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provides a viable strategy to robustly evolve embedded failure surfaces in
3D.
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1. Introduction

In recent years, the finite element community has focused attention on
a class of embedded interface methods that allow cracks to be oriented
arbitrarily with respect to the underlying finite element mesh. Both the
Generalized/eXtended Finite Element Methods (G/X-FEM) [1, 2, 3, 4] and
the Strong Discontinuity Approaches (also known as embedded FEM or E-
FEM) [5, 6, 7, 8], facilitate the treatment of cracks as arbitrary interfaces
by enhancing the kinematics of the underlying mesh. By treating cracks
as arbitrary interfaces, these methods offer the potential for addressing the
pathological mesh-dependence of the interface element approaches [9, 10].
However, since the cracks are now arbitrary with respect to the underlying
volume mesh, a tracking mechanism separate from the bulk mesh needs to
be introduced to locate the crack surface within the finite element mesh.

Within the embedded finite element methods (G/X-FEM and E-FEM),
crack-tracking algorithms can be broadly classified into two major categories:
(a) explicit approaches, and (b) implicit approaches. In the explicit meth-
ods, cracks are represented as a collection of piecewise segments in 2D, and
piecewise triangular and quadrangular surfaces in 3D. Early efforts in this
direction discretized the evolving crack surface through a C0 continuous sur-
face formed from a union of the triangles and quadrilaterals that separate a
cracked tetrahedral element in two (see Areias and Belytschko [11], Gasser
and Holzapfel [12]). However, with these approaches in 3D, one needs to
modify the normal to the local crack plane in an ad hoc manner if a globally
continuous crack path is desired. A more general methodology is to define
two completely independent meshes, namely the underlying volume mesh and
an independent triangulation of the crack surface (see for e.g. [13, 14, 15]).
The reader is referred to Garzon et al. [16] and the references therein for
a detailed description of these approaches and the current state-of-the-art.
While these approaches have the advantage that the element size has no
bearing on the accuracy of the crack surface representation, they also require
a very specific machinery to handle the computational geometry challenges
not available in most general purpose finite element software.

By contrast, in implicit approaches, the crack surface is represented by
a zero iso-surface of a signed-distance field associated with the nodes of the
underlying finite element mesh. Each crack is represented by two orthogonal
level set functions, one associated with the crack surface and the second asso-
ciated with the crack front such that the intersection of the zero iso-surfaces
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of these two functions precisely locates a crack front (see Möes et al. [17]).
In addition, Hamilton-Jacobi type equations are solved over whole or part
of the domain using finite difference methods (see Gravouil et al. [18]) or
Fast Marching Methods (see Sukumar et al. [19, 20]) to evolve these level set
functions as the crack propagates. More recently, improvements to these algo-
rithms have also been proposed in Duflot [21] and Colombo and Massin [22].
Fries et al. [23] have also developed hybrid implicit-explicit approaches that
combine the advantages of the aforementioned methods.

In the context of embedded finite element methods, Oliver et al. [24]
developed an alternate implicit strategy that solves a Laplace equation with
an anisotropic conductivity tensor as a global crack-tracking methodology.
In this methodology, all possible crack paths are tracked at once through a
nodally defined propagation field. Any given crack then corresponds to an
iso-surface value of this field and is easily identified. The idea is remarkably
simple yet retains all the advantages associated with the level-set methods
and is arguably more suited to being integrated in an existing general purpose
finite element framework. Since the original paper by Oliver et al. [24],
the approach has been extensively used in both the E-FEM and X-FEM
frameworks in several studies (see [25, 26, 27, 28, 29, 30, 31, 32]). In 2D,
a comparison between the global and explicit crack tracking approaches is
presented in Dumstorff and Meschke [33, 34].

