at a distal region [8], thus forming the basis of allostery both in the presence or absence of a con-
formational change [9–11]. While the precise mechanism of information transfer can be varied and is still
an open question, it is well recognized that the energetic coupling of residues within a protein—in other
words, the intra-protein interaction network—plays a dominant role in this process [1,12–15].
A well-established and heuristic method to infer energetic coupling is the statistical coupling ana-

lysis (SCA) [1]. SCA involves a combination of multiple sequence alignment (MSA) of a particular
protein family and a perturbative analysis of the MSA to infer coupled residues through sequence
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co-variation. Other avenues involve experimentally intensive double-mutant cycles [12] or a combination of
elastic network models of proteins and normal mode analysis [16–18]. While these methods have contributed
to the understanding of specific systems, an inclusive answer to the question on the extent and magnitude of
energetic or thermodynamic coupling has remained elusive. In particular, modeling the extent of energetic
coupling requires an understanding of the strength and distribution of the local and non-local interactions
within a protein structure, and this is explicitly available through mutational studies. It is also well known that
most mutational effects, particularly those that perturb the interaction network within the protein interior, are
destabilizing [19] (perturbation of solvent-exposed charged residues can result in non-trivial effects [20,21]).
Reproducing these thermodynamic signatures is therefore a critical requirement for any model as the same set
of interactions that are perturbed upon mutations are the ones that ‘transmit’ signals upon ligand or protein
binding or post-translational modifications [5].
In this regard, employing a multi-model approach involving interaction network analysis using network

theory and all-atom molecular dynamics (MD) simulations, we recently showed that the effect of mutations propa-
gate into the structure as far as ∼15−20 Å from the mutated site and dissipate exponentially mimicking experimen-
tal observations [22]. Simplifying the distance dependence to two interaction shells around a perturbed residue
(see Supplementary Figure S1A, for a simple schematic) and recasting these results into the
Wako-Saitô-Muñoz-Eaton (WSME) model [23,24], it was possible to estimate the partitioning of destabilization
energy in the first (x1) and second shell (x2) of interactions (radius 6 Å each) [22]. The partitioning is found to
be 0.50:0.20 (x1:x2) and is also weighted by the nature of the mutation (Mut). These observations can be concisely
represented in the form of an empirical relation below with respect to the perturbed wild-type (WT) residue i:

DQi,j ¼ QWT
i,j x1(1� nMut=nWT)

DQj,k ¼ QWT
j,k x2(1� nMut=nWT)

(1)

where Qa,b is the number of heavy atom contacts within a specific cut-off (say, 6 Å) between residues a and b that
is obtained from a contact map; ΔQ represents the loss of interactions (or the derived perturbations) between
pairs of interactions between neighbors in the first shell of residue i (defined by j), and between the first shell and
second shell neighbors (k); and n is the number of atoms corresponding to residue i in the wild-type (nWT) or in
the mutated residue (nMut), respectively (Figure 1A). An equivalent version of equation (1) in terms of van der
Waals interaction energy is provided in reference [22]. This structural perturbation approach is able to reproduce
the changes in stabilities induced by 375 point-mutations in 19 different protein structures, highlighting that it is
faithful to protein destabilization thermodynamics [22]. Importantly, it suggests that the effect of any perturb-
ation percolates into the second shell of interactions and also dissipates as x2 < x1.
Because the interaction network serves as a conduit for signals, the empirical approach discussed above (eq.

1) can potentially shed light on the degree of coupling between protein residues. Does it therefore capture the
exponential dissipation of mutational effects observed in network analysis, MD simulations and experiments?
[22] Does the observed propagation obtained from the perturbation of residues in just a single structure
explain the allosteric coupling between residues gleaned from the SCA that requires hundreds of sequences?
Understanding the extent of energetic coupling would also shed light on the remarkably cooperative folding
behaviors of proteins that has its origins in the nature of the interaction network. In fact, it is well established
from theory [25], off-lattice models of proteins [26,27] and detailed NMR experiments [28,29] that packing
effects arising from both the first shell of interactions around a residue or even the second shell (i.e. neighbors
of first shell residues) contribute to the cooperative folding of proteins. Signaling through the interaction
network within proteins and folding cooperativity are therefore two distinct but related aspects of the same
problem, and understanding one will necessarily reveal insights into the other. Specifically, can the perturbation
approach (eq. 1) predict the degree of residue-level thermodynamic coupling gleaned from detailed NMR
experiments that employ temperature as a perturbation?

