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Abstract The classical JMAK model of recrystallization kinetics has been
widely used to describe the growth of randomly distributed nuclei under con-
stant driving force. These conditions are not satisfied in many systems. The
driving force for growth generally varies with time, and the nuclei are usually
not uniformly distributed. In this paper, we present a physically motivated al-
ternative model of recrystallization kinetics, which accounts for the variation
of driving force due to recovery and the effect of clustering of the nuclei. The
model is based on the growth kinetics of initially circular, strain free nuclei
in a deformed matrix. The effect of recovery on the recrystallization kinetics
is studied in terms of the parameters governing initial stored energy and the
decay rate. The model predicts cessation of recrystallization when the stored
energy decreases below a certain critical limit. This cessation depends on both
the initial stored energy value as well as the recovery time constant. The effect
of clustering of nuclei on recrystallization kinetics is analyzed by considering
representative volume elements with different nuclei distributions. It is shown
that recrystallization kinetics becomes slower with increased clustering. The
results of this mean field model are compared to phase field simulations.
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1 Introduction

In metals and alloys, the formation of polycrystalline microstructure during
high temperature annealing post deformation is termed as static recrystalliza-
tion. This process is of great technological importance and has been studied
extensively for many decades [1, 2, 3, 4]. At elevated temperatures, relatively
strain free regions in deformed material become nuclei, which grow and con-
sume the surrounding strained material. The stored energy difference between
the deformed regions and the strain free nuclei drives the growth of the nuclei.

The kinetics of the recrystallization process in metals has generally been
described by the classical Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory
[1]. While this theory has been applied to a wide variety of systems [5, 6, 7],
it is based on the assumptions of randomly distributed constant growth rate

of the nuclei and can include both site saturated nuclei and constant nu-
cleation rate. Under these idealized assumptions, this model predicts that
the recrystallization fraction X is given as a function of time t in the form
X(t) = 1− exp(−Ktn) where K is a constant and n is generally referred to as
the Avrami exponent. Most materials do not appear to conform to JMAK ki-
netics [8, 9, 10, 5]. The reasons have been variously attributed to non-constant
driving force [11, 8], non-uniformly distributed nuclei [3, 12, 13], inhomogene-
ity of the stored energy [14, 15] and pinning by second phase particles [11].

During recrystallization, the stored energy in the highly deformed regions
decreases with time due to a concurrent process, termed recovery. This process
reduces the driving force for recrystallization [4, 11]. The strain free nuclei are
also generally not uniformly distributed in many systems [12, 13]. For a given
area density of nuclei, the nuclei could be clustered in some locations, and the
clusters could be spread out. As a result, the growing nuclei impinge upon
their neighbours in the cluster before impingement on neighbouring clusters.
This process affects the kinetics of the recrytallization process [3]. Storm and
Jensen [12] have performed a recrystallization simulation of a clustered dis-
tribution of nucleation sites, which was observed experimentally in 90% cold-
rolled aluminum (AA1050) material. Their simulations revealed that clustering
changes the recrystallization kinetics, recrystallized microstructural morphol-
ogy and the grain size distribution. Villa and Rios [13] considered Matern
cluster processes to characterize such clustered nucleation and obtained ana-
lytical solutions of the recrystallization kinetics by employing stochastic ap-
proaches. Their rigorous mathematical analysis indicates that the effect of
different Matern cluster process parameters, cluster radius R, the intensity
of the parent Poisson process λp and mean number of points per cluster nc

strongly affect the recrystallization kinetics.
Several models have been developed to consider the effect of non-constant