Jäger et al. [30, 31, 32] in a series of articles present a thorough analy-
sis of the global crack tracking approach when used in conjunction with the
phantom node method to model crack propagation in 3D. They compare and
contrast the method’s performance with the alternatives available and high-
light the method’s promise to model arbitrary crack propagation problems
in 3D. However, they also report that the results of the global approach are
sensitive to the Dirichlet boundary conditions applied to the crack-tracking
problem. In Jäger et al. [32], they propose geometry-based, and mesh-based
strategies to enforce Dirichlet boundary conditions to circumvent this sensi-
tivity.

In the current work, we revisit this sensitivity analysis and demonstrate
the spurious behavior that could result for certain choices of Dirichlet bound-
ary conditions for the global crack-tracking method. To resolve this difficulty,
we propose an alternative approach that solves the anisotropic Laplace equa-
tion in a more localized domain just ahead of the crack front. It is noteworthy
that similar ideas have been proposed earlier in Feist and Hofstetter [26] and
Armero and Kim [27]. In the Partial Domain Tracking Algorithm of Feist
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and Hofstetter [26], the crack-tracking problem is solved for a subset of the
domain that is potentially intersected by a crack. Armero and Kim [27] pro-
pose an element local solution where the Laplace problem is solved for one
front element at a time. However, the approach presented here is distinct for
two reasons (a) we demonstrate that a local solution is required not just from
an efficiency perspective but also to prevent spurious crack path, and (b) the
local solution procedure we are advocating involves all elements just ahead of
the crack front unlike either of the methods described above. Finally, while
we use the Hansbo method [3] to enhance the kinematics of the elements
intersected by the discontinuity, the crack-tracking approach presented here
is equally applicable to both the X-FEM and E-FEM techniques.

The paper is organized as follows. In Section 2, we discuss the governing
equations and the associated weak formulations. In Section 3, we briefly
summarize the spatial discretization used. In Section 4, we first motivate
the need for the local crack-tracking approach and then describe the crack
propagation algorithm in detail. In Section 5, we illustrate the performance
of the method on several benchmark problems. Finally, in Section 6 we offer
some concluding remarks and an outlook for our work.

2. Governing equations and weak formulation

We begin by considering a domain Ω (an open subset in R
3) and its

boundary Γ as shown in Figure 1. Further, we consider Γc to represent a
crack surface with Γ1

c
and Γ2

c
representing the initially coincident crack faces.

The governing equations for small deformation elastostatics are now given in
direct notation as:

∇ · σ = 0 in Ω,
u = ud on Γd,

σ · n = h on Γn,
σ · n = 0 on Γ1

c
,

σ · n = 0 on Γ2

c
,

(1)

where σ and u denote the Cauchy stress and displacement fields in domain
Ω, respectively, and n denotes the unit outward normal. The displacement is
fixed to the prescribed field ud on the Dirichlet portion of the boundary, and
h denotes the prescribed traction on the Neumann portion of the boundary.
The crack surfaces Γ1

c
and Γ2

c
are assumed to be traction free. Further,

assuming small deformations, strain and displacement fields can be related
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Ω

Γd

Γn

Γ2

c

Γ1

c

Figure 1: Notation for the model problem. Domain Ω, the Dirichlet boundary Γd and
the Neumann boundary Γn with prescribed non-zero tractions are as shown. Γ1

c and Γ2
c

represent the initially coincident crack faces. The complementary part of the boundary is
traction free. The normal to the boundary of a domain is considered to point outwards
from the domain.

as:
ε = ∇su, (2)

where the symbol ∇s represents a symmetric gradient operator. Finally, we
assume a linear elastic response for the constitutive relationship in the bulk
domain such that:

σ = C : ε in Ω, (3)

where C denotes the fourth-order elasticity tensor. The weak form of the
governing equations described above can be derived as:

Find u ∈ U such that:
∫

Ω

∇sw: C : ∇su dΩ =

∫

Γn

w · h dΓ ∀w ∈ V , (4)

where w represent the appropriate weight functions, U and V are spaces of
sufficiently smooth functions for the displacements and variations, respec-
tively.
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3. Spatial discretization

We discretize the domain Ω into a set of standard, non-overlapping hex-
ahedral elements. We enhance the kinematics of the cracked elements by
means of a Heaviside function. In particular, we follow the now standard
Hansbo method (also known as the phantom-node method) to incorporate
the embedded discontinuity. For the sake of completeness, a brief summary
of the constructed approximation for the discontinuous displacement field
and the resulting discrete matrices is provided below. The reader is referred
to Hansbo and Hansbo [4, 3], Mergheim et al. [35], and Song et al. [36] for a
much more detailed description.

