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Abstract

The time distribution of extreme rainfall events is a significant property that governs the design of urban stormwater

management structures. Accuracy in characterizing this behavior can significantly influence the design of hydraulic

structures. Current methods used for this purpose either tend to be generic and hence sacrifice on accuracy or need a lot of

model parameters and input data. In this study, a computationally efficient multistate first-order Markov model is proposed

for use in characterizing the inherently stochastic nature of the dimensionless time distribution of extreme rainfall. The

model was applied to bivariate extremes at 10 stations in India and 205 stations in the United States (US). A comprehensive

performance evaluation was carried out with one-hundred stochastically generated extremes for each historically observed

extreme rainfall event. The comparisons included: 1-h (15-min); 2-h (30-min); and, 3-h (45-min) peak rainfall intensities

for India and (US) stations, respectively; number of first, second, third, and fourth-quartile storms; the dependence of peak

rainfall intensity on total depth and duration; and, return levels and return periods of peak discharge when these extremes

were applied on a hypothetical urban catchment. Results show that the model efficiently characterizes the time distribution

of extremes with: Nash–Sutcliffe-Efficiency[ 0.85 for peak rainfall intensity and peak discharge; \ 20% error in

reproducing different quartile storms; and,\ 0.15 error in correlation analysis at all study locations. Hence the model can

be used to effectively reproduce the time distribution of extreme rainfall events, thus increasing the confidence of design of

urban stormwater management structures.

Keywords Extreme rainfall events � Time-distribution of rainfall � First-order Markov model � Dimensionless mass curve �

Return periods

1 Introduction

Statistical analysis and characterization of extreme rainfall

is a critical part of the design of various hydraulic struc-

tures related to urban stormwater management. Recent

studies have endorsed the use of event-based multivariate

analysis over a critical duration-based univariate design

storm approach for this purpose (Park et al. 2013; Bal-

istrocchi and Bacchi 2017; Jun et al. 2017, 2018). This is

due to the flexibility that event-based analysis provides,

allowing critical rainfall properties to be characterized

more realistically than through critical duration-based

analysis. For example, with a univariate design storm

approach, the frequency analysis is carried out only on the

maximum rainfall depth that occurred over a predefined

critical duration. This critical duration is usually less than

the actual rainfall event duration, hence only a part of the

rainfall event is considered. This could misrepresent the
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antecedent wetness, which may further lead to underesti-

mation of catchment response (Berk et al. 2017). With

event-based analysis, the actual duration, depth, and peak

intensity of rainfall events are studied together, which

results in a more realistic analysis.

In event-based analysis, an independent rainfall event is

defined as a continuous stretch of rainfall in time separated

by a minimum period (event separation time) of no rainfall

(Joo et al. 2013; Lee and Kim 2018). Independent rainfall

events possess multiple properties such as total rainfall

depth (R), duration (D), peak intensity (I), and time dis-

tribution during the occurrence. The results of rainfall-

runoff models are usually affected by all these properties of

extremes, the association between them (Azarnivand et al.

2020), and the input timestep of rainfall pulses (Sampson

et al. 2020). Multivariate frequency analysis based on

copulas (Nelsen 2006) is generally adequate to characterize

the extreme rainfall properties R, D, and I and the associ-

ations among them (Kao and Govindaraju 2007; Zhang and

Singh 2007). However, the time distribution of a rainfall

event is one of the most preeminent properties, which

affects urban catchment response (Zeimetz et al. 2018) and

thereby the design of hydraulic structures. Hence, it is

essential to understand and appropriately characterize the

time distribution of rainfall within an event.

Since mid-20th century, several methods have been

developed (Huff 1967; Schertzer and Lovejoy 1987;

Rodrı́guez-Iturbe et al. 1987), improved (Entekhabi et al.

1989), or modified (Onof and Wheater 1994), to model the

time behavior of the rainfall within events at a fine time

scale (hourly or less). Current methods include those based

on or using: point process models (Onof et al. 2000; Ver-

hoest et al. 2010; Kossieris et al. 2018); the theory of scale

invariance (Molnar and Burlando 2005; Sivakumar and

Sharma 2008); empirical geometric shapes for hyetographs

(Huff 1967); multivariate copula-based frequency analysis

(Zhang and Singh 2007; Kao and Govindaraju 2008; Jun

et al. 2017; Guo et al. 2018); and, Markovian processes

(Nguyen and Rousselle 1981; Woolhiser and Osborn

1985).

Point process-based methods are some of the most

robust approaches available for modeling time distribution

of rainfall events (Olsson and Burlando 2002). These

methods treat a rainfall event as a cluster of many small

rainy cells with a random period of rain (Rodrı́guez-Iturbe

et al. 1987; Rodriquez-Iturbe et al. 1988; Onof and

Wheater 1994). However, point process models require a

large number of parameters (5–7), and have shown some

disagreements (Koutsoyiannis and Mamassis 2001). Scale-

based methods use the inherent scale-invariant structure of

rainfall (Schertzer and Lovejoy 1987; Gupta et al. 1993)

with the assumption that the statistical properties of rainfall

occurrences aggregated at different time scales are related

through a simple scaling function. One such approach is a

multiplicative random cascade model, where the total

rainfall is distributed on consecutive subdivisions (Molnar

and Burlando 2005; Sivakumar and Sharma 2008). Though

the assumption of scale-invariance is valid in many cases,

some authors (Marani 2003; Di Baldassarre et al. 2006)

have reported that this assumption is repeatedly violated at

finer time scales and may not be valid in many instances.