driving force on the recrystallization kinetics [8, 16, 17, 18]. Of these, the
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models developed by Speich and Fisher [16] and Vandermeer and Rath [8]
are notable. While the JMAK model uses an extended volume approach to
account for the effect of impingement between adjacent recrystallized grains
for recrystallized fraction calculation, these models are based on an empirical
calculation of the impinged interface area. All these models use an assumption
of random distribution of nuclei and have been extended in many other studies
[19, 20, 21, 22]. In this work, we develop a simple two dimensional, physically
motivated model to study the effect of both non-constant driving force and
clustering on recrystallization kinetics based on a mean-field approach. We
note that a non-constant driving force has been incorporated into the JMAK
approach through a post facto modification of the JMAK kinetics derived from
the assumption of a constant driving force [11]. In contrast, we present a simple
model capable of describing isothermal recrystallization kinetics based on the
time dependent driving force. We base our model on a mean-field description
of recrystallization, which was proposed by our group [23]. The model was
based upon the assumption of a uniform distribution of strain free nuclei in
a highly deformed matrix. The nuclei were assumed to grow with first order
kinetics driven by both curvature and stored energy difference. The stored
energy was taken to vary with time in the form Est = E0+E1exp

(

− t
τ

)

where
τ is the time constant of recovery. However, the previous work only considered
the kinetics up to the impingement of the nuclei and considered an initially
uniform distribution of the nuclei. In this paper, we first extend the mean
field model to study the complete post impingement recrystallization kinetics.
We also develop a model of clustered nucleation using a representative volume
element (RVE) approach. We then systematically study the effect of the initial
stored energy and the recovery time constant on recrystallization kinetics —
particularly on the Avrami exponent. We find that recrystallization ceases
for certain combinations of the initial stored energy and the recovery time
constant. We introduce a clustering parameter, which is a ratio of the distance
between adjacent nuclei and the size of the RVE. The effect of the clustering
parameter on the Avrami exponent is studied. Finally, we compare our model
with a phase field model to contextualize our results. A multiorder parameter
phase field model based on the work of Fan and Chen [24] has been used.
The coarse grained free energy of the classical phase field model is modified
to account for the stored energy driven recrystallization [23]. This paper is
organized as follows: Section 2 presents a description of the model for both
the uniform and non-uniform distribution of the nuclei. The assumptions are
described, and the analytical approach is presented. Section 3 describes the
results obtained from the proposed model and a discussion of their significance.
Finally, the conclusions are summarized in Section 4.

2 Model Description

As mentioned in the introduction, the mean field model is based on the first
order kinetics of nuclei growth driven by curvature and stored energy differ-
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(a) (b) (c)

Fig. 1 Different stages of growth during recrystallization: (a) Distribution of the initial
nuclei in two dimensions, (b) impingement of the growing grains and (c) growth after im-
pingement.

ences. Following [23], we summarize the model below. The rate of growth of a
nucleus is given by

dR

dt
= M

(

−
γ

R
+ Est(t)

)

, (1)

where the stored energy difference is taken to be of the form Est = E0 +
E1exp

(

− t
τ

)

. For ease of parametric analysis we consider the dimensionless
form of Eq. (1) in the form

dR̄

dt̄
= −

1

R̄
+ 1− ξ + ξ exp−t̄/τ̄ , (2)

where R̄ = R (t)/Rc, t̄ = MEit/Rc, ξ = E1/Ei, τ̄ = MEiτ/Rc with initial
stored energy Ei = E0+E1. The critical nucleus size is Rc = γ/Ei which can be
obtained by setting dR/dt to zero at t = 0 in Eq. (1). Thus, a competition be-
tween the grain boundary energy γ and initial stored energy Ei determines the
critical nucleus size as in the classical nucleation theory. Equation (2) is solved
numerically to obtain the radius of the nucleus as a function of time, assuming
a uniform distribution of nuclei. Figure 1 shows the distribution of nuclei in
a deformed matrix (grey region) and their subsequent growth as strain free
grains (white regions). The nuclei are taken to be in a hexagonal arrangement
in the deformed matrix. The growth of the grains leads to impingement (Fig.
1b) between growing grains. A detailed calculation of recrystallized fraction
based on these assumptions is given in Appendix A.

