
A Novel Interval-Halving Framework For
Automated Identification of Process Trends

Sourabh Dash, Mano Ram Maurya, and Venkat Venkatasubramanian
School of Chemical Engineering, Purdue University, West Lafayette, IN 47907

Raghunathan Rengaswamy
Dept. of Chemical Engineering, Clarkson University, Potsdam, NY 13699

Qualitative process trend representation is an useful approach to model the temporal

evolution of sensor data and has been applied in areas such as process monitoring, data

compression, and fault diagnosis. However, the sheer volume of real-time sensor data that

needs to be processed necessitates an automated approach for trend extraction. The step

of recovering important temporal features is a difficult procedure to automate because of

the absence of a priori knowledge about the sensor trend characteristics such as noise and

varying scales of evolution. A novel approach is proposed to automatically identify the

qualitative shapes of sensor trends using a polynomial-fit based interval-halving tech-

nique. To estimate the significance of fit-error, an estimate of the noise obtained from

wavelet-based denoising is used. The procedure identifies the qualitative trend as a

sequence of piecewise unimodals or quadratic segments. The least-order (among con-

stant, first-order and quadratic) polynomial with fit-error statistically insignificant com-

pared to noise (as dictated by F-test) is used to represent the segment. If the fit-error is

large even for the quadratic polynomial, then the length is halved and the process is

repeated on the first half segment until fit-error is acceptable. A constrained polynomial

fit is used to ensure the continuity of the fitted data and an outlier detection methodology

is used to detect any jump (step) changes in the signal. The whole procedure is recursively

applied to the remaining data until the entire data record is covered. Finally, a unique

assignment of qualitative shape is made to each of the identified segments. The application

of the interval-halving technique for trend extraction is illustrated on a variety of both

simulated and industrial data. © 2004 American Institute of Chemical Engineers AIChE J, 50:

149–162, 2004
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Introduction

Process data contain valuable information about the state,

operation, and behavior of the process plant, more so in cases

with limited available process knowledge. In most of the cases,

only lumped parameter models are available for certain sec-

tions of the plant. Increased automation and faster sampling

rates have made large volumes of precise data collection (so

that the data captures important small time-scale events such as

inverse response over a short period of time, and so on) and

rapid access from electronic devices possible (Kennedy, 1993).

The problem of interpretation, that is, extraction of meaningful

information, however, has largely been left to the operator,

who usually suffers from information overload. The potential

uses of data are numerous (Mah et al., 1995; Rengaswamy et
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al., 2001): detection and diagnosis of faults (Bakshi and

Stephanopoulos, 1994b; Davis et al., 1995; Misra et al., 2002),

adaptive control (Najim and Saad, 1991), product quality con-

trol (Muske et al., 1991; Yabuki et al., 2002), and operator

training (Sebzalli et al., 2000) to name a few. This motivates

development of methods which extract useful and relevant

information from sensor data.

Process trend analysis is an useful approach to exploit the

temporal information and reason about process state. The main

activities involved in such an analysis are: (a) a technique to

identify trends and, (b) a mapping from trends to operational

conditions. While formal trend representation schemes have

been proposed (Cheung and Stephanopoulos, 1990; Janusz and

Venkatasubramanian, 1991), the question of automatically and

correctly identifying such features still remains to be addressed

comprehensively. A brief review of the previous work in this

area is presented below (see Maurya (2003) and Dash et al.

(2003a) for a detailed review).

Cheung and Stephanopoulos (1990) have proposed a formal

methodology to transform the measured signals into a qualita-

tive representation consisting of “triangular” episodes. This

representation was later used by Bakshi and Stephanopoulos

(1994a) to extract trends based on multiscale analysis using

wavelets. Janusz and Venkatasubramanian (1991) developed a

“minimal” qualitative representation scheme (language) whose

fundamental elements are called primitives (Figure 1). Figure 1

shows the shapes of the seven primitives viz. A(0, 0), B(�, �),

C(�, 0), D(�, �), E(�, �), F(�, 0), G(�, �) where the signs

are of the first and second derivatives, respectively. A trend is

represented as a sequence (combination) of these seven prim-

itives. Rengaswamy and Venkatasubramanian (1995) and Ren-

gaswamy et al. (2001) extended this method using syntactic

pattern recognition involving grammar-based error correction

to rectify inconsistencies. The primitives were identified from

the sensor data using a neural network. A fixed window size

(the number of nodes in the input layer which is the same as the

number of samples used to identify the primitive) was used in

this work.

Konstantinov and Yoshida (1992) proposed a qualitative

analysis procedure with the help of an expandable “composite”

shape library. The identified features are compared against the

shape descriptors in the library for classification. The time-

scale of analysis is fixed a priori which limits its generic

applicability. Also, with increasingly complex shapes, the li-

brary can become quite big and the simple reasoning based on

the extent of derivatives’ sign match may not be suitable.

Whiteley and Davis (1992) present a knowledge-based inter-

pretation of sensor patterns. Mah et al. (1995) developed a

technique for data compression and trending called piecewise

linear online trending (PLOT).

Vedam (1999) presented a B-Spline based technique for data

compression and automatic trend extraction which avoids the

use of neural networks. Although the technique is very good in

capturing important features automatically, it suffers from the

need to tune a number of parameters such as feature threshold

(during trend extraction), and thresholds on window size and

magnitude (during event detection and diagnosis) for each

sensor. Recently, Dash et al. (2003b) have presented a fuzzy-

logic-based multivariate inferencing framework for temporal-

reasoning. In this work, the primitive-based language (Janusz

and Venkatasubramanian, 1991; Rengaswamy and Venkatasu-

bramanian, 1995) is used as a basis for process trend analysis,

and it is assumed that the qualitative trends can be automati-

cally identified.

From the above review, it is clear that various trend extrac-

tion methodologies discussed in the literature are far from

being comprehensive. In this article, a novel approach to au-

tomate the identification of process trends based on an interval-

halving procedure is proposed. The idea is to parameterize the

data as a sequence of primitives by using the goodness-of-fit

determined by comparing the fit-error with noise (Dash et al.,

2001; Dash, 2001). An estimate of noise level can be obtained

using wavelet analysis. The structure of the article is as fol-

lows. The main issues involved in the problem of trend iden-

tification are discussed in the next section. Thereafter, the main

contribution, the interval-halving framework, is discussed. In

the following section, a number of metrics have been defined

which are used to test the effectiveness of the methodology.

Then, a number of examples (both simulated and real-data) are

presented to elucidate and evaluate the methodology. Finally,

conclusions are presented.

Issues in Process Trend Identification

The temporal behavior of measured variables in a chemical

process is the superposition of many underlying driving pro-

cesses such as process dynamics, sensor noise, faults, external

loads, disturbances, and so on, evolving at different time-scales

(Bakshi and Stephanopoulos, 1994a). This disparity in rates of

fault evolution is the most important issue in trend identifica-

tion. This emphasizes the need for the automated identification

method to be extremely robust while using minimal or no a

priori information. The presence of sensor noise further com-

plicates the task. Clearly, the problem of trend identification is

a difficult task. Some of the important issues are briefly dis-

cussed below (see Dash et al. (2003a) for a detailed discus-

sion):
● Time-scale of identification: The scales (rates) at which

real trends evolve vary considerably from slow to extremely

Figure 1. Fundamental language: primitives.
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fast depending on the underlying driving event. Hence, any

effective technique must be adaptive to the time scale of trend

evolution as the window cannot be fixed a priori. The window

should be wide enough to observe significant variations in the

monitored signal and it should be small enough so that a single

primitive can fit the data well.
● Noise: Sensor data are invariably corrupted with measure-

ment noise. In most practical cases, knowledge of the noise

characteristics is minimal. The amount of noise (signal to noise

ratio (SNR)) is an important criteria in deciding the usefulness

of a sensor from trend analysis perspective.
● Scale variant nature: The representations of qualitative

shapes depend on the scale at which they are observed. A

careful choice of window width which allows proper detection

of concavity and convexity in process trends is required.
● Simplicity and computational complexity: Trends are

visual features. Hence, simplicity in extraction and reasoning,

while not compromising on accuracy and applicability, is

highly desirable. Also, since most of the intended applications

are real-time, the computational complexity of the algorithm

should not be prohibitive to restrict its usefulness.