Methods
Predicting the changes in thermodynamic stability induced by mutations
The changes in protein stability upon point mutations in the hydrophobic core of proteins are predicted using
the Ising-like Wako-Saitô-Muñoz-Eaton (WSME) model [23,24] with energy terms for packing, solvation and
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electrostatics, following the protocol prescribed previously [20,30]. The following four parameters are fixed for
all the proteins: van der Waals interaction (vdW) energy per native heavy-atom contact from the contact map
(ξ = 70.5 J mol−1); heat capacity change per native contact (DCcont

p =−0.36 J mol−1 K−1); entropic cost for fixing
a residue in the native conformation (ΔSconf =−16.5 J mol−1 K−1 per residue); and the m-value per residue for
deriving a chemical unfolding curve (mres = 0.1 kJ mol−1 M−1), apart from the pH (7.0) and ionic strength con-
ditions (0.05 M). Since we are interested in predicting only the relative changes in stability upon point muta-
tions, the absolute values of the parameters are not critical. Here, we employ the average numbers from a
previous detailed analysis [22]. An all heavy-atom based contact map with a distance cut-off of 6 Å, that
excludes nearest neighbors is used for calculating van der Waals interactions. This contact map is provided as
an input to calculate total partition function employing the transfer-matrix formalism of Wako and Saitô [23]
from which an unfolding curve is derived. The unfolding curves thus generated are then fitted to a two-state
model, thus yielding the stability at zero denaturant concentration for the wild-type protein (ΔGWT). A more
detailed description of the model and its energy terms can be obtained from our previous works [20,30,31].
The mutational effects are predicted (i.e. ΔGmut) by using identical parameters to those above and by modu-

lating the van der Waals interactions of the mutant using the fixed relation given below:

Emut(i,j)
vdW ¼ EWT(i,j)

vdW (1� x1(1� nmut=nWT))

Emut(j,k)
vdW ¼ EWT(j,k)

vdW (1� x2(1� nmut=nWT))
(2)

where i is the mutated residue, j refers to first shell neighbors and k refers to second shell neighbors of the
mutated residue. The pair-wise van der Waals interaction energies (E) are weighted by the nature of the muta-
tion (the number of atoms in mutated residue nmut or wild type nWT) and an empirical factor (x1 or x2) to
denote the extent of fractional destabilization (0 < x1, x2 < 1) in the first and second shells (Supplementary
Figure S1A). A value of 0.5 and 0.2 was employed for x1 and x2, respectively, and with equal shell radii of 6 Å
as prescribed previously [22]. This was arrived at from a detailed analysis of more than 20,625 unfolding
curves and different first-/second-shell radii (including 6 and 6 Å, 6 and 5 Å, 6 and 4 Å, 5 and 5 Å, 5 and 4 Å

Figure 1. The structural perturbation approach reveals an exponential dissipation of mutational effects.

(A) A schematic of the contact map (Q map; upper triangular matrix) and the ΔQ map (lower triangular matrix). A uniform-color

code for the first- and second-shell is employed for the sake of clarity. The mutated residue is shown in red while the first- and

second-shell neighbors are shown in dark blue and dark green, respectively, in the upper triangular matrix (also see

Supplementary Figure S1A for a simplified schematic). Gray squares represent interactions that are unperturbed. Upon

introducing a perturbation according to equation (1), the number of contacts of only the first- and second-shell neighbors of

the perturbed residue is decreased by a factor, resulting in the ΔQ map (lower triangular matrix). (B) A plot of the propagation of

perturbations as seen by ΔQ as a function of distance from the perturbed site for every single residue of ubiquitin (PDB id:

1UBQ) and bACBP (2ABD). Cα − Cα distances are employed here and throughout the manuscript. The large scatter in panel B

is a result of the diversity in the residue environment that is explained in Figure 2. The exponential fits are, however, well

defined with a fitting error of ∼0.06 Å.
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apart from various x1 and x2 combinations), which was capable of reproducing the mutational destabilizations
involving 375 mutations from 19 proteins [22].