2.1 Clustering of nuclei

Next, we describe the model for clustered nuclei. For this, we consider cluster-
ing in hexagonal RVEs. The distribution of nuclei for analyzing the clustering
effect is shown in Fig. 2. The overall distribution of nuclei is obtained by
periodically placing a cluster of three nuclei in each hexagon of a hexagonal
grid (Fig. 2a). The ratio of two characteristic lengths: r3 and R3, identified



A model of recrystallization kinetics 5

(a) (b) (c)

Fig. 2 Representative volume elements of the recrystallization process with clustered nu-
clei: (a) initial distribution of the nuclei, (b) impingement of local clusters and (c) final
grain shapes. The dimensions are defined by θ1 = π

6
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3
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in Fig. 2a, is used to define a clustering ratio Cr. When Cr = 1, the nu-
clei are uniformly distributed with no clustering. In the clustered distribution,
each growing grain impinges on six surrounding grains at two different radii
of curvatures, r3 and R3, respectively.

In the first occurrence of impingement (with a radius of curvature r3), con-
current impingement with two other grains from the same cluster takes place.
After this impingement, the entire cluster is assumed to grow. In the second
impingement between adjacent clusters, the four grains from nearby clusters
impinge, and this takes place simultaneously with the radius of curvature of
the grain being R3. Figure 2b shows the grain boundary shape after the first
local impingement. After complete recrystallization, each nucleus is assumed
to take a final shape that is presented in Fig. 2c. The clustering ratio deter-
mines this final shape. This final shape can be considered as a representative
element for the calculation of recrystallized volume fraction. If the current
radius of curvature, denoted by Rn, lies between l2 and l3 (Fig. 2), then the
recrystallized area in a single representative element can be expressed as

Arec =

∫ r3

0

2πRdR+

∫ l1

r3

(

2π − 4 arccos
r3
R

)

RdR

+

∫ R3

l1

(

2π − 2θ1 − 2 arccos
r3
R

)

RdR

+

∫ l2

R3

(

2π − 2θ1 − 2 arccos
r3
R

− 8 arccos
R3

R

)

RdR

+

∫ Rn

l2

(

2π − 2θ1 − 2θ2 − 4θ3 − 4 arccos
R3

R

)

RdR.

(3)

All the parameters in the above equation are defined in Fig. 2c. The limits
in the integration terms of Eq. (3) represents the radius of curvature at various
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transition points of the impingement. There are successive steps in the domain
of R, and the terms of the integration are different in each step. To obtain the
value of Arec, the integration is performed using the value of the current radius
of curvature Rn. The area of the representative element, which is the maximum
value of Arec, is calculated by integrating up to the maximum value of Rn = l3.

The area of the representative element is given as Ac = 2R3√

3
+ r3√

3
+

r3
√

4R3
2 − r32 in the case of nonuniform clustering. Subsequently, the re-

crystallized area fraction Xr is calculated in terms of dimensionless radius of
curvature Sr and the clustering ratio Cr through

Xr =
Arec

Ac

=Sr
2

(

∫
Cr

Sr

√

M

0

2πR̄dR̄+

∫
2Cr

Sr

√

3M

Cr

Sr

√

M

(

2π − 4 arccos
Cr

Sr

√
MR̄

)

R̄dR̄

+

∫ 1

Sr

√

M

2Cr

Sr

√

3M

(

5π

3
− 2 arccos

Cr

Sr

√
MR̄

)

R̄dR̄ (4)

+

∫ 2

Sr

√

4M−MCr
2

1

Sr

√

M

(

5π

3
− 2 arccos

Cr

Sr

√
MR̄

− 8 arccos
1

Sr

√
MR̄

)

R̄dR̄

+

∫ R̄n

2

Sr

√

4M−MCr
2

(

2π

3
− 4 arccos

1

Sr

√
MR̄

)

R̄dR̄



 ,

where M = 2
√

3
+ Cr

2

√

3
+Cr

√

4− Cr
2. Here too the integration steps are similar

to Eq. (3). In this case, the final value of R̄n is 2

Sr

√

3M
.