An Interval-Halving Algorithm for Trend
Extraction

In this section the algorithm to automatically extract the

primitives (Figure 1) from data is described. First, the basic

idea is presented and then the details of the technique are

discussed.

Basic idea

To be able to extract trends from data in terms of the

primitives, the raw signal should be transformed into a form

which would facilitate conversion into the symbolic language

of primitives. A functional form is associated to the data so as

to extract the symbolic representation. The simplest approach

is to fit polynomials to the data. The shapes of the primitives,

by definition, are characterized by constant signs of the first

and second derivatives. Thus, if a sequence of consecutive

segments with a fixed sign of the first and second derivatives

(at every point in a segment) can be identified, then the assign-

ment of primitives would be straightforward. All the discussion

in this section is valid for both continuous functional represen-

tation of a signal, as well as sampled (discrete) data (not

necessarily sampled at an uniform rate). Also, discrete data is

usually denoted as y and yi. The requirement on the first

derivative can be relaxed, that is, allow it to take different signs

at the ends while retaining the second derivative constraint. A

function which satisfies this criteria is the unimodal function.

A function g( x) is unimodal on the interval a � x � b if and

only if it is monotonic on either side of the single optimal point

(extremum) x* in the interval. In other words, this implies that

x* is the single extremum point of g( x) in a � x � b.

A unimodal region involving primitives has a constant sign

for second derivative while the first derivative sign could

change, that is, be opposite at both ends. Any reasonably

continuous and smooth signal can be observed as a sequence of

unimodal regions (see Dash et al. (2003a) for an illustrative

example). While the simple unimodals that is, those with

constant first and second derivative signs, can be directly

assigned primitives, for the composite shapes, that is, those

with constant second derivative sign but changing first deriv-

ative sign, primitives can still be assigned by splitting them at

the zero first derivative point and identifying the two simple

pieces separately. Each of the identified unimodal regions may

also be characterized by zero-crossings (Witkin, 1983; Bakshi

and Stephanopoulos, 1994a). The nth order zero crossings in a

signal y(t) are given by points that satisfy

�ky

�tk � 0 � � k � 1, 2, . . . , n�,
�n�1y

�tn�1 � 0

that is, (n � 1)th derivative is the first nonzero derivative.

These locations usually correspond to the extrema (odd n) and

inflexion points (even n) in the signal. For unimodal functions,

odd order zero crossing (n � 1, 3, and so on) corresponds to

a point of extremum (no inflexion points).

The objective here is to extract out the piecewise unimodals

from the data record as the first step. In each of the unimodal

regions the data could be approximated using a polynomial,

based on which the shape can then be identified. The problem,

of course, lies in identifying these crucial segments automati-

cally. The basic motivating idea is that, if the function is

smooth, it can then be approximated by a polynomial, and the

approximating polynomial can then replace that portion of the

data segment for the purpose of trend extraction. The Weier-

strass approximation theorem (Bartle, 1976) guarantees that, if

a function is continuous on the interval, then it can be approx-

imated as closely as desired by polynomials of sufficiently high

order. Consequently, if the function is unimodal and a reason-

ably good approximating polynomial is at hand, then the func-

tional behavior can be reasonably well predicted by the poly-

nomial. Improvements in the fit can be obtained through

approximating polynomials in two ways: by using a higher-

order polynomial or by reducing the interval over which the

function is to be approximated. Of these, the second alternative

is generally to be preferred, because the polynomial-fitting

algebra becomes more complicated compared to the interval

reduction which is rather easily accomplished. Hence, the idea

of halving the interval. For the present application, given the

requirement on the signs of the derivatives mentioned above,

the quadratic is the simplest and the most obvious choice as the

approximating polynomial. To determine the time segments for

identification, the interval-halving technique, described next, is

used. As will be seen, the location of the piecewise unimodals

is driven by the polynomial fit itself and, thus, the whole

procedure of (a) identifying these regions and (b) fitting poly-

nomials is condensed to a single polynomial fit-error driven

unimodal regions location scheme. The standard least-squares

technique is used to identify the polynomial fit. The fitted data

in two consecutive unimodal segments identified through the

standard least-squares formulation need not be continuous. One

way to circumvent this problem is to consider the average y

value at the intersection of the two segments, but it might be

meaningless for large discontinuities. Hence, once a unimodal

segment is identified, a constrained least-squares (polynomial

fit) approach is used to fine-tune the fitted polynomials (both

order and the coefficients) to ensure continuity of the fitted data

(or primitives in every two consecutive unimodal segments).

Since the constrained least-squares fit results in strict continu-

ity, to preserve jump (step) changes that are present in the
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original signal itself, the jump changes (if any) at both the ends

of the unimodal segment are identified by using an outlier

identification methodology. The discussion on the interval-

halving framework is presented below.

Interval-halving framework

The idea of interval halving has been utilized in many

applications. In general, the method is a region-elimination

strategy and aspires to remove exactly half of the interval, that

is, region not containing the desired item or satisfying a crite-

rion at each stage. It has found use in various forms in (i)

optimization: bisection searches for maxima/minima in unimo-

dal functions (Peters and Timmerhaus, 1990), searches for

sorting algorithms, nonlinear optimization (Krongold et al.,

2000), (ii) numerical methods: bisection method for root-find-

ing algorithms (Peters and Timmerhaus, 1990), initial value

guess for the iterative initial value approach in solving ODEs

(ordinary differential equations) involving 2 point BVPs

(boundary value problems) (Jimenez et al., 1998), extended

trapezoidal rule for numerical integration, and so on. The

method is computationally efficient, intuitive, and simple. It

has been shown by Kiefer (1957) that, out of all equal-interval

searches (two-point, three-point, four-point, and so on), the

three point search or interval-halving is the most efficient.

Paritosh and Rengaswamy (1999) have proposed and discussed

the various issues in the use of interval-halving technique for

qualitative process trend identification. In this section, the

interval halving algorithm for trend identification is discussed.

The objective here is to automatically identify the trends using

an adaptive approach. As discussed above then:

Any time-series function y(t) can be approximated to any

level of detail using a polynomial of certain order n. Moreover,

y(t) can be represented arbitrarily closely using a sequence of

piecewise polynomials pi(t) over the unimodal regions Ui each

of order ni � n that is, y(t) � { p1(t), p2(t), . . . , pM(t)}.

Thus the identification of the unimodal regions Ui can be

equivalently posed as the location, that is, the start and end

points and specification, that is, the polynomial coefficients of

these pi (quadratics). The algorithm consists of two parts: (i)

determining the sequence of the pi, that is, Ui using the

interval-halving procedure, and (ii) assigning primitives to

these identified Ui based on the signs of the derivatives of pi.

The standard least-squares result is used to fit a polynomial pi

with coefficients �̂ � [�̂0
. . . �̂n] to the data

y � T� � e, ŷ � T�̂

pi�t� � �
k�0

k�n�2

�̂kt
k where �̂ � �TTT��1TTy (1)

The ( j, k)th element of T, (T)jk � tj
k�1. The identification

window is normalized to [0 1] to avoid ill conditioning of T.