One of the most widely used ways of representing

rainfall events is through the dimensionless rainfall mass

curves [DRMC, Huff (1967)]. These comprise nine prob-

abilistic DRMC (Huff curves) at 10–90% probabilities in

each quartile storm duration, combined to a total of 36

DRMC. The 50% curve is the single most representative

huff curve in each quartile (Huff 1990); however, the

selection of one single huff curve for practical purposes is

still unclear (Bonta 2004). Four synthetic dimensionless

mass curves named type I, IA, II, and III developed for use

in US watersheds (US-SCS 1986) have been used in

studies such as (Awadallah and Younan 2012; Ghassabi

et al. 2016) to define the shape of design storms. However,

these curves have been found to overestimate peak dis-

charges (Guo and Hargadin 2009; Kimoto et al. 2011;

Dullo et al. 2017). Few studies (Acreman 1990; Garcia-

Guzman and Aranda-Oliver 1993) have assumed that the

shape of the rainfall mass curve (RMC) follows the beta

distribution and observed that the peak rainfall intensities

and their frequencies were reasonably reproduced. Kotte-

goda et al. (2003) used a geometric distribution for daily

wet and dry runs, and a beta distribution for hourly rainfall

magnitudes, and observed that the results were satisfactory.

Hingray et al. (2002), performed stochastic generation and

disaggregation of hourly rainfall data and concluded that

the stochastic methods are well suited for the purpose.

A classical approach to model storms of complex nature

is by describing them as Markovian process. One way is to

model the occurrence of rainfall as a two-state Markov

process and depth of rainfall with a theoretical probability

distribution (e.g. Nguyen and Rousselle 1981). The second

approach is to model both rainfall depth and occurrence as

a multi-state Markovian process by dividing the rainfall

amount into several discrete states, including a state with

no rain (Woolhiser and Osborn 1985). These latter authors

defined rescaled dimensionless rainfall increments at ten

dimensionless time steps following a first-order Markov

chain. Further, they assumed that the marginal and condi-

tional distributions of the incremental process followed the

beta distribution and recommended a 13-parameter model.

However, fitting such a large number of parameters can

increase the uncertainty due to parameter estimation.

Moreover, the marginal and conditional distributions of a

multistate Markov process need a substantial amount of

data (Sharma and Mehrotra 2010).

1206 Stochastic Environmental Research and Risk Assessment (2021) 35:1205–1221

123



In general, current methods used to model the time dis-

tribution of rainfall events need a relatively large number of

parameters and a substantial amount of observed data to

obtain suitable results. Conversely, simpler, fewer param-

eter models and empirical dimensionless profiles may not

produce satisfactory results. Regardless, comprehensive

performance evaluation of existing methods is needed to

determine their ability to reproduce critical properties of

rainfall events. The occurrence of rainfall within an event is

highly stochastic. A non-parametric multistate Markov

process-based model applied to dimensionless rainfall

events could provide the needed improvements. However,

its efficiency greatly depends on the selection of the number

of states, the correlation between conditional and marginal

processes, and dependence of time distribution with other

properties of rainfall events.

In this study, a computationally efficient, non-paramet-

ric first-order multistate Markov model was developed to

characterize the time distribution of extreme rainfall

events. The proposed approach is empirical and assumes no

theoretical probability distributions for both conditional

and marginal probabilities of the Markovian process. Fur-

ther, a comprehensive performance evaluation was carried

out to validate the proposed methodology. The new

approach was tested for its ability to reproduce: peak

rainfall intensities of different durations; fraction of first,

second, third, and fourth quartile storms; and, the depen-

dence structure between R and I, and D and I. These

rainfall events were further run through a hypothetical

urban catchment to assess the model’s ability to reproduce

direct runoff properties such as peak runoff and its return

period.

2 Material and methods

2.1 Study area

The methodology was developed and tested on the hourly

rainfall data recorded at ten cities in India (Fig. 1a). It was

then applied to 15-min rainfall data from 205 rainfall sta-

tions in the US (Fig. 1b). The rainfall stations selected are

located in urbanized areas and represent a wide range of

climatological and geographical characteristics. The India

cities were selected based on three criteria: broad geo-

graphical coverage; climatological representation; and,

data availability (at least 40 years). The country falls under

both tropical and subtropical climates (Beck et al. 2018)

with a wide range of variability in weather and geography.

Hourly rainfall data recorded using automatic weather

stations at these study locations were procured from the

Data Supply Center of the India Meteorological Depart-

ment in Pune, India.

Fifteen-minute rainfall data for the US stations were

downloaded from the National Oceanic and Atmospheric

Administration, data portal (https://data.nodc.noaa.gov/cgi-

bin/iso?id=gov.noaa.ncdc:C00505). These stations were

selected based on data availability over a period of at least

40 years and their proximity to anurbanarea (within5 kmfrom

the urban boundary) as identified based on the 2010 Census for

the US, and data from ESRI (https://www.arcgis.com/home/

item.html?id=069b5cafe3e34a2585e24ba63cd12b9e). The list

of these stations with their associated latitude, longitude, and

climate region is provided with supplementary materials

(Table S1).