(a) An element cut by a crack
surface

(b) Child element: Ω1
e

(c) Child element: Ω2
e

Figure 2: Cut elements in the Hansbo formulation. The black squares represent the nodes
of the background mesh, the hollow square nodes are the phantom nodes and the blue
circles are the interface vertices. For the partial elements, integration is carried over the
filled region that represents the material part of the element.

For uncut elements, the displacement field within the element is con-
tinuous and is constructed in a standard manner. For the cut elements,
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displacement field is discontinuous and constructed independently on either
side of the crack such that:

u(x) =

{

u1 if x ∈ Ω1

e,
u2 if x ∈ Ω2

e.
(5)

where Ω1

e and Ω2

e denote the volume on either side of the discontinuity (see
Figure 2). The local displacement approximation is constructed in terms of
the nodal displacements and functions with compact support such that:

um(x)|Ωe
=

i=nen
∑

i=1

HmNm

i ui m = 1,2, (6)

where nen represents the number of nodes per finite element. The Heaviside
function determines if the shape functions are active on one or the other side
of a discontinuity:

Hm(x) =

{

1 if x ∈ Ωm

e ,
0 otherwise.

(7)

In practice, the above formulation is identical to replacing each cut element
with two partially integrated elements (see Figure 2 for a representative case.
Partial elements can be constructed in a similar manner for all other possible
configurations of cuts.)

On introducing the above discretization into the variational formulation
(4), we get the discrete statement of equilibrium:

Ku = F, (8)

where K represents the global stiffness matrix and u denotes the vector
of nodal displacements. The right hand side vector of external forces F is
assembled from element contributions to the traction boundary conditions
on the Neumann boundary:

F = A
e∈Euc

∫

Γne

NTh dΓe +
2

∑

m=1

A
e∈Ecut

∫

Γm
n e

NTh dΓe, (9)

where Euc denotes the set of uncut elements and Ecut denotes the set of
cut elements. The shape function matrix is denoted by N, and h denotes
the vector of applied tractions, and A denotes the assembly operator. For
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cut elements, integration is only performed on the material portion of the
Neumann boundary: Γm

n e = Γne ∩ Ωm

e . Finally, the stiffness matrix K is
assembled as follows:

K = A
e∈Euc

∫

Γne

BTDB dΩe +
2

∑

m=1

A
e∈Ecut

∫

Ωm
e

BTDB dΩe, (10)

where the matrix of shape function derivatives is denoted by B and D repre-
sents the elasticity tensor. Integration of the weak form for the created chil-
dren is only performed on the material side of the element. At the expense of
accuracy, for partial elements, the calculated stiffness matrix is simply scaled
by the volume fraction on the material side of the element. Strictly speaking,
this strategy is only correct for constant strain triangular and tetrahedral el-
ements. Several strategies exist for ensuring the discontinuous functions are
accurately integrated [37, 1, 38, 39, 40] but for the purpose of this study the
volume fraction strategy proved sufficient.

4. Crack propagation

In embedded methods, a complete description of a crack propagation
algorithm requires two conditions to be specified for every candidate element.
The first one evaluates whether the element has failed while the second one
determines the intersection points between the crack surface and the newly
failed element.