Rapid alanine scanning mutagenesis
Equation (2) can also be recast in terms of the pair-wise contact map (Q) and is provided in the main text (eq.
1). This essentially liberates the empirical relation from the WSME model and allows a scan of the environment
of every residue in a rapid manner by inputting just the contact map and the identity of the mutation.
Specifically, for an alanine scanning mutagenesis, we mutate every residue to alanine (and in the case of
alanine, to glycine), except for proline and glycine, on the six proteins studied (see Supplementary Figure S1B
for a flowchart). The effective change in the number of interactions expected for a given residue, ΔQ, is esti-
mated by summing up the pair-wise terms in equation (1) (equivalent to the changes in the van der Waals
interaction energy between the wild-type and mutant). This is now plotted as a function of distance from the
mutated site for every residue. Note that ΔQ is always positive in this method simply because we truncate the
residue to alanine as is always done in experimental alanine-scanning mutagenesis. Potential changes to the
structure introduced through mutations or local stabilizations will not be captured as the method relies solely
on the contact map of the WT.

Results
Understanding the coupling distance
We first perform an in silico alanine scanning mutagenesis following the empirical relation outlined in equation
(1) on six proteins with varied secondary structural contents and topologies (bACBP, Im9, SH3, Ubq, FKBP12
and Sso7d). We find that the decay of ΔQ is exponential-like from the mutated site with a mean distance con-
stant or a coupling distance (dC) of 3.8 Å and 3.7 for Ubq and bACBP, respectively (Figure 1B and
Supplementary Figure S2). The magnitude of dC is of the same order as observed from the interaction network
perturbation analysis and MD simulations of several mutants of ubiquitin [22] (dC ∼4.1–4.7 Å), despite this
dependence not being explicitly included in the perturbation equation. Moreover, the mean dC for each of the
proteins is also ∼3.8 ± 0.06 Å indicating that the average extent of coupling is largely independent of protein
size or structural class (Supplementary Figure S2). It is also important to note that this structural perturbation

Figure 2. Understanding the coupling distance.

(A and B) Representative examples of the differences in the exponential dissipation upon perturbation of a buried (panel A) and

a solvent-exposed residue (panel B). The exponential fit it shown in red together with the 95% confidence interval (shaded

areas). (C) Residue-wise coupling distances of ubiquitin. The cyan and pink shades represent beta-strands and alpha helices,

respectively. (D) The dependence of coupling distance on the relative solvent accessible surface area (rSASA) extracted from a

perturbation analysis of six proteins used in this study. The red line is a linear fit to the data in gray circles while the green

circles represent the averages over rSASA bins of size 0.1 units. (E) Distribution of coupling distances. Residues with dC higher

than the mean of 3.5 Å (shaded area) are potentially strongly coupled to their neighbors. It is important to note that only the

empirical relations in equation (1), apart from the contact map, are required for predicting the dC values.
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is consistent with thermodynamic experiments, as we obtain an average correlation of ∼0.8 between the experi-
mental and predicted destabilization (ΔΔG) for the six proteins when equation (1) is cast into the WSME
model (Supplementary Figure S3).
The average dC can be de-convoluted into contributions from individual residues that range from ∼2 Å to

∼5 Å for all proteins contributing to the apparent large scatter in Figure 1B (Figure 2A,B). The extent of perco-
lation into the protein structure (i.e. the distance at which no effect is felt) in these cases corresponds to ∼8
and ∼17 Å, respectively. Figure 2A plots the ΔQ vs. distance plot for a buried residue L56 in ubiquitin that dis-
plays a coupling distance of ∼4.8 Å that is much higher than the average. A solvent-exposed residue S20, on
the other hand, exhibits a smaller coupling distance (Figure 2B). These observations are intuitively expected, as
residues whose side-chains are pointing within the hydrophobic core will be interacting with an array of resi-
dues in the crowded protein interior. The situation is the exact opposite for a solvent-exposed residue that is
merely coupled to residues on the surface. In other words, buried residues will contribute to large destabiliza-
tion and hence will be more conserved over evolutionary time (to avoid potential detrimental effects) compared
with solvent-exposed residues (where the mutational effect is small). This is exactly what is observed in
sequence-structure-based studies of protein evolution that point to a large conservation of buried residues and
a weaker conservation of solvent-exposed residues [32]. This enables a rapid exploration of sequence-function
space during evolution without significantly affecting the protein stability.
A plot of the magnitude of dC as a function of sequence index reveals no apparent dependence on the