To determine the goodness of fit the estimate of noise provided

by the wavelet analysis (see appendix) is used. The significance

of the fit-error �fit
2 is tested against the estimated noise variance

	noise
2 . Once a unimodal segment (and the corresponding pi(t))

is identified, jump changes at the ends of the current unimodal

segment are identified (see Dash et al., 2003a) for a detailed

discussion) and a constrained least-squares fit is used over the

current segment and the previous segment to refine the poly-

nomial coefficients (including the order) for both the segments.

Next, the details of both the parts are discussed. A review of the

material on F-test, t-test, identification of jump changes pre-

sented by Dash et al. (2003a) and constrained polynomial fit

(see appendix) would help the reader understand the rest of this

section.

Polynomial fits—Identification of unimodals. Assume that

the data y(t) are given as a sequence of uniformly sampled data

points y � ( y1, y2, . . . , yN). Set start time Ti � 1 and end

time Tf � N. Set the initial window length l � N and the

polynomial order n � 0. In the steps discussed below, the

subscripts on y refer to the indices of the data points in the

identification window (and not with respect to the whole sig-

nal). Set the threshold on the length of a segment lth to some

small number, say 10. The procedure is illustrated in the

flowchart shown in Figure 2a.

(1) Polynomial fit: If n � 0, normalize the window of

identification Wid � [Ti Tf] to [0 1] (else it is already nor-

malized). Fit polynomial of order n, pn to y(t) (Ti � t � Tf)

in normalized [Ti Tf], that is, [0 1]. Calculate fit error �fit
2 as

�fit
2 �

1


1
�
i�1

i�l

�yi � pni
�2 (2)

Figure 2. Two-part interval-halving scheme.
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where 
1 � l � (n � 1) (window length � number of

coefficients) is the degrees of freedom (DOF). To consider the

significance of the error a statistical hypothesis test is carried

out using F-test (Dash et al., 2003a) since the elements of the

error vector e are assumed to be IID (independent and identi-

cally distributed), that is, they form a white-noise sequence. If

the null hypothesis (H0) is accepted, then the fit-error is insig-

nificant. Use the jump identification methodology (Dash et al.,

2003a) to identify jump changes at the start and the end of the

segment. Go to Step 2. Else (that is, H0 is rejected) the fit-error

is significant. Go to Step 5.

(2) Constrained polynomial fit (CPF): If Ti � 1 (that is, the

very first segment of the entire data record), then CPF cannot

be performed yet. Go to Step 3 with the remaining data. Else,

proceed with CPF (details presented in the Appendix) over the

current segment (call it segment 2) and the previous segment

(call it segment 1) as follows. The basic idea is to let the order

of the polynomial for segment 1 n1 increase and perform CPF.

To provide maximum flexibility in segment 1, the order of the

polynomial for segment 2, n2 � 2 (a quadratic) except when

Tf � N (that is, it is the very last segment, in which case, the

fit corresponding to its actual order is desired (since no new

segments are to be identified) and, hence, n2 is kept equal to the

order identified in Step 1). n1 is kept at its previous value

obtained in Step 1. n1,max and n2,max are set to 2 or 1 depending

upon whether or not the length of the corresponding segments

are above lth. The recursive procedure is:

(a) Perform CPF with current values of n1 and n2. If F-test

is satisfied for segment 1, go to Step 2b. Else go to Step 2c.

(b) If F-test is satisfied for segment 2, quit CPF. Else go to

Step 2d.

(c) If n1 � n1,max, set n1 � n1 � 1 and go to Step 2a. Else

go to Step 2b.

(d) If n2 � n2,max, set n2 � n2 � 1 and go to Step 2a. Else

quit CPF.

One can verify that Steps 2b and 2d are executed more than

once only if segment 2 is the last segment. A minor variation

of the above procedure could be to set n1,max equal to the

original value of n1 (identified in Step 1) so that the fit order

would not be allowed to increase and the Steps 2a–2d would be

executed only once.

The useful quantities to be retained from CPF are n1 and n2,

the polynomial coefficient vectors �̂1 and �̂2, the Lagrange

multiplier(s) � (and 
), the fitted data for the two segments, and

the covariance matrices of �̂1 and �̂2 (see appendix). Store the

updated information for segment 1. If segment 2 is the last

segment of the data record, store the updated information for

segment 2 as well, else, store the original order of segment 2

(identified in Step 1, not the returned value of n2 from CPF)

and the fitted value (after CPF) at the intersection, that is, y1 for

segment 2 (this value would act as d0 (see appendix) during the

CPF for the next segment). Go to Step 3.

(3) If Tf � N then the whole data record length N of y is

covered, go to Step 7. Else go to Step 4.

(4) Precondition for identification of a new unimodal seg-

ment: If there is a segment over which CPF has not been

performed even once, mark it as the current segment and go to

Step 2. Else go to Step 1 with the remaining time segment

[Tf TN] and n � 0 (identify a new unimodal segment).

(5) Increasing the order of the polynomial: If l � lth, if n �
1 (linear), stop refining the current segment, accept the linear fit

(assume that F-test is satisfied) and go to Step 2. The rationale

behind lth is that if the window does fall to such a small

number, the current polynomial fit is accepted and the interval

is not refined any further. If l � lth, if n � 2, set n � n � 1

and go to Step 1, else go to Step 6.

(6) Interval-halving step: Split the current interval Wid �
[Ti Tf] at the midpoint, that is, halve the interval and assign

Thalf � Tf/ 2, Wid � [Ti Thalf]. If desired, estimate 	noise for

the current segment. Go to Step 1 with the data segment in

[Ti Thalf] and n � 0.

(7) The data y has thus been completely parameterized as a

sequence of piecewise quadratics pi, that is, f � �i�1
M pi.

Thus, M unimodal regions Ui have been extracted. The regions

are unimodal by definition as quadratics can only have a single

extremum and the sign conditions on the derivatives are also

satisfied: d2pi/dt2 � 2�̂2 (constant sign) while dpi/dt � �̂1 �
2�̂2t. Quit.

In the above procedure, by the way of implementation, lth

equals twice the minimum window size desired. Thus, when

the window size falls between lth/ 2 and lth, further halving is

stopped. Next, the second part is presented.

Assignment of Shapes: Identification of Primitives. The

second part comprises of assigning primitive shapes to the

piecewise polynomials. The procedure above guarantees that

unique assignment of primitives is possible to each of the

identified unimodals (quadratics). It should be noted that the

sequence/location of the unimodals is not unique, that is, the

trend identification by using another methodology or visual

inspection (manual identification) might identify slightly dif-

ferent locations and/or sequence. Similarly, the trends extracted

from a noisy signal corresponding to different realization of the

noise sequence (no change in true signal) may differ from each

other with respect to location and shape of the primitives, but

these differences are minor and are acceptable for most of the

applications that rely on the use of qualitative trends (Dash et

al., 2003b).

The labeling of shapes is based on the sign of the first

derivative (d1t) and second derivative (d2t). First, one needs

to examine if the unimodals identified are simple, that is,

sign(d1t�0) � sign(d1t�1) as in the seven primitives or com-

posite, that is, sign(d1t�0) 	 sign(d1t�1). To examine the

significance of the end-derivatives, that is, whether d1t�0,1 �
0 (ensures robustness), a statistical test is carried out on the

coefficients �̂i with variances si
2. The entire procedure is illus-

trated in Figure 2b. It consists of the following:

(1) Significance of derivatives: Since derivatives will not be

identically zero, the significance of the derivatives is examined

using the t-test (Dash et al., 2003a) to compensate for the effect

of noise. Only those derivatives should be assigned a non-zero

value which are statistically significant.