2.2 Definition of extreme rainfall events

At first, continuously recorded hourly rainfall was delin-

eated into independent and isolated rainfall events using a

6-h inter-event time. A 6-h inter-event time is commonly

used in many studies to identify independent rainfall events

(Huff 1967; Kao and Govindaraju 2007). A rainfall inten-

sity threshold of 1 mm/h was adopted to identify rainfall

pulses as this is the minimum intensity required to classify

precipitation as rainfall (Subramanya 1994; Deodhar

2008). All rainfall events with missing data within an event

were excluded from the study so as not to misrepresent the

observed time distribution. Such rainfall events were lar-

gely uncommon. Among delineated rainfall events, only

extremes affect the design of water resources structures;

however, the definition of a rainfall event as extreme is not

straight forward (Kao and Govindaraju 2007). This is

because multiple properties of rainfall events (R and I)

usually govern design, and, thus, extreme rainfall events

must possess extreme nature in these properties. In this

study, a bivariate Peak Over Threshold (POT) approach

was adopted to extract extreme rainfall events.

The bivariate POT approach used in this study defines a

threshold on empirical copula (Kn) constructed between R

and I of all the rainfall events and goodness of fit test to

define an optimal threshold. At first, a threshold of Kn =

0.95 was defined as an initial point, and all the rainfall

events above the threshold were assumed as extremes. A

goodness of fit test on R, I, and D of these extremes was

further carried out for various probability distributions such

as Generalised Extreme Value, Generalised Pareto, Log-

Normal, Pearson Type III, and Log-Pearson Type III dis-

tributions. If at least one of the distributions was a good fit

for each of the variables (R, I, and D), the threshold was

considered optimal. Otherwise, the threshold was increased

by 0.001, and the same steps were carried out until an

optimal threshold was identified. All three variables (R, I,

and D) were subjected to goodness-of-fit tests, as all are

critical variables in event-based analysis. However, vari-

able D was not included in the empirical copula
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calculation, as D is mostly positively correlated to R and

any rainfall events which possessed extreme nature in D

also possessed extreme nature in R.

2.3 Derivation of dimensionless rainfall events

For a total depth (R) and duration (D) of any independent

rainfall event, and a rainfall intensity r(d) at any instance of

time, s during the rainfall, the accumulated rainfall R(d),

which is the RMC up to any duration d from the beginning

of rainfall can be expressed as:

R dð Þ ¼

Z d

0

r sð Þds 0� d�D ð1Þ

The variables R and D are random variables and vary in

their magnitudes from event to event, making it challeng-

ing to develop a generalized model to represent the func-

tion R(d) of all the rainfall events. To eliminate the effect

of the magnitude of random variables R and D, the RMC is

used in its dimensionless form (Huff 1967; Bonta and Rao

1989):

M tð Þ ¼

Z t

0

m sð Þds 0� t� 1; 0�M tð Þ� 1 ð2Þ

t ¼
d

D
; M tð Þ ¼

R dð Þ

R Dð Þ
; m sð Þ ¼

r sð Þ

R Dð Þ

where M(t) is the dimensionless cumulative rainfall up to

dimensionless time t, and m(s) is the dimensionless rainfall

Fig. 1 Study locations in India and the United States used in this study
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at any instance. If n is the total number of time steps at

which the event rainfall is recorded or available, then the

intervals of dimensionless time, t (t1, t2… tn) will be at

increments of 1/n between 0 and 1. Then m(t) the rainfall

occurring between any two-time steps can be written as

m tið Þ ¼ M tið Þ �M ti�1ð Þ i ¼ 1; 2; . . .n:

2.4 Lag-one correlation of RMC properties

The occurrence of rainfall in continuous time is stochastic

and can be modeled as a Markov process (Sharma and

Mehrotra 2010). The Markov property signifies that the

probability of receiving any specific magnitude of rainfall

in the current time step depends on the state of the rainfall

in the previous time step. In this application, the DRMC is

the process modeled. The property of the mass curve at any

given point in time ti has a dependence on its property on

the preceding time step ti-1. This study hypothesizes a

linear dependence of properties of DRMC at any two

consecutive time steps. A correlation analysis showed that

using the combination, rainfall intensity (m(ti)) at any time

step given the accumulated rainfall (M(ti-1)) of the same

rainfall event up to the previous time step is optimal for

modeling the DRMC using a first-order Markov model.

Few other combinations such as m(ti) given m(ti-1), a

dimensionless process z(t) (Woolhiser and Osborn 1985)

given z(ti-1), and z(ti) given M(ti-1) were also checked

with linear correlation and examined for efficiency in

modeling DRMC. However, m(ti) given M(ti-1) was

observed to be more appropriate.

2.5 First-order Markov model (FMM)
for stochastic modeling of dimensionless
rainfall mass curve

The methodology of stochastic modeling and generation of

extreme rainfall events is described using a hypothetical

DRMC (Fig. 2) as detailed in ensuing subsections.