protein class or topology (Figure 2C and Supplementary Figure S4). However, we find a weak correlation
(r∼ 0.56 and explains just ∼31% of the variance in the dataset) between relative solvent accessible surface area
(rSASA) of residues in the protein structure and the corresponding coupling distances. This holds true irre-
spective of a global correlation or binning analysis (green in Figure 2D). This is also evident in Figure 2D
where we find a large spread in the coupling distances even at low rSASA, indicating that dC is not just a func-
tion of rSASA. One reason for only a weak correlation is that the coupling distance is very sensitive to the local
packing environment and the size of the amino acid. For example, alanine will be coupled to only a few distant
residues even if it is completely buried, since the side-chain is short. The opposite holds true for a large residue
that is exposed to the solvent. It can be seen that different secondary-structure elements by themselves exhibit
different mean coupling magnitudes. Even within a single secondary structure, a unique pattern is evident
where the dC magnitude fluctuates between high and low; for example, adjacent residues in beta strands point
to opposite coupling magnitudes while the helices display a similar pattern but with a weaker dependence
(Supplementary Figure S5). These differences have their origins in the organization of residues within the cor-
responding secondary-structure elements: adjacent residues in beta strands have their side-chains pointing in
opposite directions and if the residue is buried then it exhibits larger coupling and vice versa (Supplementary
Figure S5). In other words, the coupling distance is a robust property of protein residues—since it is sensitive
to the local packing environment, secondary structure, the nature of the amino acid and the relative solvent
accessibility—and can potentially highlight strongly coupled residues (Figure 2E). Note that ‘strong coupling’ is
a relative term and it will depend on the immediate environment of the different residues in the protein.

Comparison with SCA predictions
The structural perturbation method we present here shows that mutating a residue at a particular site can have
non-intuitive effects since most residues are coupled to residues even in their second shell, i.e. higher order
effects. It therefore serves as a very powerful and a rapid avenue to probe for the extent of energetic or allosteric
coupling in proteins that has been proposed to be determine dynamic allostery [11] (responses at distal sites in
the absence of conformational change). It should therefore be possible to recapitulate SCA observations by a
mere perturbation of specific residues that can also be functionally important.
The SCA method was first applied to the protein PDZ3 (Figure 3A), which plays a vital role in cell signaling

by aiding the assembly of multi-protein complexes [1]. We compare the results of our perturbation approach
to the more complex SCA. We perturb just four ligand-binding residues (F325, N326, H372, K380) and obtain
a similar exponential dissipation of their effects with a mean coupling distance of 4.3 Å (blue in Figure 3B).
Remarkably, this approach in itself captures most of the residues identified as energetically coupled from the
SCA [1] (cyan circles in Figure 3B). The same holds true for the enzyme DHFR (dihydrofolate reductase;
Figure 3C), which binds to the substrate dihydrofolate and reduces it to tetrahydrofolate aided by the cofactors
NADPH and NADP+. SCA of DHFR has shown nearly 50 residues in the structure to directly affect enzyme
activity [33]. To see if these observations can be reproduced from a simple distance dependence of the
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dissipation of perturbation, we perturb four spatially contacting residues close to the ligands (I5, T46, I50 and
I94, of which only T46 is highly conserved) resulting in a dC of 3.6 Å (Figure 3D). This perturbation approach
again captures nearly 70% of the residues identified as being energetically coupled from the SCA (cyan circles
in Figure 3D).

Rationalizing the allosteric modulations of PTMs
A related phenomenon is observed in a post-translational modification (PTM) event that takes place in PDZ3.
Phosphorylation of Y92 in PDZ3 has been shown to allosterically modulate the binding affinity of a peptide
ligand at a distant site [34]. Since a detailed chemical shift mapping is available from experiments, we plot the
difference in chemical shifts of backbone atoms between the WT and the phosphorylated variant as a function
of distance from Y92. We find that the backbone chemical shifts of distant residues are also modulated, effect-
ively resulting in an exponential dependence with a coupling distance of 4.9 Å (Figure 3E). Perturbation ana-
lysis of PDZ3 Y92 (without considering charge-induced structural changes) reveals a dC of 4.1 Å (Figure 3F).
While the experimental backbone chemical shifts cannot be directly compared to the predicted perturbations
(ΔQ), the extent of propagation is very similar, suggesting that the experimentally observed allosteric modula-
tion is a result of the propagation and dissipation of the phosphorylation event into the structure. CheY, which
plays a vital role in bacterial chemotaxis, also undergoes a phosphorylation event at D57 that in turn deter-
mines the direction of flagellar rotation through regulation of binding (Figure 3G) [35]. A perturbation analysis
of D57 results in a low coupling distance of 3.3 Å (since it is solvent exposed; Figure 3H), but the sphere of
influence of perturbation still encompasses the known allosteric quartet of residues (including Y106, whose
rotameric status is modified; residues in cyan sticks in Figure 3G).