3 Results and discussion

The parameters used in this work are related to the physical processes asso-
ciated with the recrystallization. This section describes the results obtained
from simulations by varying these parameters. We also illustrate the ability
of the proposed model in describing the influence of physical processes on the
recrystallization kinetics. The instantaneous radius of a single nucleus R̄ is cal-
culated as a function of t̄ by solving the Eq. (1) using an explicit forward finite
difference method. Subsequently, the recrystallized area fraction as a function
of t̄ is calculated using the equations for Arec. The recrystallization kinetics
in the present modeling approach is dependent on the parameters: τ , ξ, M ,
Ei, Rc and Sr. From Eqs. (3) and (4) it is seen that the temporal evolution of
Xr as function of t̄ is determined directly by the parameters: τ̄ , ξ and Sr. The
other parameters: M , Ei, Rc determine the functional dependency between t̄
and actual time t.
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Fig. 3 (a) Recrystallized fraction Xr vs. t̄ in a linear scale and (b) log(− log(1−Xr)) with
log(t̄) for combinations of τ̄ and ξ. The thick lines represent ξ = 0.10 and the thin lines
represent ξ = 0.25.

3.1 Effect of recovery

In this model, the recovery of the material is characterized by the recovery
time constant τ and the recoverable fraction ξ of initial stored energy Ei.
The competition between recovery and recrystallization can be analyzed by
investigating the role of these two parameters on the recrystallization kinetics.

Figure 3 shows the recrystallization kinetics for different values of τ̄ and ξ.
The recrystallization kinetics is slower for lower values of τ̄ for given ξ (Fig.
3(a)). The recrystallization kinetics also becomes slower for larger values of ξ.
Note that the parameter τ determines the rate of decrease of stored energy
due to recovery. Lower τ implies that the stored energy decreases from initial
value at an earlier time. On the other hand, a higher ξ value indicates that a
greater part of the initial stored energy Ei is lost due to recovery. Thus lower
values of τ̄ and higher values of ξ indicate that the stored energy available for
driving force the recrystallization process is reduced thus leading to a delay in
recrystallization.

To compare our results with the JMAK analysis, we calculate an appar-
ent Avrami exponent from our recrystallization kinetics. From the plot of
ln(− ln(1−Xr)) vs ln t̄ shown in Fig. 3(b), it is seen that the recrystallization
curve from our model is not sigmoidal. Nevertheless, the plot of ln(− ln(1−Xr))
vs ln t̄ is approximately linear for a significant fraction of the recrystallization
process (for Xr ∈ (0.01, 0.7)). The slope of the curve in this region is taken
to be an apparent Avrami exponent for our analysis. Changes in recovery
parameters result in significant variations in Avrami exponent.

Figure 4 shows the variation of the Avrami exponent with τ̄ for differ-
ent values of ξ. The Avrami exponent has a high value at low τ̄ value; then
decreases with increasing τ̄ and reaches a minimum value. It increases again
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before attaining a final saturation value of 2.13. The nonmonotonicity in the
variation of the Avrami exponent with τ̄ can be explained considering the rate
of recovery with respect to the recrystallization process.

In Fig. 5, the effect of recovery in relation to the recrystallization is shown
with τ̄ for ξ = 0.25. The decrease in stored energy due to recovery is greater
in the case of low τ̄ = 0.8. Figure 5 shows that for τ̄ = 0.8, recovery is
completed by the time a small part of recrystallization process occurs (Xr <
0.01). During the remaining part of the recrystallization process, the stored
energy in non-recrystallized material part remains constant at a value of 0.75
(1 − ξ). Thus the decrease in stored energy due to recovery influences only
the initial part of the recrystallization process (Xr < 0.01). Subsequently, the
slope of ln(− ln(1−Xr)) vs ln t̄ curve is steeper (Fig. 3b) in the recrystallization
regime over 0.1 < Xr < 0.7. This results in a high calculated Avrami exponent
for lower values τ̄ = 0.8.