4.1. Failure criterion

We follow a maximum principal stress based criterion to advance the
crack. Consider a spectral decomposition of the Cauchy stress tensor:

σ =
a=3
∑

a=1

λana ⊗ na. (11)

Accordingly, a candidate element is considered to have failed if the following
condition holds:

λmax − σf > 0, (12)

where λmax = max(λ1, λ2, λ3) represents the maximum eigenvalue from a
spectral decomposition of the Cauchy stress tensor σ and σf is a material
parameter representing the tensile strength of the material.
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It is noted that the formulation presented in equation (1) does not include
cohesive tractions on the surface of the crack. Typically the use of a stress
criteria, such as the one proposed in equation (12), without the inclusion
of a mechanism to remove the stress singularity (e.g. cohesive tractions)
results in a method that will exhibit a strong mesh dependence associated
with the singularity. In other words, for any arbitrary loading, the solution
will always exceed the stress criteria under mesh refinement. However, in
this work we are focused solely on the issues associated with determining the
path of the fracture once the propagation criteria has been reached rather
than the physical applicability of the propagation criteria.

It is also noteworthy that we assume that the crack propagates an entire
element at a time i. e. crack does not terminate within an element so that the
crack front always lies along boundary of the underlying finite element mesh.
Together with the above assumption of a lack of a fracture process zone, this
simplification could result in some mesh-dependence of results especially for
fatigue and dynamic fracture applications. However, this limitation can be
addressed through the addition of an appropriate traction-separation law at
the crack surface.

4.2. Crack location

In many explicit crack-tracking approaches, the crack surface is assumed
to be planar within a given element. Under this assumption, in order to
describe the crack plane and its intersections with the underlying volume
element, we need to define a crack normal and a given point on the crack.
The maximum principal stress direction given by the eigenvector n associ-
ated with λmax serves as the crack normal. Assuming the crack is continuous
as it propagates, previously fractured neighboring elements provide a spatial
point that lies on the crack. This is a viable strategy in 2D and yields a
unique definition of the crack surface. However, in 3D, under the assump-
tions of a locally planar crack, this is an over-constrained problem as the
number of points that lie on the crack surface depends on the number of cut
neighbors. In fact, the simplest configuration with just one cut neighbor is
still overconstrained as we now have to define a plane with two points and
a normal. Clearly, in more general scenarios enforcing continuity as well as
the correct crack normal is rather challenging and requires ad hoc solutions
(see Areias and Belytschko [11] and Oliver et al. [24] for a discussion). Oliver
et al. [24] presented a remarkably simple global tracking algorithm to cir-
cumvent this difficulty. In the following discussion, we first summarize the
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global crack-tracking method presented by Oliver et al. [24] in Section 4.2.1.
In Section 4.2.2, we illustrate the pathological cases for the global method
by means of a simple example. Finally, in Section 4.2.3, we propose an
alternative solution to address the pathology.

4.2.1. Global crack-tracking method

In the global crack-tracking method, Oliver et al. [24] proposed solving
for a scalar field, θ, that tracks all potential crack trajectories in the domain.
Any given crack is then tracked in 3D by an iso-surface of this scalar field θ.
To lend concreteness to the formulation, let us consider a crack with a given
normal n. Recalling that θ = constant on a crack surface, from the definition
of a directional derivative:

(I− n⊗ n) · ∇θ = 0. (13)

The above equation represents a flux like quantity and enables us to recast
the equation in terms of a classical Laplace equation with anisotropic material
constant K = I− n⊗ n, so that:

q = K · ∇θ = 0 in Ω, (14)

∇ · q = 0 in Ω, (15)

and the natural boundary condition (again by construction)

q ·m = 0 on ∂Ω. (16)

where m represents the outward pointing normal to the boundary of the
domain. The above equation can then be solved on the same mesh as the
mechanical problem in a straightforward manner. This problem is always
solved on the initial background mesh, i.e., the cut elements are not replaced
by their superposed counterparts from the Hansbo formulation. It was also
suggested that to remove any numerical artifacts arising from the singular
nature of the “conductivity” tensor K, a potentially “small” perturbation
value could be added to offset it such that we use K = (1 + ε)I − n ⊗ n

in computations instead. Notice that the above definition of the boundary
value problem (equations (15) and (16)) is ill-posed unless Dirichlet data
are specified. In order to get a non-trivial solution, θ values at two nodes
that do not lie on the same iso-surface are arbitrarily specified. Since the
equation (15) is a classical field equation that is commonly used to solve
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Algorithm 1 Algorithm summarizing the steps involved in modeling crack
propagation with the global crack-tracking approach