Insights into protein folding cooperativity
NMR experiments that monitor changes in the chemical environment of individual atoms in proteins with
temperature indicate that higher-order couplings emerge through interactions mediated by the first-shell con-
tacts [28,29]. Since our method explicitly accounts for these effects, we map the changes in the number of con-
tacts (ΔQ) upon perturbation of every residue in the form of a global ΔQ map (bottom right triangle of

Figure 3. Identifying allosterically coupled residues via perturbations.

Red curves in panels B, D, E, F and H represent exponential fits. (A) Cartoon of PDZ3 (PDB id: 1BFE) with the perturbed

residues around the bound peptide (yellow) in red and the residues identified as energetically coupled (by employing eq. 1) in

blue. (B) The effective distance dependence of ΔQ upon perturbing the residues shown in red in panel A. Coupled residues as

identified by the Statistical Coupling Analysis (SCA) are shown in cyan. (C) Structure of DHFR (1RX2) with the perturbed

residues in red, coupled residues in blue, the substrate folate in yellow and the co-factor NADP in orange. (D) Same as panel

B, but for DHFR. (E) Difference in backbone chemical shifts between the phosphorylated and non-phosphorylated PDZ3 as a

function of distance from the Cα of Y92. (F) Distance dependence extracted from the perturbation of Y92. (G) Model of CheY

(1F4V) with the residues coupled to D57 (red) in blue and cyan. The allosteric quartet of residues is shown as sticks. (H) Same

as panel F but for CheY.
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Figure 4A,C). This is identical to the approach taken for the lower triangular matrix of Figure 1; in this case,
however, the ΔQ distribution from every residue is summed up to provide a global ΔQ map. We observe a
pattern very similar to the interpretation of NMR experiments wherein additional spots expectedly appear on
the ΔQ map for both BBL and gpW (Figure 4A,C). The ΔQ map is more discrete compared with the continu-
ous pattern of experimental coupling indices, as it is derived from a discrete contact map (upper left triangles
in Figures 4A and 4C). Residues with large coupling distances are concentrated in the hydrophobic core, as
noted before (Figure 4B). For example, in BBL, we observe that L9 and several residues of the second helix
mediate an array of non-local contacts exactly as seen in experiments [28] (orange arrows in Figure 4A).
Interestingly, I6 seems to interact strongly with several residues farther along the sequence (yellow arrow in
Figure 4A); however, this is not observed in experiments. This possibly arises from the use of a single structure
as a representative of possibly a heterogeneous native ensemble, thus over-estimating the coupling.
In gpW, we observe several long-range couplings, particularly between the two strands and the rest of the

structure, which are similar to experimental observations [29] (orange circle in Figure 4C). However, the two
strands of gpW exhibit low coupling (〈dC〉 of ∼3.5 Å), since they interact only weakly with the hydrophobic
core defined by the two helices. This weak coupling potentially contributes to the population of a partially
structured state during the folding of gpW in which both the strands are disordered [36]. The second helix has
a higher mean coupling distance (more oranges and reds in Figure 4D; 〈dC〉 ∼4.1 Å) compared with the first
helix (〈dC〉 ∼3.8 Å) consistent with NMR experiments that indicate the second helix to be more stable. These
results highlight that variations in energetic coupling within a single protein domain determine the effective
folding cooperativity, as previously noted. Furthermore, the large dispersion in the ΔQ map suggests that a
residue can be considered as ‘fully folded’ only when the second-shell of interactions is also formed; this aspect
is generally not considered in protein folding models, including the ones employed by us (i.e. the WSME
model).