At higher recovery time constant values τ̄ = 12, the decrease in stored
energy due to recovery occurs over a larger period of time. For τ̄ = 12, the
decrease in stored energy due to recovery occurs up to a recrystallization
fraction of Xr < 0.4 (Fig. 5). When the recovery period spans a greater part
of the recrystallization, it results in a more gradual slope of ln(− ln(1 −Xr))
vs ln t̄ curve in the characteristic regime of 0.1 < Xr < 0.7. This results in a
lower value of the calculated Avrami exponent for τ̄ < 12. For higher τ̄ , the
Avrami exponent of about 2 is calculated. Thus the minimum value of the
calculated Avrami exponent depends strongly on ξ.

Finally, it is evident from Fig. 5 that if the recovery of the stored energy
continues beyond the recrystallization process for a τ̄ > 100. Thus when the
recovery process is slower (higher τ̄), the increasing availability of stored energy
to drive the growth of the nuclei results in an increase in the calculated value
of the Avrami exponent.

This discussion is focused on the effects of the two parameters: the recovery
time constant τ̄ and fraction of stored energy recovered ξ on the recrystalliza-
tion. To put these in context, these recovery characteristics mostly depend on
the stacking fault energy of the material [1, 2]. In metals with low stacking
fault energy, the recovery associated mechanism is less dominant during the
recrystallization process. However, in metals with high stacking fault energy
such as aluminium and iron, significant recovery is reported. In such cases,
recovery can be characterized by a combination of low τ̄ and high ξ.

In order to correlate our calculations with the experimental values of the
stored energy which are measured throughout the domain, we plot the average
stored energy (along with stored energy decay in only the deformed region
for reference) in Fig. 6. The qualitative trends match the different types of
recovery features reported in the literature to good accord. In low stacking fault
energy materials, the reported trend in average stored energy change during
recrystallization qualitatively matches the result for τ̄ = 250 and ξ = 0.10 [25,
26]. For such materials, the recovery rate is small during the recrystallization
process and recrystallization completes without any significant loss of stored
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Fig. 4 Variation of Avrami exponent n with the recovery time constant τ̄ for different
values of recovered stored energy fraction ξ. As noted in the text, the Avrami exponent is
calculated for recrystallization fraction in the range 0.1 < Xr < 0.7.
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Fig. 5 Recrystallization rate Xr(t) for different recovery kinetics Est(t) for ξ = 0.25. The
recrystallization curves are shown with thick lines whereas the recovery curves are shown
with thin lines.

energy due to recovery. Consequently, there is hardly any effect of recovery on
the recrystallization kinetics.

On the other hand, materials with high stacking fault energy show qual-
itatively different characteristics. Such materials (e.g. Al [25, 27] and low
carbon steel [28]) qualitatively follow the results with τ̄ = 4, ξ = 0.25 and
τ̄ = 40, ξ = 0.50. These two cases depict the situations in which a consider-
able amount of stored energy is recovered. As a result, recovery could strongly
affect the recrystallization kinetics.
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Fig. 6 Decay of stored energy for different recovery parameters τ̄ and ξ. Thick lines indicate
the stored energy in the deformed regions whereas the thin lines indicate the average stored
energy over the whole domain.

Table 1 Critical values of the recovery parameters for cessation of recrystallization.

Recovery
parameter

Critical values

ξ 0 0.25 0.50 0.75 0.90 0.95 1.00
τ̄ 0 0.8 4 8 15 26 73

Finally, we note that the Avrami exponent values in Fig. 4 are calculated
only for τ̄ greater than some critical values for different ξ. Below these critical
values, recovery decreases the driving force such that the nuclei stop growing.
This suggests that complete recrystallization cannot be achieved if the material
possesses a high tendency for recovery (a combination of low τ̄ and high ξ).
This is borne out by experimental studies [2]. The critical τ̄ values are given
in Table 1.