2.5.1 Calculation of transition probability matrix

The DRMC was first divided into s equally spaced

dimensionless rainfall states, such that the magnitude of

dimensionless rainfall occurring between any two discrete

time steps (m(ti) = M(ti) - M(ti-1)) followed a uniform

distribution. In other words, the number of bins of the

histogram of rainfall pulses was adjusted so as to get a

uniform distribution. A uniform distribution was used

because the dimensionless rainfall pulses could be bounded

between 0 and (1) These values then served as parameters

of the uniform distribution, eliminating the need for

parameter estimation. The use of any other distribution

would require estimation of the parameters, further leading

to parameter uncertainty. The resulting number of bins was

then set as the number of dimensionless rainfall states (s).

From the analysis, a value of s = 11 resulted in a uniform

distribution of m(ti) at most of the locations and was hence

generalized to all study locations. Using a greater number

of states would lead to a very large transition probability

matrix, which is similar to overfitting the model and may

also require a large quantity of data. A smaller number of

states may not follow the uniform distribution of rainfall

pulses. The states were: ten states at increments of

m(t) = 0.1 starting at 0.1; and, a special state (0) when

M(t) = 0 (Fig. 2). Once the exact number of states and the

lower and upper bounds were identified, the dimensionless

rainfall at each time step was converted into corresponding

rainfall states in both DRMC and dimensionless hyeto-

graphs. For example (Fig. 2), at dimensionless time equals

0.5, the cumulative dimensionless rainfall was 0.61, cor-

responding to state 7. The amount of dimensionless rainfall

occurring in the next time step (0.6) is 0.17, which corre-

sponds to state 2, representing a transition between state 7

to state 2. The transition probabilities between all 11

dimensionless rainfall states were calculated and compiled

as a transition probability matrix (TPM), as shown:
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where pj;k ¼ Pr mðtiÞ ¼ kjMðti�1Þ ¼ j
� �

, j, k = 1, 2,… s, is

the probability that an event receives a rainfall which falls

in the state k at time step ti given the actual occurred

cumulative rainfall through time ti-1 falls in the state j. The

matrix p satisfies the condition that pj,1 ? pj,2 ? _ ? pj,s =

1, for all j. Further, a cumulative transition probability

matrix (CTPM) was constructed from TPM, as shown:

where Pj;k ¼
Ps

k¼0 pj;k. The CTPM was further used to

generate stochastic DRMC

2.5.2 Stochastic generation of dimensionless rainfall mass

curve

A dimensionless rainfall event was initiated with the cur-

rent state j = 0 at t = 0 such that M(t = 0) = 0. A uniform

distribution random number Ru1 = U(0,1), was then gen-

erated, and the future state k of dimensionless rainfall m(t1)

at the future time step t1 was identified such that P0,k-1\

Ru1 B P0,k. For example, considering the hypothetical

CTPM, assuming Ru1 = 0.21, then the state of the rainfall

pulse at time step t1 will be, state = 1, given that state =

0 at t0. This means that the magnitude of the dimension-

less rainfall pulse that will occur at t1 will vary between 0

and 0.1 (bounds of state = 1). The width of each state, in

this case, was 0.1; hence, the actual amount of rainfall

m(t1) at time step t1 was found by generating another

uniform random number Ru2*U(0,0.1) and adding it to the

lower bound (0 in this hypothetical case) of the generated

state k. The cumulative rainfall M(t1) was then found by

adding m(t1) to M(t0) = 0, and the same steps were repe-

ated until time step tn-1. Further, the dimensionless rainfall

m(tn) of time step tn was found as m(tn) = 1 - M(tn-1), to

ensure the DRMC is bounded between 0 and 1. The gen-

eralized equation representing the stochastic generation of

DRMC using the proposed method is given in Eq. 3

MðtiÞ ¼ Mðti�1Þ þ LB Pj;k
�1 Ru1 Mðti�1

�

�

�

¼ j
� �� �

þ Ru2

ð3Þ

where LB represents the lower bound of the state of

dimensionless rainfall.

2.6 Model performance evaluation

The performance of the model to characterize and generate

DRMC was evaluated based on its ability to reproduce

different characteristics of extreme rainfall events. Since

the methodology in Sect. 2.5 is stochastic, a one to one

comparison of observed and generated rainfall events may

not be appropriate. Hence, at first, 100 synthetic DRMC

were generated for each observed extreme rainfall event

and converted into its non-dimensionless form by multi-

plying duration and total depth to the corresponding axis.

Thus, the total number of extreme rainfall events becomes

100 times more than the observed extreme rainfall events.

From these observed and simulated extremes, a quantile-

quantile comparison of 1-h, 2-h, and 3-h peak rainfall

intensities was carried out. Further, the total number of

first, second, third, and fourth quartile storms and the

dependence between peak rainfall intensity with total depth

and duration of rainfall were also compared. Once the

efficiency in reproducing rainfall properties had been

examined, all the observed and simulated extreme rainfall

events were run through a simple hydrologic model to

estimate the direct runoff hydrograph and the return levels

and return periods of peak discharges were compared.