(2) Assignment of primitives: For i � 1, . . . , M check if

the signs of the end derivatives in Ui match, that is, if

sign(d10,new) � sign(d11,new)?. If they match this segment is a

simple unimodal region, else it is a composite region implying

that the identified quadratic pi in Ui is composed of 2 primi-

tives (EB or DG). Next, find the zero-derivative point, that is,

{td1�0�dpi/dt�t�td1�0
� 0} and split the composite Ui into to 2

simple regions {[0 td1�0], [td1�0 1]}. Thus, a sequence of

simple unimodal regions is generated and the primitive assign-

ment is carried out in a straightforward manner using the

derivative signs (see Figure 1).
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Figure 3 illustrates the idea of interval-halving and assign-

ment of shapes on a sample data. As shown, the data length is

recursively halved until a unimodal region (quadratic) with

acceptable error is found. For example, the first unimodal

region (segment ac, primitive A) has a span of N/8 (� l ). This

procedure is repeated on the remaining data (such as on the

segment of length (N � l ) after the first unimodal is identified)

until the whole data record is covered. The next unimodal

segment is ce (the subsequence DG). It is a composite shape

since the slopes at the two ends are opposite. It is easy to see

that, within a finite number of iterations, this interval-halving

procedure on an interval I will terminate, that is, the method

will not get into an infinite loop. This is because there always

exists an interval [a b] � I which will be encountered during

this process wherein either (a) the F-test succeeds and the

search ends or (b) if the window becomes too narrow (size less

than lth) then the search is forcibly terminated. The search in

this procedure is for the features that characterize the unimo-

dals (extrema, inflection points, and so on), along the same

lines as the usual interval-halving searches.

Selection of Various Parameters. The various parameters

used in the interval-halving framework for trend identification

are discussed below. Some guidelines for tuning these param-

eters also are presented.
● The wavelet and the decomposition level (number of

scales) in wavelet-based denoising: For all the case studies,

db3 wavelet (order 3 wavelet from the Daubechies orthogonal

wavelet family) has been used (see appendix). In the case

studies presented, the maximum decomposition level (automat-

ically estimated in Matlab) is used for single scale-factor based

thresholding. When level dependent scale factor is used for

thresholding the coefficients, the following rule is used to set

the decomposition level (l is the length of the data set to be

denoised and J is the decomposition level). If l � 512, J � 5,

else if l � 128, J � 4, else if l � 64, J � 3.

In general, single scale-factor is used for thresholding the

wavelet coefficients when white noise is present in the signal,

whereas level-dependent scale-factor is used when autocorre-

lated noise is present. If the magnitude of noise varies across

different parts of the signal, then noise is re-estimated in

various segments before polynomial fit is carried out in Step 1

until the window size becomes small (see below).
● Minimum window length for noise estimation: Usually, at

least 64 (2k, where k is an integer) data points are used for

wavelet-based denoising. In all the case studies presented here,

this threshold has been set to 128.
● Window size threshold (lth): lth is used to stop interval-

halving when window size becomes very small. As discussed

in the interval-halving procedure, the window size can never

fall below lth/ 2. Recall that n � 1 for such a small segment

(Step 5) since if n � 2 results in a composite unimodal, then

the primitive length may fall below lth/ 2. This parameter can

be kept the same for all sensors with equal sampling rates and

can be chosen easily. For example, to extract trends from an

industrial data, where sampling rate is one sample per minute

and the process evolution time is of the order of hours, lth is

kept at 10.

Similar to lth, a cut off value can be chosen for DOF to avoid

unrealistic relaxation in F-test or t-test (important when the

segment length falls below lth), such as in all the case studies,

this cut off value is set to 3 for all the t-tests and the F-test

during CPF.
● Significance level (�) for F-test and t-test (significance of

derivatives): This statistical parameter has been set at 0.05

(corresponds to the widely used 95% confidence level) for all

the case studies.
● Significance level (�) for t-test to impose restriction on

constant fit: As explained in the appendix, � � 0.80 for

segment 1 and � � 0.50 for segment 2. Without much exper-

imentation, � � 0.50 is recommended.

Summary and Benefits of the Approach. The end result of

the entire method is a sequence of shapes (A–G) describing the

data qualitatively as also the piecewise quadratics explaining it

quantitatively in a succinct manner. There is data compression

because of the parameterization (coefficients of the polynomi-

als and end points need only be stored instead of raw data). In

addition, denoising is an added benefit as a result of polynomial

smoothing and statistical testing. Variations of this basic pro-

cedure can be employed for fine-tuning some special cases.

The described technique is adaptive to the scales of trend

evolution and is robust to process noise. Also, as discussed

above, there are only few tuning parameters (quite universal in

nature) to manipulate, thus allowing automation and possible

explanation generation from the process trends. One important

issue that has not been addressed in this article is on-line

implementation. A succinct discussion is given below.

One way to implement a trend-extraction or de-noising tech-

nique is to move the data window at regular intervals as more

data becomes available, perform the trend extraction, and con-

catenate the trends in the current window with the previously

extracted trends. This is called sliding window approach (Ve-

dam, 1999). Another approach for on-line trend extraction is to

slide the window at regular intervals, but eject some of the

primitives in the current window so that only last few primi-

tives are allowed to evolve (Keogh et al., 2001). In this ap-

proach, the window size is not fixed and concatenation is not

required. Nonuniformly sampled data and missing samples are

some of the other issues that need to be addressed. As such, the

methodology presented in this article does not assume that the

samples are available at uniform intervals. Thus, both the data

and time can be recorded. The only modification that would be

Figure 3. Interval-halving.
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needed is to split the window at the sample that is nearest and

on the left side to the middle time point. If the measurements

are made at uniform intervals, then some simplification is

achieved in various expressions. Huang et al. (2003) have

discussed the use of pseudo-measurements for extended Kal-

man filter (EKF)-based estimation when sampling rate is low.

This idea can also be exploited to handle irregular measure-

ments and missing values.

As discussed in the introduction, several applications of

process trends have been reported in the literature, such as

process monitoring and fault diagnosis (Bakshi and Stephano-

poulos, 1994a; Dash et al., 2003b), control loop monitoring

(Rengaswamy et al., 2001), and so on. In the next section a

number of metrics are defined which are used to evaluate the

efficacy of the interval-halving methodology. In the following

section, the effectiveness of the interval-halving technique is

demonstrated on a variety of simulated noisy and real plant

data.

Performance Metrics

To evaluate the effectiveness of the algorithm the following

measures are used as performance metrics.

Scaled average global error (SAGE)

This error is calculated between the wavelet estimated de-

noised data f̂ and the piecewise quadratic approximation to the

data (fitted data) ffit � �i�1
n pi. f̂ is used because noise should

not be taken into account (it needs to be effectively rejected).

SAGE is closely related to root mean squared error (RMSE)

which is calculated using the raw noisy data (Keogh et al.,

2001) instead of the denoised data

SAGE �
1

	noise
�¥ � ffit � f̂�2

N
; RMSE � �¥ � ffit � f �2

N

To avoid the effect of the magnitude of noise, 	noise is used for

normalization. Thus, a value of SAGE close to 1 indicates that

most of the noise has been rejected while retaining the under-

lying approximately true signal.