3.2 Effect of temperature and deformation amount

It is well known that the recrystallization rate increases with both tempera-
ture and amount of deformation [1]. Increase in temperature increases velocity
of the grain boundary during recrystallization. The stored energy Ei provides
additional driving force for the GB motion and the mobility parameter M de-
termines the GB velocity [2, 11]. In this model, the parameters M and Ei are
treated via the product φ = MEi, and this product acts as a governing param-
eter of recrystallization kinetics. Figure 7 shows the recrystallization kinetics
for different values of φ. The recrystallization process is seen to accelerate with
increase of φ, i.e. due to an increase in either mobility or the stored energy
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Fig. 7 Recrystallization kinetics for different values of φ(= MEi). The recrystallization
rate increases with the product of mobility and initial stored energy.

such that the product increases which is qualitatively similar to experimental
observations [1].

Figure 8 shows envelopes of the values of τ and ξ below which complete
recrystallization does not occur due to recovery. The envelopes are at higher
values with decreasing values of φ. This implies that complete recrystallization
can be ensured with either decrease of energy release or rate of recovery i.e.,
a decrease of the recoverable fraction ξ of stored energy or an increase of
τ . It can conversely be inferred that complete recrystallization is inhibited
at lower temperatures and lower deformation amounts if the same recovery
characteristic is maintained.

3.3 Effect of clustering

In this model, we adopt a simple approach to describe the effect of clustered nu-
cleation using a single parameter Cr which is defined as the ratio of separation
of particles in a cluster to the separation distance of the clusters = r3/R3. From
Fig. 2(b) we can see that the clustering parameter Cr decreases from value 1
with increased clustering. The recrystallization kinetics is plotted in Fig. 9 for
different Cr values for two different value of the nuclei density Sr = Rc/

√
Ac.

It is observed the recrystallization rate decreases with increased clustering. At
higher nuclei densities, the recrystallization rate increases. Such a variation in
nuclei density generally occurs with changes in the amount of deformation of
the material [3]. The variation of Avrami exponent with Cr is plotted in Fig. 10
for two different values of densities of the nuclei, Sr. It can be observed that
Avrami exponent increases with increasing Cr, and a maximum is attained
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Fig. 8 Each of the curves represents the upper bound of values of ξ and τ for which complete
recrystallization does not occur. The envelope is at higher values for lower values of φ.
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Fig. 9 Recrystallization kinetics for different clustering parameter (Cr) with two different
conditions of Sr = 0.01 (represented by thick lines) and Sr = 0.02 (represented by thin
lines).

near Cr value 1. The observed non-monotonicity in the Avrami exponent is
due to the first impingement effect of the nucleus clusters.

3.4 Comparison with a phase field model

In this section, we briefly compare the results of the mean field model with
multiorder parameter phase field (PF) simulations. A multiorder parameter
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Fig. 10 Variation of Avrami exponent n with clustering ratio (Cr) for two different values
of Sr.

PF model developed in our previous work [29, 23] was used for these simula-
tions. The effect of the stored energy is accounted for by changing the depth
of the double well potential (for details, see [29, 23]). The stored energy de-
cay effect due to recovery is incorporated by appropriately changing the PF
parameters. The simulations are carried out in a 600×600 domain. The simu-
lations are performed for uniform and random distributions of initially circular
nuclei. Time scaling is performed to normalize the results of the phase field
simulations.

Figure 11 shows the comparison of the results obtained from the mean
field and PF models for uniform distribution of nuclei and different recovery
characteristics. The agreement between phase field model and mean field model
is quite good for a range of recovery characteristics.