Discussion
The residue-level structural perturbation approach we propose here simultaneously explains experimental
protein destabilization energetics and the results of sequence-based statistical coupling analysis. This self-
consistency, we believe, is an important requirement to model dynamic allostery since signal transmission
necessarily takes place through the network of interactions within proteins. The propagative effect is not just
restricted to mutations, but is also surprisingly consistent with the effects of ligand binding and post-
translational modifications on proteins. Our results further explain a recent meta-analysis of the conservation
patterns in enzymes [37]; it was found that residues up until 20–25 Å away from the active site exhibit minimal
mutational rate compared with the rest of the structure, suggestive of long-range coupling among residues. We
find that such couplings arise merely from a combination of distance proximity, as originally proposed [12],

Figure 4. Higher-order interactions from ΔQ map.

The spectral color-coding in all panels goes from blue to red representing weak to strong interactions or energetic coupling

(blue to red). (A) The contact map (upper left triangle) and the ΔQ map of BBL (bottom right triangle). The orange arrows

represent experimentally observed long-range couplings while the yellow arrow represents the couplings observed only in the

perturbation approach. (B) The dC-map of BBL (2CYU) with the strongly coupled residues numbered. (C and D) Same as the

first two panels but for gpW (1HYW). Note the alternating patterns in the cartoons originating from a combination of residue

size and the surrounding packing environment.

© 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society 2385

Biochemical Journal (2017) 474 2379–2388
DOI: 10.1042/BCJ20170304

D
ow

nloaded from
 https://portlandpress.com

/biochem
j/article-pdf/474/14/2379/690262/bcj-2017-0304.pdf by guest on 10 June 2020



and the propagative effect of perturbations in an interaction network. This could therefore be a generic feature
of proteins or systems with multiple weak non-covalent interactions. Our observations also highlight that there
are potentially numerous allosteric sites in enzymes since any residue within ∼15 Å from the active site is
expected to influence enzyme activity. Our method therefore opens the door for rapidly identifying specific
solvent-exposed sites or ‘hot spots’ that a drug molecule can bind to in order to regulate enzyme function
without directly binding to the active site.
Both the SCA and the method proposed here are computational approaches and it is therefore unreasonable

to expect a perfect correlation between the two. However, the large overlap between the predictions of the SCA
(from numerous sequences) and that gleaned from a simple structural perturbation (Figure 3) suggests that our
perturbation approach can be employed as a first step to identify potentially coupled residues that can further
be refined by either SCA or more directly through experiments. In elastic network models (ENMs), it is gener-
ally assumed that residues separated by up to 10–15 Å are coupled through springs of either a fixed spring con-
stant or that decay with increasing distance. Interestingly, incorporation of a distance-dependent spring
constant provides a better agreement with experiments [38]. The results of our perturbation approach points to
a simple reason as to why such an assumption provides a better agreement, since the effect of any perturbation
is expected to decay the farther a particular residue is from a perturbed site (the coupling is weaker; also see
ref. [22]). It is also important to note that the perturbation through alanine scanning is purely employed as a
tool to probe the underlying features of the intra-molecular interaction network; the resulting output is ΔQ as a
function of residue index (or distance from the perturbed residue), which is a measure of the extent to which
the perturbed residue is coupled to its neighbors, i.e. its immediate environment. Our method therefore does
not report on possible local stabilization (negative ΔQ) of the protein structure. Moreover, since the perturb-
ation approach relies on the contact map of the WT as the input, any potential changes to the structure upon
ligand binding or mutation (e.g., small to large side-chain substitutions) will not be accounted for.
We also highlight how cooperativity is built into protein systems through weak higher order interactions by

explicitly decoupling the environment of a residue into two shells of interactions and destabilization energies.
Many-body terms (or the second-shell effects) in protein folding models should therefore provide a more real-
istic description of the (un)folding processes. This however, requires the folding community to consistently
move beyond contact maps and introduce residue-environment-specific energy terms in structure-based
models, similar to the amino acid ‘burial’ code pioneered by de Araujo and Onuchic [39]. However, a more
detailed understanding of energetic coupling and the associated timescales from multiple systems is required to
paint a quantitative picture on the modulations of binding affinity at a distant site (the ‘holy grail’ of allostery)
or to predict the degree of folding cooperativity from first principles. The experimentally derived thermo-
dynamically consistent approach we present here that recasts the residue environment into a single number
provides a stepping-stone in that direction.
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