Scaled L� error (SLE)

SLE is defined as the normalized (with respect to 	noise)

maximum local absolute error between f̂ and ffit

SLE �
1

	noise

max�ffit � f̂�; L
 � error � max�ffit � f�

Except for the scaling by 	noise and the use of denoised data,

SLE is similar to the traditional L
-error. RMSE and L
-error

are used in least-squares approximation and data compression

as well (Misra et al., 2001). A large value of SLE indicates that

there is at least one point where the fitted signal deviates

considerably from the denoised signal. If desired, such regions

can be further investigated. Thus, this metric is indicative of the

local degradation of the technique and can be regarded as a

useful warning, which possibly can be exploited.

Compression ratio (�)

Considering the need to efficiently store and retrieve large

volumes of data, data compression is an important area of

research (Misra et al., 2001; Saxena et al., 2000). As a bonus

resulting from the piecewise quadratic representation, data

compression is also achieved since the data is now parameter-

ized in terms of the coefficients of the polynomials. For a data

record of length N, if the approximation contains M piecewise

segments and the number of nonzero coefficients in each is ni,

then this ratio is defined as

� �
N

¥i�1
M ni � M � 1

where the M � 1 in the denominator is for the number of end

time points information required. In fact, if data compression is

not desired, then the use of CPF (which promotes the overall

integrity of the interval-halving framework) is not very critical,

as the qualitative shapes identified right after the standard

F-test based identification of unimodal segments itself quali-

tatively explain the temporal evolution quite well (Dash et al.,

2001).

An important point to note is that, although these metrics

give an idea of the performance, they do not give the complete

picture from a trend analysis perspective. In general, an accu-

rate trend representation need not be the same as accurate

approximation in terms of polynomial fits, for which these

metrics are usually used. Thus, the above metrics can be treated

as a guiding necessary condition. It is desired that the final

temporal behavior captured by the trend representation in terms

of features like extrema, inflexion points, and so on be accurate

and that is the real criteria in determining efficacy. A single

number, as represented by these metrics, cannot condense all

such information and, thus, may not be adequate to evaluate

effectiveness. One can realize that different representations

(shapes) can result in the same mean squared error (MSE) or

fit-error (see Dash et al., 2003a). If the acceptable fit-error is

guided by the noise content of the signal, then it becomes a

fairly sufficient criterion. For this reason, a new measure of

success in identifying the extrema, viz., ratio of the number of

extrema (RNE) is used. To calculate RNE, it is assumed that an

operator can identify all the points of extrema with 100%

accuracy. RNE is defined as follows.

Ratio of the number of extrema (RNE)

Let na and nh be the number of extrema identified by the

algorithm and an operator, respectively. Let n*
a be the number

of extrema identified by the algorithm which are within lth

width (number of samples in between) of the nearest extrema

identified by the operator with similar nature (that is, maxima

or minima). Then,

RNE �
n*

a

nh

The RNE as defined above is a fairly strict criterion for

qualitative similarity of two trends and its value should be very

close to 1 for a methodology to be effective. One can note that
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the inflexion points have not been included in the above defi-

nition due to two reasons. First, around the point of inflexion,

the slope is non-zero and fairly constant in a wide region.

Accurate identification of such points from noisy data is quite

difficult for any method. Secondly, such points are not very

critical for qualitative comparison (Dash et al., 2003a). In the

case studies presented in the next section, the metrics SAGE,

SLE and � are reported for all cases, but RNE is calculated and

reported for first simulated signal only.

Case Studies

In this section the application of the above algorithm is

demonstrated on a variety of simulated and industrial data to

evaluate its efficacy. To estimate the noise in all the signals, the

db3 wavelet with filter coefficients [0.2352, 0.5706, 0.3252,

�0.0955, �0.0604, 0.0249] and soft thresholding is used (see

the Appendix). Unless otherwise stated, values of all the pa-

rameters are as stated in the section on parameters. Two types

of case studies are presented: (i) trend extraction from general

simulated data for which the functional form of the true (exact)

signal is known, and (ii) trend extraction from the data from a

real plant.

Simulated data

Three base case simulated signals of varying complexities

are generated. The functional forms of the base case signals are

shown in Table 1. Noise (with different characteristics and

magnitude) is added to different signals to reflect variety and

evaluate the efficacy of the method. To denoise these signals,

unless otherwise stated, a single level estimation of noise scale

is used and 	noise is calculated only once by using the entire

signal. Table 2 shows the amount of added noise (	) and

estimated noise (	noise) along with the performance metrics for

all the signals. 	noise is seen to be close to the simulated noise.

A detailed discussion on all the 3 cases is presented next.

Case 1: A Gaussian. This is a simple signal with only few

primitives. It is easier to compare the effect of noise charac-

teristics on a simple signal like this. The extracted trends for

the signal with a low white noise (	 � 1, SNR � 7.07) are

shown in Figure 4a. The denoised signal and the manually

identified extrema are also shown. The manually identified

trend itself is not shown since the figure is already crowded.

One can see that the fitted data is in good agreement with the

denoised data. Further, the point of maxima is identified. Next,

some variations of this signal are considered.

Figure 4b shows the Gaussian signal with more noise (	 �
4). Although the single maximum point has been identified, it

is easy to see that some distortion has occurred. Near the

maxima, the fitted data deviates considerably from the de-

noised data. Also, the number of primitives has decreased.

Thus, as SNR decreases, performance degradation should be

expected. Figure 4c shows the Gaussian signal with a mixture

of Gaussian noise added to it (see Dash et al., 2003a) for details

of noise generation). Similarly, Figure 4d shows the trends

extracted for the Gaussian signal with Poisson noise added to

it. As it can be seen in Figures 4c–d, the results are quite

similar to the case shown in Figure 4a. Notice that 	noise for all

Table 1. Functional Forms for Simulated Signals

Case Functional Form
Data

Length

1
Gaussian signal: y � 20e�[(x�
)2/2	2],

(
 � 150, 	 � 40) 300

2 y � �80 � 1.2t if 1 � t � 150

400 if 150 � t � 300
300

3
y � Case 2 & 30 sin� t

20
� & �40 if 50 � t � 100

600 if 200 � t � 250
300

Table 2. Performance Metrics for Simulated Signals

Case Fig. no. Added noise (	) Est. noise (	noise) SAGE SLE � RNE

4(a) 1.00 0.97 1.05 3.25 20.00 1/1
4(b) 4.00 3.81 0.99 2.77 33.33 1/1

1 4(c) N/A 0.99 1.11 4.46 16.67 1/1
4(d) N/A 1.01 1.14 4.50 17.65 1/1
4(e) N/A 0.86 1.16 3.10 9.38 2/2
4(f) N/A 1.00 1.14 2.70 15.79 2/2

5(a) 4.00 4.70 1.40 13.62 16.67 N/A
2 5(b) 16.00 17.78 1.06 4.89 33.33 N/A

5(c) 64.00 64.31 1.11 3.58 42.86 N/A

6(a) 4.00 7.69 5.12 40.93 4.48 N/A
3 6(b) 16.00 25.38 1.52 8.07 5.88 N/A

6(c) 64.00 71.48 1.22 3.40 27.27 N/A

Figure 4. Simulated Case 1: a Gaussian signal.
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the three cases (a, c, and d) is close to 1. In Figure 4d, a false

A primitive (for a short duration only) has been identified by

the jump identification procedure at the left end of the signal.