2.7 Event-based hydrologic model

A simple event-based rainfall-runoff model using soil

conservation service (SCS) method was implemented to

generate hydrographs from the given rainfall mass curve
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and catchment properties. In this rainfall-runoff model,

curve number (CN) was used for estimating the rainfall

excess and SCS dimensionless unit hydrograph to compute

the direct runoff hydrograph at the catchment outlet. Since

it is a comparative study, a simple hypothetical catchment

with constant antecedent wetness was assumed for all the

study locations. The assumed parameters of the catchment

were as follows: time of concentration: 60 min; area of the

catchment: 5 km2; CN: 95; initial abstractions: 10% of

potential maximum retention; and, limb ratio of dimen-

sionless unit hydrograph: 1.25. The value of limb ratio for

urban areas was obtained from the Unit Hydrograph tech-

nical manual (National Operational Hydrologic Remote

Sensing Center), and the time of concentration was

assumed as 1 h since the minimum time resolution of

available rainfall data for India is 1 h.

3 Results and discussion

3.1 Preliminary assessments

3.1.1 Dependence of rainfall pattern with event duration

All the DRMC of different duration at Indian stations were

plotted (Fig. 3) and visually examined for correlations

between the duration of the extreme rainfall event and the

pattern of the DRMC. It was observed that the extreme

rainfall events of Indian cities could be classified into five

groups based on the pattern of DRMC and the duration,

which are: 1 h, 2 h, 3–6 h, 7–12 h, and 13 h and above.

Since the data time resolution was 1 h, events of 1 h had

uniform intensity, and the 2-h events had a unique pattern

compared to the higher duration events with only one

intermediate time step. Extremes within the 3–6 h duration

were evenly distributed, ranging from first to fourth quar-

tile events. Extremes of 7–12 h had slightly less dominant

peaks compared to 3–6 h events, as evidenced by relatively

smoother DRMC (closer to 1:1 line) in Fig. 3, and

extremes of greater than 13 h had more of uniform inten-

sity in nature. Based on trial and error, and comparing

performance, it was also noted that this duration classifi-

cation was optimal for modeling DRMC. Hence, the

DRMC of each of these duration categories were modeled

and used separately for stochastically generating DRMC.

3.1.2 Number of time intervals

A time step (n) equal to the highest observed time step in

each group was adopted for this study, i.e., n = 2 for 2 h

events, n = 6 for 3–6 h events n = 12- for 7–12 h and

n = 24 for 13 h and above events. Time steps smaller than

the time interval in the observed data require interpola-

tions, which may lead to uncertainty, while longer time

steps may not allow the shape of the mass curve to be

preserved. A trial and error procedure confirmed that the

selected values of n were optimal for all the groups and

yielded better results than using a common number of time

steps for all the events. A shape-preserving-piecewise-in-

terpolation (Fritsch and Carlson 1980) was employed for

all the interior events (3–5 h, 8–11 h, 13–23 h) to get the

DRMC at the new time steps. The shape-preserving-

piecewise-interpolation is a nonlinear interpolation method

that avoids the assumption of uniform rainfall intensity

within a time step and can preserve the monotonously

increasing nature of DRMC.

Fig. 2 Hypothetical dimensionless rainfall mass curve (red curved

line) and hyetographs (blue bars), with 11 dimensionless rainfall

states. Note: The current state is always noted from the mass curve,

and the future state is noted from the hyetographs, thus, the current

state could be lower or higher than the state in the next (future) time

step
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3.1.3 Dimensionless rainfall events and Cumulative

transition probability matrix (CTPM)

The dimensionless rainfall events (hyetographs) and the

corresponding CTPM of the duration category 3–6 h at

Gangtok are presented as heat plots (Fig. 4). Heat plots for

all the remaining duration categories and stations are pro-

vided as supplementary materials (Figs. S1 and S2). The

plotted extreme rainfall events (Fig. 4a) were sorted

twice—first, in ascending order of time of peak rainfall

intensity and second in descending order of magnitude of

peak intensity within each peak intensity time step—before

plotting them to achieve better inferential aesthetics.

Almost 70 out of 127 extreme rainfall events (3–6 h

events) received peak rainfall intensity between 0.3 and 0.7

of dimensionless time (Fig. 4a). The location of peak

rainfall intensity is very important as it may affect the time

and magnitude of the resulting peak runoff from the

receiving catchment. More inference about the location of

the highest rainfall at different stations is given later in

Sect. 3.2.2 (Fig. 5). In Fig. 4b, the color of the heat map

indicates the cumulative transition probability corre-

sponding to the combination of each rainfall state (current

and future state). The current states of rainfall (Fig. 4b)

ranged from 0 to 1 as it is always noted from the dimen-

sionless mass curve. However, the next state or future

state’s highest value is always less than 1 as it is noted from

the dimensionless hyetograph.

3.2 Detailed analysis

3.2.1 Comparison of 1, 2, 3-h peak rainfall intensity

Figure 6 presents comparisons of peak rainfall intensities

for all the stations along with the one of the widely used

performance measures: Nash-Sutcliffe-Efficiency (NSE).

The value of NSE was calculated between 100 quantiles of

both observed, and the stochastically generated data. The

Fig. 3 Dimensionless rainfall mass curves at all the study locations of India. Different colors of the curves correspond to different stations. Note

that the color scheme is used to help differentiate among the rainfall stations and does not influence the interpretation of the figure

1212 Stochastic Environmental Research and Risk Assessment (2021) 35:1205–1221

123



average of NSE across all the stations was: 0.87 (1 h); 0.93

(2 h); and 0.95 (3 h). The increase in average NSE with an

increase in the duration of peak rainfall intensity shows

evidence of better reproducibility of higher duration

intensities than that of lower duration intensities. Never-

theless, all three duration peak intensities are well repli-

cated by the model with the NSE value of at least 0.8 in all

the cases. Further, the consistency of performance across

all stations can be inferred based on the standard deviations

(SD) of the NSE (0.04 (1 h); 0.02 (2 h); and, 0.02 (3 h))

which were low.