Next, we consider a random distribution of nuclei in the PF simulations.
In Fig. 12 the initial distribution of nuclei is characterized through the dis-
tribution of the distances between adjacent nuclei obtained from a Voronoi
tessellation. Figure 13 shows the recrystallization kinetics obtained from the
PF simulation with the mean field results for different Cr values. The re-
crystallization kinetics from the PF simulations is a superposition of several
impingement events of different Cr values occurring at different times. There-
fore the net effect is that the recrystallization curve from the PF simulations
matches the mean field model kinetics for Cr ∈ (0.3, 0.5) over most of the re-
crystallization process. Thus the partial contributions of RVEs with different
Cr seem to affect the recrystallization kinetics in case of the random distribu-
tion of nuclei.
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Fig. 11 Comparison of the recrystallization kinetics from mean field model (represented
by thick lines) with phase field model (represented by thin lines) for uniform distribution of
nuclei with recovery parameter ξ = 0.25.
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Fig. 12 Initial distribution of distance between adjacent nuclei used in the phase field
simulation of the random distribution of nuclei.

4 Conclusions

We have presented a physically based model of recrystallization kinetics in
this work. The mobility of the grain boundary, initial stored energy, nuclei
density, and the characteristics of recovery are considered in the model. For a
description of recovery, an exponential form of energy decay has been adopted.
Any enhancement in energy decay due to recovery is predicted to increase the
recrystallization completion time. In this case, the Avrami exponent is not
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Fig. 13 Comparison of recrystallization curve from phase field model with random distri-
bution with the recrystallization curves from mean field model with different clustering ratio
Cr values.

found to be a monotonic function of the recovery rate. The various regimes
of competition between recovery and recrystallization, as reported in the lit-
erature, are also well captured by the present model. The model predicts that
if the recovery is greater than a critical level, the recrystallization process
ceases. A simple RVE based model of clustering of the nuclei reveals that the
recrystallization process slows down as clustering increases. The present work
only considers an idealized distribution with a consideration of the impinge-
ment between the growing strain free grains. We find that it provides excellent
insights into the recrystallization kinetics and compares well with phase field
simulations of recrystallization. Future extensions of this model could consider
the effect of other kinds of RVEs and other random distributions of the nuclei.
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A Calculation of recrystallized fraction in uniform distribution of

nuclei

In order to calculate the growth after impingement, the circumference of each grain is taken
as sections of mobile boundaries. The outward movement of these sections consume the rest
of the deformed matrix. It is assumed that each of the boundary sections move following the
same kinetics as in Eq. (1). The driving forces on each of the boundary sections are taken
to arise from curvature and stored energy differences. The recrystallized area is the area of
white region in each representative hexagonal volume element in Fig. 1. After impingement
the recrystallized area Arec can be calculated as

Arec = 2π

∫

R1

0

RdR+

∫

Rn

R1

(

2π − 12 arccos
R1

R

)

RdR, (5)

where Rn is current radius of curvature and 2R1 is the distance between center of two nuclei.
Prior to impingement, when Rn is lower than R1, then the first term of integration gives the
value of Arec; the second term is included after impingement when Rn > R1. The maximum
value of Rn can be derived from Fig. 1 to be 2

√

3R1

and this marks the completion of the

recrystallization of the RVE. The recrystallized area fraction Xr can be simply calculated
by dividing the recrystallized area Arec by final area of a grain i.e. area Ac of representative
hexagonal volume element as shown in Figs. 1b and c. By replacing R with R̄, Xr can be
expressed as

Xr =
Arec

Ac

= Sr
2

(

2π

∫ 1

4√
12Sr

0

R̄dR̄

+

∫

R̄n

1

4√
12Sr

(

2π − 12 arccos

(

1
4
√

12SrR̄

))

R̄dR̄





, (6)

where Sr = Rc
√

Ac

. The limiting value of R̄n at the completion of recrystallization is
√

2
4
√

27Sr

corresponding to Rn value of 2
√

3R1

and Sr is related to both critical nuclei radius and nuclei

density 1
√

Ac

.


	Introduction
	Model Description
	Results and discussion
	Conclusions
	Calculation of recrystallized fraction in uniform distribution of nuclei