Begin initialize

Modify mesh topology:

Generate overlapping elements for all elements intersected by

a pre-specified fracture

Generate a list of elements that lie at the crack front: Efront
Thermal solve for θ:

Get normals in pre-fractured elements from the crack plane

Get conductivity tensor:

For pre-fractured elements: K = (1 + ε)I− n⊗ n

For all other elements: K = εI
Apply Dirichlet boundary conditions at arbitrarily chosen loca-

tions

Get the iso-surface value to track the crack

End initialize

Set fracturesResolved = false
while fracturesResolved = false do

Mechanical solve

Check for failed elements in Efront:
Store all failed elements in a list of elements that have failed at ith

iteration E i
cut

If E i
cut is empty, set fracturesResolved = true

if fracturesResolved is false then

Thermal solve for θ:
Get conductivity tensor for every element: K = (1 + ε)I− n⊗ n

Apply Dirichlet boundary conditions for all nodes N ∈ Ecut
Modify mesh topology:

Get intersection points for all elements in E i
cut based on the isosur-

face values for θ
Generate overlapping elements for all elements in E i

cut

Update the lists Ecut, Efront and clear the list E i
cut

end if

end while
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heat-conduction problems, we will refer to the crack-tracking equation as a
thermal problem for convenience.

In the original method [24], Oliver et al. did not explicitly discuss the
treatment of pre-specified embedded fractures in the method. In order to
clarify our implementation of this method, we briefly discuss our approach for
their inclusion here. The primary difficulty with the inclusion of embedded
pre-fractures arises from the absence of the nodal field θ at the initialization
stage. The nodal field θ is required at the problem initialization stage to
identify the elements that are crossed by the pre-specified fracture so that
they can be kinematically enhanced. One could always initialize the field as
a signed-distance function to a crack. However, this methodology forces us to
track every crack as θ = 0 which could be problematic for the case when there
are multiple cracks in the domain. Instead, we explicitly split elements with
the provided input of cracks as piecewise planar surfaces at the initialization
step. Now, at the end of this step the nodal field θ is initialized with Dirichlet
boundary conditions at arbitrarily specified points and a conductivity tensor
specified as K = (1 + ε)I − n ⊗ n in elements that are pre-fractured. The
normal n in these elements is given by the normal to the piecewise planar
crack surface. In all other elements, the conductivity tensor is specified as
K = εI. At the end of the initialization phase, for every crack, an arithmetic
mean of the θ values is evaluated at the crack front to obtain the iso-surface
value that tracks the crack. In other words, for a crack Ci:

θi =
1

ncut

n=ncut
∑

n=1

θn. (17)

where ncut represents the number of cut edges, θn denotes the value of the field
at the nth cut edge, and θi is the iso-surface label to track the crack Ci. For
every subsequent thermal solve, the nodes of all the cracked elements serve
as the Dirichlet boundaries and the Dirichlet boundaries used for initializing
the field are no longer necessary. A summary of the staggered mechanical
and thermal solution steps is given in Algorithm 1.

4.2.2. Pathologies in the global crack-tracking method

In the discussion above the Dirichlet boundary conditions for θ are little
but a footnote. However, in practice the performance of the algorithm is quite
sensitive to them and can cause highly spurious behavior in the resulting
crack path. Jäger et al. [30, 31, 32] have previously reported this numerical
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sensitivity and suggested geometry and mesh-dependent boundary conditions
as a possible means to address it. This sensitivity is illustrated by means of
a simple example below.