3.2.2 Comparison of fraction of quartile storms

Figure 5 presents a comparison of the observed and gen-

erated fractions of the total number of storms in each

quartile. The green and red dots in Fig. 5 indicate the

observed and simulated fraction of quartile storms,

respectively. The gap between green and red dots gives the

difference in the fraction of storms; for an efficient model,

this gap should be as small as possible. A red dot to the left

of the green indicates that the simulated number of that

specific quartile storms is less than the observed and vice

versa. The mean error in the representation of first, second,

third, and fourth quartile was 2%, 1%, 2%, and - 5%,

respectively. The percentage of storms that were underes-

timated (?) or overestimated (-) was low in all the four

quartiles indicating that the proposed method was able to

reproduce the number of storms in each quartile fairly well.

From Fig. 5, from among 10 stations, at 9 stations, more

than 25% of the total storms were of the first quartile. The

percentage was more than 30% at 6 stations and more than

40% at 2 stations. On average, more than 60% of the

extreme rainfall events had heavy rainfall in the first half of

the storm. However, at Jaipur and Hyderabad, more than

45%, and at Chennai, more than 35% of storms were first

quartile storms, which means most of the rainfall occurred

at the beginning of the storm. The first two stations fall

under arid climates with mostly convective rainfall pat-

terns, and the latter is a coastal city where cyclonic effects

also play a significant role. At Gangtok and Bombay, most

of the extremes were of second and third quartile storms

indicating the highest rainfall occurred during the middle

of the events. The south-west monsoon is a major rainfall

contributor at these two stations. Gangtok falls under the

mountainous region, and Bombay is a coastal city. Based

on the analysis, the association between local climate and

the pattern of rainfall at most of the stations does not

appear to be distinctive. Detailed analysis with data from a

large number of stations may be required to arrive at a

definitive conclusion.

3.2.3 Correlation of peak rainfall intensity with duration

and total depth of rainfall

Table 1 presents the results of the Kendall correlation

(K) for both combinations, along with their errors, mean,

and standard deviation of error across all the stations. The

results of Table 1 indicate that the correlation of I and R,

Fig. 4 a Dimensionless rainfall

events, and b corresponding

cumulative transition

probability matrix for the

rainfall events of category 3–6 h

at Gangtok station
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and I and D of rainfall events were replicated fairly well

and consistent at different stations .

Based on comparisons of: 1, 2, and 3-h maximum

rainfall depth; number of first, second, third and fourth

quartiles events; and the correlations of I with D and R, the

developed FMM for the stochastic generation of time dis-

tribution of rainfall events could replicate the observed

time distributions at all the 10 study stations with sufficient

accuracy.

3.2.4 Peak discharge and its return period

All the observed extreme rainfall events and the stochas-

tically generated extreme rainfall events were run through

Fig. 5 Dumbbell plots showing the difference between observed and the simulated fraction of storms in each quartile
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an event-based hydrological model (Sect. 2.7) to obtain the

resulting direct runoff hydrograph. The magnitude and

return periods of peak runoff from both observed and

simulated rainfall events were further compared for accu-

racy in replication. Two types of peak runoff comparisons

were carried out: (1) peak runoff of different return peri-

ods; and, (2) difference in return periods of discharge

obtained from observed and synthetic rainfall extremes.

Since the design of most of the structures related to urban

stormwater management adopts return periods between 2

and 30 years, the comparison was carried out for 2–30-year

return periods. For the estimation of return level and the

return period, a generalized extreme value distribution was

observed to fit well for peak discharge at all the study

locations.

Figure 7a presents the results of the comparison of peak

runoff and its return periods for 2–30-year return periods.

From Fig. 7a, though the peak discharges from simulated

rainfall was lower than the peak discharges from the

observed rainfall at some stations, the differences in

magnitude was low. The mean and SD of the difference in

peak runoff calculated across all the stations was 1.56 and

Fig. 6 Scatter plot of peak

rainfall intensities obtained

from observed and simulated

extreme rainfall events for 1-h,

2-h, and 3-h duration at study

locations in India

Table 1 Error in the correlation

between event duration and

peak intensity, and total rainfall

depth and peak intensity of

observed and stochastically

generated rainfall

City Duration vs. peak intensity Total depth vs. peak intensity

Kobs Ksim E = Kobs- Ksim Kobs Ksim E = Kobs- Ksim

Gangtok 0.23 0.32 - 0.09 - 0.17 - 0.17 0.00

Guwahati 0.26 0.25 0.01 - 0.18 - 0.34 0.16

Dehradun 0.01 0.11 - 0.10 - 0.23 - 0.28 0.05

Jabalpur 0.14 0.17 - 0.03 - 0.22 - 0.24 0.02

Bombay 0.20 0.22 - 0.02 - 0.08 - 0.12 0.04

Hyderabad 0.16 0.19 - 0.03 - 0.16 - 0.27 0.11

Chennai 0.17 0.17 0.00 - 0.22 - 0.24 0.02

Trivandrum 0.13 0.11 0.02 - 0.21 - 0.29 0.08

Ahmadabad 0.14 0.28 - 0.14 - 0.21 - 0.13 - 0.08

Jaipur 0.15 0.18 - 0.03 - 0.19 - 0.28 0.09

Mean - 0.04 0.05

SD 0.05 0.07

K Kendall correlation
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2.11 m3/s, respectively. The mean difference observed at