Figure 4e shows the Gaussian corrupted with autocorrelated

noise (see Dash et al., 2003a) for parameters). The extracted

trends are poor in several regions. Also, a number of primitives

are identified. Here, 	noise has been estimated using a single

scale factor. So, 	noise is estimated using a level-dependent

scale factor which results in larger value of 	noise. Further,

	noise is re-estimated in each segment (if the length criterion is

satisfied). The results of trend extraction by using the new

noise estimate are shown in Figure 4f. Two extrema points are

identified by the interval-halving methodology, as well as man-

ually. It is clear that the performance has improved. Thus,

when in doubt about the nature of the noise, it is best to

re-estimate 	noise and to use level-dependent scale factor in

wavelet-based denoising. As listed in Figures 4a–4f, RNE is 1

for all variants of the Gaussian signal.

Case 2: A Ramp Followed by a Positive Step Change. The

purpose of including this example is to show that the frame-

work is able to identify significant jump changes near the ends

of the segments. A smaller value of lth (�6) is used. In Figure

5a, the step change is automatically identified since the nearby

region in which interval halving took place was small, so F-test

was sufficient. Figure 5b shows a scenario where noise is large

enough so that F-test does not identify the small segment

exhibiting the step change. The jump identification algorithm

identifies the step change because it is significant. No jumps are

identified in Figure 5c since the step change is not significant

(as compared to noise). Certainly, it is true that this step change

can be detected manually.

Case 3: Superposition of Case 2, a Sine Signal and Some

Steps. As the origin of the signal suggests, this example

(Figure 6) is used to show that if the methodology works well

on certain characteristic signals (such as sinusoid, triangular,

ramp, step change, and so on) then good performance can be

expected for composite signals too. lth � 6. The extrema

points are not shown in the figure, but it is clear that most of the

important points (mostly step changes in this case) are identi-

fied with good accuracy when SNR is fairly high (�10). The

SNR for the signal shown in Figure 6c is not close to 1, but still

performance has degraded considerably. A closer look at the

noisy signal reveals that even an operator cannot identify the

true trends with good accuracy, meaning that the correspon-

dence between the SNR and encapsulation of qualitative trends

is not very strong when a number of step changes are present.

Still, the general result that performance degrades as SNR

decreases holds true.

It is apparent from all these cases that the method performs

very well in extracting all crucial features provided SNR is

large enough. Table 2 reports the performance metrics. Of

particular importance are SAGE (column 5) and RNE (column

8). SAGE is close to 1 in most of the cases. SLE (column 6) is

also not very large. There are few exceptions to this. SAGE and

SLE are quite large for the scenarios shown in Figures 5a, 6a,

and 6b because of step changes. Since the step changes occur

over just one sample time and the fitted data tries to approxi-

mate these step changes over a window of at least lth/ 2 data

points, the mismatch is unavoidable. Hence, SAGE and SLE

are quite large for these cases. For Figure 6a, these values are

extremely high (SAGE � 5.12 and SLE � 40.93) since there

are many step changes and noise is small. In fact, even wavelet-

based denoising results in excessive smoothing near step

changes and overestimates the noise (see the respective figures

and compare column 3 and 4 of Table 2). Notice that it is

believed that such a level of SLE is acceptable because recon-

struction of the data from the compressed data results in a

denoised signal and not in a noisy signal. The SIX SIGMA rule

indicates that SLE as large as 3 (or slightly more) can be

accepted. Compression ratios also are quite high (4–42).

Industrial data

In this section, through four different data sets each corre-

sponding to a different sensor, the methodology would be

tested and the effect of various options (such as use of single

vs. level-dependent scale factor, one time estimation vs. re-

estimation of noise, and so on) would be analyzed. In general

these signals are more rough compared to the smooth nature of

the simulated signals above. Also, since the nature of the noise

Figure 6. Simulated Case 3: superposition of Case 2, 30

sin(t/20) and steps.

Figure 5. Simulated Case 2: a ramp and step signal.
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is not known a priori, nonwhite noise is assumed and the

level-dependent estimation of noise scale (see the appendix) is

used for calculation of 	noise. In the first two data sets, single

scale factor-based estimate of 	noise is used to study the effect

of scale factor. The values of the performance metrics for all

the data sets (and all the cases for each data set) are listed in

Table 3. In Table 3, SAGE and SLE are listed in columns 4 and

5, respectively. The values of these metrics (SAGE is close to

1 and SLE is not much greater than 3.5 for most of the cases)

indicate that the fits are very good. The compression ratio is

also good (7–25). Discussion on trend extraction for each data

set is presented below.

Case 1: A Signal with High SNR. As shown in Figure 7,

four (all possible) different combinations of the two options

viz. choice of scale factor and choice on the noise estimation

have been considered. Since the figures are already compli-

cated, manual identification of the trends is not attempted. A

glance at the four plots shows that data is fitted quite well in

each case. The trends shown in Figure 7c are good despite

some smoothing at the two ends. The trends shown in Figure

7a–7b reveal that the low value of 	noise (single scale factor)

has resulted in too many small segments. The trend shown in

Figure 7d is the best among the four trends shown. Although

the noise content in different parts of the signal appears the

same, the local noise estimate (re-estimation of noise) provides

better results as compared to the global noise estimate since the

former is a better representative of the noise in the region

containing the segment under consideration.

Case 2: A Signal with Stationary Noise and Moderate SNR.

Similar to the previous case, trends are extracted using four

combinations of scale factor and noise estimation. The trends

are shown in Figures 8a–8d. The trends in each subplot rep-

resent the signal closely. This means that a white noise se-

quence can characterize the noise. Also, the noise content in

different part of the signal does not vary much (that is, quite

stationary), although one may say that a particular trend is

better as compared to the others in certain parts of the signal.

For example, in Figure 8b, the C primitive in the time interval

[490 608] represents the data better as compared to the corre-

sponding primitive (in that region) in other plots.

Case 3: Use of Eq. 13. This example is used to show the

improvement in fit when Eq. 13 (see the appendix) is used. The

extracted trend (	noise re-estimated with level-dependent scale

factor) is shown in Figure 9. Equation 13 has been used to

constrain the constant polynomial fits. Consider the first four

Table 3. Performance Metrics for Industrial Signals

Case Fig. No. SNR SAGE SLE �

7a 32.15 1.09 7.54 8.95
1 7b 32.15 0.97 4.74 7.62

7c 14.14 0.91 3.22 20.88
7d 14.14 0.69 4.54 11.26

8a 10.84 1.01 3.79 20.88
2 8b 10.84 0.90 3.15 16.38

8c 10.23 1.00 3.67 25.28
8d 10.23 0.85 3.10 17.15

3 9 23.68 2.12 24.23 10.60

4 10a 6.44 1.30 5.80 7.17
10b 6.44 1.12 5.58 14.41

Figure 7. Industrial Case 1: trends in a signal with high

SNR (adaptive windows).

Figure 8. Industrial Case 2: a signal with stationary noise

and moderate SNR.

Figure 9. Industrial Case 3: use of Eq. 13 to restrict

constant fit.
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primitives (ACAA). These primitives fit the data quite well. If

the second primitive (C) were to be an A primitive, then (due

to the continuity condition) the fitted data would have been far

from the noisy data (see the dotted lines). Indeed, this is what

happens if Eq. 13 is not used. As mentioned in the Appendix,

the reason is that the sub-global estimate of 	noise (based on

128 data points which include the current segment and some

future points) is much larger than the local noise content. Since

such problems cannot be avoided completely even by reducing

the minimum length for noise estimation, use of Eq. 13 is a

good alternative.