Bombay (4.9 m3/s) was the highest, followed by Trivan-

drum (4.4 m3/s). Jabalpur had the lowest mean difference

(- 0.6 m3/s). Further, a comparison of concurrent return

periods of peak discharges from observed and simulated

rainfall events was carried out to check the changes in

frequencies of peak discharge. These return period and

return period comparisons are presented in Fig. 7b. The

increase in return periods of peak runoff from simulated

events compared to peak runoff from observed events was

due to the underestimation of peak discharge (Fig. 7a).

Though the difference in return periods seems high, the

difference in corresponding peak runoff was low. For

instance, a 30-year observed event at Bombay had a 36.7-

Fig. 7 Comparison of return levels and return periods of peak discharge from observed and simulated rainfall events
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year return period simulated, but the difference in peak

discharge was only 5.84 m3/s (5.7%, from 102.42 to

96.58 m3/s) and, similarly, 6.58 m3/s (8%, from 82.53 to

75.95 m3/s) for a discrepancy in return period from

30 years (observed) to 46.23 years (simulated) at Trivan-

dram. However, overall, the properties of both rainfall and

peak discharges were well replicated by the model.

3.3 Application to 15 min time interval extremes
in the United States

Extreme rainfall events at US stations were identified in a

manner similar to that for India stations, except that the

peak rainfall intensities were taken for 15-mins. It was

noted that the pattern of dimensionless rainfall mass curves

in the US stations had a lower dependence on the duration

of the rainfall. Hence all the extreme events at each station

were modeled together irrespective of the duration. The

number of time steps equal to 12 was observed to perform

better and the number of rainfall states used was 11. The

results of performance are presented in Figs. 8 and 9 as the

mean and standard deviation of NSE for different stations

within each climate region of the US. The classification of

climate regions was obtained from Karl and Koss (1984).

From Fig. 8, the mean of NSE of peak rainfall intensity and

peak discharge at different climate regions varied from

0.65 to 0.99, and the standard deviation from 0 to 0.25.

Similar to India stations, fourth quartile storms were

slightly overestimated at all the locations (Fig. 9). How-

ever, the fraction of overestimation was less than 0.2 in

most of the cases. Lower values of standard deviation

(Figs. 8 and 9) indicate that the performance of the model

was consistent at all the study locations.

4 Discussion

The time distribution of extreme rainfall events is one of

the preeminent properties that govern the design of various

urban stormwater management structures. A model used

for characterizing these properties must be robust and

computationally efficient while requiring a small number

of parameters to produce satisfactory results. Model

development should also entail a comprehensive perfor-

mance evaluation of the developed methods to characterize

the time distribution of extreme rainfall events. In this

study, utilizing the inherently stochastic nature of rainfall

occurrence, a first-order multistate Markov model was

developed for modeling the time distribution of dimen-

sionless extreme rainfall events. The developed model was

applied to hourly rainfall data at ten stations in India and

tested on 15 min rainfall data at 205 stations in the United

States. Further, a comprehensive performance evaluation

was carried out to verify the efficiency of the model. The

performance comparisons for India (US) include: 1-h (15-

min), 2-h (30-min), 3-h (45-min) peak rainfall intensities;

fraction of first, second, third, and fourth quartile storms;

the correlation of peak rainfall intensity with duration and

total rainfall depth; and, return level and return periods of

peak discharges when the simulated extreme rainfall events

were applied over a hypothetical urban catchment. Results

indicated that the model was able to reproduce the time

behavior of extreme rainfall events fairly well.

Identification of extreme rainfall events mainly requires

a threshold to define a rainfall pulse as rainy or non-rainy,

an event separation time to delineate independent rainfall

events and, extraction of extremes from among all the

rainfall events. Based on (Subramanya 1994; Deodhar

2008), precipitation of intensity of at least 1 mm/h was

classified as rainfall, below which any precipitation was

Fig. 8 Mean and standard deviation of NSE of all the US stations in each climate region
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considered a drizzle (Subramanya 1994; Deodhar 2008).

Selecting a different threshold would generally not affect

the study of extreme rainfall behavior, as extremes possess

a higher magnitude and intensity of rainfall. Event sepa-

ration time ranging from 1 to 12 h, is common in urban-

based studies (Park et al. 2013; Balistrocchi and Bacchi

2017; Jun et al. 2017; Nojumuddin et al. 2018). However, a

minimum of 3 h (Adams and Papa 2000) and a maximum

of 12 h (Hassini and Guo 2016) are recommended to avoid

the separation of correlated rainfall events and the grouping

of events that are too far apart, respectively. There are

many methods developed to identify the appropriate event

separation time based on the literature (Joo et al. 2013; Lee

and Kim 2018). However, the commonly-used 6-h sepa-

ration time (Kao and Govindaraju 2007; Bezak et al. 2016)

was adopted in this study.

Further, to extract only extreme rainfall events, uni-

variate annual maximum or peak-over-threshold (Coles

2001) methods that consider only one variable (usually

peak intensity) are generally used. However, an approach

that considers multiple properties of rainfall would be more

appropriate to define the extreme nature of rainfall,

because, based on the intended design problem, different

properties of extreme rainfall events (R, I and, D) will

govern the design (Kao and Govindaraju 2007). In the

design of urban water management structures, the total

magnitude of rainfall and the peak intensity may have a

higher impact on the design. Hence a bivariate peak-over-

threshold with total rainfall and peak intensity as critical

variables was adopted in this study to extract extreme

rainfall events.

An efficient stochastic RMC generation model must

preserve the joint behavior of the different properties of a

rainfall event. In this study, a comparison of linear corre-

lation was carried out between I and R, and I and D of

observed and simulated rainfall events. A Kendall’s

correlation was selected as an index to measure the cor-

relation as it is a non-parametric measure and does not

assume normality of the error. However, the use of other

indexes such as Pearson and Spearman correlation could

also result in similar comparisons. The error in the Kendall

correlation of observed and simulated extreme events

properties was less than 0.1 at more than 80% of the

stations.

The quartile of an RMC gives an idea of the shape of the

mass curve and the quarter of the event duration where the

maximum amount of rainfall occurred. First quartile storms

usually receive most of their rainfall in the first half of the

storm resulting in an early peak in the DRH, while fourth

quartile storms receive most of their rain in the second half,

causing a delayed peak. Conversely, fourth quartile storms

might generate higher peaks than first quartile storms as the

catchment response increases with increasing duration of

rainfall due to minimized losses. It is, thus, very important

that generated synthetic RMCs accurately reproduce the

number of storms in different quartiles. In our study, the

Markov model tended to overestimate the number of fourth

quartile storms at most stations. This overestimation may

lead to a higher number of delayed peak discharges, and

higher magnitude peak discharges being simulated com-

pared with those obtained from observed rainfall events.

When both observed and simulated rainfall events were

run through a simple hypothetical urban catchment, the

resulting discharges corresponded well. However, at a few

stations (for example, Trivandrum) a small difference

(7 m3/s) in discharge led to a higher difference in return

period (16 yrs). The higher difference in the return period

for a small difference in peak discharge was possibly due to

the small value of the GEV shape parameter leading to a

thin and asymptotic upper tail, or due to a negative shape

parameter in simulated peak discharge, while the observed

had a positive one. The shape of the upper tail of the

Fig. 9 Mean and standard deviation of the error in fraction of first to fourth quartile storms at all the US stations in each climate region
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distribution of peak discharge could be attributed to the

simulation method for the rainfall hyetograph, from which

the overestimation of the number of fourth quartile storms

(Fig. 5) resulted in a higher number of delayed and higher

magnitude peak discharges. This overestimation of fourth

quartile storms and the differences in the peak discharges

are mainly due to differences in the time distribution of

rainfall as all other variables are kept the same for both

observed and simulated events. Though the simulated

rainfall events led to higher peak discharges than did the

observed rainfall events, the mean of the peak discharge

was lower in the discharges from simulated events at all the

stations. This reduced mean is the main reason for the

reduced return levels of discharges from simulated rainfall

events.

Generally, the properties of rainfall events are modeled

to identify the resulting peak discharge, which is a deciding

variable for the design of various urban water management

structures. From a comprehensive performance evaluation,

the multistate FMM was able to reproduce most of the

properties of extreme rainfall events and thereby to

increase the quality of the input rainfall hyetograph to

hydrological models. The proposed model efficiently cap-

tures any possible shape of observed dimensionless

extreme rainfall events, as stochastic occurrences of rain-

fall are generated at each time step. In this study, empiri-

cally calculated transition probabilities rather than

estimated parameters were used, which eliminated uncer-

tainty due to parameter estimation. Generally, the quantity

and the quality of the data used, and the presence of sudden

bursts in the hyetographs (as might be the case with outliers

or rare events) introduces uncertainty in Markov chain-

based models. To come to a definitive conclusion, a sep-

arate uncertainty analysis would be needed. Such an

analysis is, however, beyond the scope of the current study.

5 Conclusions

A stochastic model based on first-order multistate Markov

model was developed to characterize the time distribution

of a dimensionless form of extreme rainfall events. The

methodology was tested on hourly rainfall data at 10 sta-

tions in India, and 15-min rainfall data at 205 stations in the

United States. The model was able to reproduce peak

rainfall intensities at several locations in India and the US

with high efficiency. The percentage of rainfall events

falling in first to fourth quartile storms were also simulated

with a low error at almost all the locations. A comparison

of the correlation of peak rainfall intensity with total depth

and duration of rainfall also showed the error in the cor-

relation was minimal. In general, the proposed method was

able to characterize the time behavior of extreme rainfall

events very well at a wide range of geographical and cli-

matological regions, which is important for designing

various urban water resources management structures. The

return levels and return periods of the peak discharges

obtained using simulated extreme rainfall events matched

well with those obtained using observed data. Accurate

estimation of peak discharges can reduce problems related

to under design, such as flooding and those related to over

design, which may lead to uneconomical construction and

maintenance. The results of this study are specific to India,

and the US. Methodologies and approaches developed are

widely applicable.
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