Case 4: Improvement Due to Re-estimation of 	noise. In the

previous three cases, it has been found that the sub-global

estimate (which is even a local estimate if l � 128) of 	noise

improves the quality of the fitted data. Still, the effect of

re-estimation was not well clear since the variation in the noise

was not much. In this example, a signal with large variation in

the noise in different parts of the signal is considered. Figures

10a and 10b show the extracted trends from the signal without

and with re-estimation of 	noise, respectively. Needless to say,

the trend shown in Figure 10b is much better, as compared to

that shown in Figure 10a. Notice that level-dependent scale

factor is used in both the cases. As shown in Figure 10b, the

noise in the data segment [1 550] is much larger as compared

to the noise in the rest of the signal. That is why re-estimation

of noise has resulted in much better fit. In the first two seg-

ments, most of the noise is rejected. In the remaining portion,

the signal is tracked well.

Through the four industrial examples presented above, it can

be concluded that the best options for trend extraction are use

of level-dependent scale factor for the estimation of 	noise and

re-estimation of 	noise. In fact, to decide whether or not re-

estimation is necessary, one can estimate noise in different

parts of the signal and find out whether or not they differ

(F-test can be conveniently used here). A comparative analysis

of the four cases is carried out using Table 3. The value of

SAGE is very good except for Case 3. Ironically, the fit appears

very good (Figure 9). This can be explained as follows. The

value of SAGE is calculated using 	noise and the denoised

signal estimated from the entire noisy signal, but 	noise is

re-estimated during trend identification. When a signal is very

long, denoising can lead to considerable smoothing and, hence,

although a fitted trend (data) might seem to capture the impor-

tant features well, it might deviate from the denoised data.

Essentially, the aggregate metric SAGE does not really reflect

the fit criteria well in such a case. In fact, if SAGE were to be

calculated using the fitted data and the noisy data, its value

would have been much closer to 1. The above explanation also

accounts for large values of SLE for Case 3 and Case 4,

although in Case 3, it is excessively large because of few sharp

peaks, such as at sample 1141 (not visible in Figure 9). A large

value of SLE for the trend shown in Figure 7a is due to poor fit

(forced termination of interval-halving at small lengths). An-

other important observation in Table 3 (column 3, SNR) is that

the noise in the signal used in Case 1 is non-white noise since

the values of SNR with a single scale factor and a level-

dependent scale factor differ from each other considerably. In

Case 2, the noise is almost white noise.

Conclusions

Qualitative trend analysis is a simple yet powerful method to

reason about system behavior using historical data, more so

when fundamental knowledge is absent or minimal. Identifica-

tion of qualitative trends from any type of signal is the first step

in qualitative trend analysis. The main challenge lies in auto-

mating the task while not losing accuracy. The primitives-

based trend language is used to represent trends, since it is a

simple scheme and could capture any type of sensor behavior.

To this end, a simple strategy based on interval-halving is

presented in this article. The idea is to locate a sequence of

unimodal regions characterizing the data using the least-

squares polynomial fits to parameterize the data quantitatively.

To estimate the significance of fit-errors, the noise estimated

using wavelet-based denoising is used. Step changes (if any) in

the signal are identified using an outlier detection methodol-

ogy. Once the unimodal regions are obtained, a constrained

polynomial fit is used to fine-tune the polynomials to ensure

continuity of the fitted data across consecutive unimodal re-

gions. The primitives are easily assigned to the unimodal

segments using the derivative signs which are also tested for

their statistical significance. While the strategy outlined is

sound, certain variations can be employed to deal with some

specific cases. Utilization of orthogonal polynomials such as

Legendre instead of the usual (1, x, x2) quadratics might

simplify calculations and yield better results. However, the

fundamental idea of interval-halving is a robust one and would

work across a broad variety of cases. The main benefit of this

procedure is the complete automation of the task of trend

extraction. All the parameters used in the methodology can be

easily tuned and guidelines have been provided for the same.

The technique has been exhaustively tested on several cases,

both simulated and real, and is seen to perform very well. As

an added bonus, data compression (with high compression

ratio) is also achieved.

Notation

I � an identity matrix of appropriate order
J � decomposition level in wavelet analysis
L � Lagrangian function

M � total number of unimodal segments
N � total number of data points in the signal, normal distribution

RNE � ratio of the number of extrema
SAGE � scaled average global error

SLE � scaled L
 error
T � time matrix in least-squares estimation: y � T� � e

Ui � ith unimodal region
Wid � identification window

W1, W2 � windows for outlier detection near the two ends of a primitive
d � DWT detail coefficients

d1, d2 � first and second derivatives

Figure 10. Industrial Case 4: improvement due to re-

estimation of �noise.
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e(t), e � error signal
f(t) � unknown true data
f̂(t) � wavelet estimated denoised data

l � length of a segment
pi � piecewise polynomial in the ith region
s � DWT smooth coefficients
si � standard deviation of �̂i

t, T � time
td1�0 � normalized time where first derivative is zero

y(t), y � sensor data
y� � unknown true data (described exactly by a polynomial)
ŷ � unbiased estimate of y�

Subscripts

f � final (last) time, function
half � middle point of the segment to be halved

high, low � upper and lower limits, respectively
i � generic index with no specific connotation, initial time
j � level j in multiscale wavelet analysis, generic index
k � generic index with no specific connotation

max � maximum value of n1 or n2

n � order of a polynomial
new � values of d10, d11 and d2 after t-test

t � normalized time
th � threshold
1 � unimodal segment, or segment 1 in CPF
2 � signal used for estimation of 	noise, or segment 2 in CPF

Greek letters

� � variance-covariance matrix
� � significance level
�̂ � least-squares estimated quadratic coefficients: ŷ � T�̂
� � actual quadratic coefficient: y � T� � e

�c( x) � coefficients shrinkage function
�fit

2 � polynomial fit error
�, 
 � Lagrange parameters in CPF


 � degrees of freedom
� � scaling function
� � wavelet function
� � compression ratio
	 � standard deviation of the added noise

	noise
2 � estimated noise variance

	̂ � Median Absolute Deviation (MAD) function for noise scale
estimation

	j � noise scale at level j
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Appendix

Wavelet denoising for noise estimation

Wavelet denoising is used to estimate the noise parameter in

the interval-halving based trend extraction approach. The most

important advantage of wavelet-based analysis is the require-

ment of minimal a priori information. Their excellent time-

frequency localization allows good nonparametric statistical

estimation of the true, that is, denoised, data. Any process

signal can be represented as

y�t� � f�t� � e�t� (A1)

where y(t) � noisy data, f(t) � unknown “true” signal and

e(t) (noise) is usually assumed to be independent and identi-

cally distributed (IID) normal errors � N(0, 	2). The orthog-

onal wavelet series approximation to a continuous time signal

y(t) is given by

y�t� � �
k

sJ,k�J,k�t� � �
j�1

j�J

�
k

dj,k�j,k�t� (A2)

where J is the number of multiresolution components (or

scales), and k is the number of coefficients at level j. sJ,k are

called smooth coefficients and dJ,k, . . . , d1,k are the detail

coefficients. The functions �j,k(t) and �j,k(t) are approximat-

ing wavelet functions generated from � and � by scaling

(factor 2j) and translation (parameter 2jk). When a discrete

signal y1, y2, . . . , yn (sampled data) is used, this approxima-

tion is referred to as the Discrete Wavelet Transform (DWT).

There exists an impressive theory for nonparametric regres-

sion and smoothing based on wavelet shrinkage (Donoho and

Johnstone, 1994). The principle consists of (1) applying the

DWT, (2) shrinking the small coefficients to zero, and (3)

applying the inverse discrete wavelet transform (IDWT). The

shrinking of wavelet coefficients usually is defined by the

shrinkage function �c( x), (c � shrinkage threshold). The

threshold is given usually as cj � �j	j where �j is the

threshold rule and 	j is the noise scale. Usually, � is taken to

be the universal threshold defined by 
2 log N (N � sample

size) and results in high degree of smoothness. In cases of

white noise, the finest scale detail coefficients d1 are used to

estimate a single scale factor for all levels whereas for non-

white noise, a level-dependent scale factor is estimated as 	j �
	̂(dj). The 	̂ is the Median Absolute Deviation (MAD) func-

tion, a highly robust estimate of scale. The estimated sensor

noise (	noise) and signal/noise ratio (SNR) can then be simply

estimated as ( f̂(t) is the wavelet estimated denoised function of

f )

	noise � 	�y�t� � f̂�t��

SNR �
	f̂

	noise

(A3)

Constrained least-squares-based polynomial fit

Constrained polynomial fit (CPF) is used to refine the order

and the coefficients of the fitted polynomials to ensure conti-

nuity between two adjacent segments (and hence continuity in

the overall fitted signal). See Dash et al. (2003a) for other

applications of CPF. In this section, first the CPF formulation

and its solution is presented. Then, various related quantities

(such as degrees of freedom and covariance) are calculated and

issues are discussed. Let the standard polynomial fit problem in

the two consecutive segments (call them segment 1 and 2) be

(see Figure A1)

y1 � T1�1 � e1; y2 � T2�2 � e2 (A4)

where the subscripts 1 and 2 refer to the segments 1 and 2,

respectively. Throughout this section, context should be used to

resolve among various notations (including those that are used

elsewhere). T1 and T2 are defined similar to as T in Eq. 1 and

they are based on the normalized window in the respective

segments. Let the number of data points and the order of the

fitted polynomial in the ith segment be li and ni, respectively.

Clearly, Ti � �
li�(ni�1) and �i � �

(ni�1)�1. An equality

constraint at the end of segment 1 and at the beginning of

segment 2, and a fixed value constraint at the start of segment

1 can be written as

c1
T�1 � c2

T�2 � 0 (A5)

c0
T�1 � d0 � 0 (A6)

where c0
T and c1

T are the first and last rows of T1, respectively,

and c2
T is the first row of T2 (Figure A1). Thus, if n1 � n2 �

2 then c0
T � [0 0 1]T, c1

T � [1 1 1]T and c2
T � [0 0 1]T

due to normalization. d0 (Figure A1) is the fitted value of the

signal at the end of the then segment 1 during the previous pass

through the CPF step (Step 2 of the interval-halving proce-

dure). Thus, Eq. 8 is not used during the first pass through Step

2. The Lagrangian for the constrained least-square problem is

L��1, �2, �, 
� � e1
Te1 � e2

Te2 � ��c1
T�1 � c2

T�2�

� 
�c0
T�1 � d0� (A7)

where � and 
 are the Lagrange multipliers corresponding to

Eqs. 7 and 8, respectively (Figure A1). Using Eq. 6 and

minimizing L(�1, �2, �, 
) (by differentiating L with respect

to the unknowns and equating the differentials to zero) yields

the following equation

�
2T1

TT1 0 c1 c0

0 2T2
TT2 �c2 0

c1
T �c2

T 0 0

c0
T 0 0 0

	�
�̂1

�̂2

�



	 � �

2T1
Ty1

2T2
Ty2

0

d0

	 (A8)
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For the sake of simplicity, lets rewrite the above equation as

AX � b with X � [�̂1
T �̂2

T � 
]T, and so on. Equation A8 is

the main equation of CPF. This approach (based on CPF over

two consecutive segments) is preferred as compared to apply-

ing CPF over all the segments simultaneously since the former

approach results in an equation with only few (� 8) unknowns

and, hence, can be easily solved for X. Further, the refinement

of n1 and n2 can be easily carried out (Step 2). Next, DOF

(needed for covariance calculation and t-test) for the two

segments are calculated.

Calculation of the Degrees of Freedom. Since both the

segments are used for CPF, theoretically, DOF can be esti-

mated only for [e1
T e2

T]T (both the segments jointly). DOF

increases due to the equality constraints since the number of

free parameters to be estimated decreases accordingly. Thus,

DOF � l1 � l2 � (n1 � n2 � 2) � 2. Although the joint

DOF and the fit-error can be used for the F-test (over the two

segments jointly) and the t-test, it practically has been observed

that the F-test and t-test based upon the individual segments

perform better when the noise in the two segments differ

considerably. An explanation for this observation is that the

joint test uses an averaged value of fit error (thus reduces the

effect of re-estimation of 	noise). Also, individual fit errors are

required in the calculation of the covariance. So a fictitious

DOF is calculated for the two segments—it is assumed that

segment 1 is independent of segment 2, but segment 2 is

dependent on segment 1. Thus, DOF for segment 1, 
1, is l1 �
(n1 � 1), and DOF for segment 2, 
2, is l2 � (n2 � 1) � 1.

Another way to explain 
1 is to analyze the constraint that

explains the DOF for segment 1, viz. (derived from Eq. 10)

�2T1
T c1 c0��e1

T � 
�T � 0 (A9)

The above equation comprises of (n1 � 1) scalar equations,

so the DOF for any quantity estimated by using all of

[e1
T � 
]T is l1 � 2 � (n1 � 1) and that the DOF for any

quantity estimated by using only e1 is l1 � (n1 � 1) (� 
1).

A similar expression for segment 2 yields 
2 � l2 � (n2 � 1)

which does not reflect the dependence of segment 2 on segment

1 so the former approach (
2 � l2 � (n2 � 1) � 1) is

preferred. Next, 	̂1
2 � �fit,1

2 � e1
Te1/
1 and 	̂2

2 � �fit,2
2 � e2

Te2/
2.

These results are used to perform F-test. 
2 refers here to the

DOF for the estimation of �fit,2
2 rather than that of 	noise

2 .

The Covariance of X. The expression for the covariance

matrix of X, �X, is

�X � A�1	A�1 (A10)

where 	 is a block diagonal matrix with the leading diagonal

blocks being 4T1
TT1	̂1

2, 4T2
TT2	̂2

2, 0 and 0. Once �X is known,

��̂1
and ��̂2

(to be used in t-test) can be extracted as appro-

priate square sub-matrices (along the leading block diagonal)

from �X.

Further Restriction on Constant Fits. Through several case

studies, it has been observed that the above methodology

performs well except when: (1) the final value of n1 (and n2 in

the case of the last segment of the entire data set) is 0 (constant

polynomial fit passes the F-test) for two or more consecutive

segments; (2) the estimated 	noise is very different from the

noise content in the region around the segment(s) under con-

sideration. This problem is mostly encountered when 	noise is

re-estimated as the intervals are halved. So, apart from satis-

fying the F-test, the following restriction is imposed for ac-

cepting a constant fit in a segment.

The (constant) fitted value of the signal (that is, (�̂i)1)

should be close to the mean value of the signal in the segment

(this is the value that is achieved in Step 1 for ni � 0, i � 1,

2). The above restriction is realized by using a two-sided t-test.

Let ŷ and 	 be the mean value and the standard deviation,

respectively, of the data in the ith segment. The constant fit

should be accepted only if the following inequality is satisfied

�ŷ � ��̂i�1� � t1���/ 2�,
i
	 (A11)

The above inequality is only a necessary condition. The

other condition that should be satisfied is the standard F-test. A

high value should be chosen for � to make the test severe. For

the case studies presented in this article, the values of � for

segments 1 and 2 are 0.80 and 0.50, respectively.

Manuscript received Feb. 10, 2003, and revision received June 9, 2003.

Figure A1. Constrained polynomial fit.
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