Consider a computational domain of Ω = (0, 1) × (0, 1) × (0, 1) that is
fixed at the boundary y = 0 and is uniaxially stretched at the boundary y = 1
by a prescribed displacement of uy = 0.1 units. The Young’s modulus and
Poisson’s ratio are prescribed as E = 200 units and ν = 0.3. The boundaries
z = 0 and z = 1 are fixed in the z-direction so that we have plane-strain
conditions. We use a structured cartesian grid with 5 divisions in x and y
and 1 division in z. A crack is initialized at y = y∗ and extends to x = 0.2.
We choose y∗ = 0.5 and y∗ = 0.59 for the two example cases and illustrate the
performance. For both examples, at the initialization stage, the boundaries
y = 0 and y = 1 are treated as Dirichlet boundaries and θ is specified as -1
and 1 respectively on these boundaries. For subsequent solves, the value of
θ is retained for the nodes of cut elements and only these nodes then serve
as Dirichlet conditions.

(a) Crack initialized at y∗ = 0.5 (b) Crack initialized at y∗ = 0.59

Figure 3: A pseudocolor plot of the scalar field θ, principal directions shown as cell-centred
blue lines and the resulting crack path for the two example cases: crack is initialized at
y∗ = 0.5 (on left) and y∗ = 0.59 (on right).

The resulting crack path for both these cases just before the crack com-
pletely separates the domain into two disjoint sets is shown in Figure 3. For
a clearer understanding, we have also plotted the maximum principal stress
directions in the elements intersected by the crack, shown as cell-centred blue
lines in Figure 3. Notice that while for the first case when y∗ = 0.5, the crack
path looks to conform well to the crack normals (Figure 3(a)), there is an
unnatural kink appearing in the second case when the crack first crosses the
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surface y = 0.6 (Figure 3(b)). In the first element that appears at this tran-
sition, the crack surface and the directions of the maximum principal stress
do not seem to agree.

Figure 4: A pseudocolor plot of the scalar field θ just before the crack first crosses the
surface y = 0.6. Crack is initialized at y∗ = 0.59. It can be noticed that the gradient of
the scalar field in the element at the crack front is small.

In order to understand this discrepancy better, we focus on the step
immediately before this transition occurs in Figure 4. We now notice that
the observed pathology appears as the crack surface first enters a region
where θ ≈ constant. In such regions, the concept of an iso-surface becomes
ill-defined and spurious behavior is more likely. In order for the equations to
serve their intended purpose to track the crack, it is imperative that ∇θ in
the direction perpendicular to the crack surface in the crack-tip elements is
sufficiently large. We also contrast this with the first case where the crack
path behaves in an expected manner and notice that in this case the gradient
in the crack-front elements is always well-defined and the crack never enters
a region with θ ≈ constant.

In our opinion, this is the primary reason for the algorithm’s sensitivity
to the Dirichlet boundary conditions used for the thermal problem. If we
solve the problem again by treating the boundaries y = 0 and y = 1 also
as Dirichlet boundaries in addition to the nodes of the cut elements, the
algorithm performs better because a strong gradient is always ensured in
the elements at the crack front (see Figure 5). The challenge then lies in
identifying the right boundary conditions that result in a robust algorithm.
While this has been addressed by Jäger et al. [32] to some extent where they
prescribe mesh-based and geometry based boundary conditions, we noticed
that spurious behavior could still result if the boundary conditions do not
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Figure 5: A pseudocolor plot of the scalar field θ with a crack initialized at y∗ = 0.59. The
thermal boundary conditions are specified at all the nodes of cracked elements as well as
at boundaries y = 0 and y = 1. A strong gradient is maintained in the elements at the
front and resolves the pathology.

ensure a strong gradient in the elements at the crack front (see Section 5 for
an illustration).

4.2.3. Local crack tracking algorithm

We propose a local crack-tracking algorithm here to address the above
described sensitivity. We propose restricting the solution of the anisotropic
Laplace equation to a local region extending to the elements just ahead of
the crack front. The nodes that belong to the cut faces from elements cut in
the previous step naturally serve as Dirichlet boundary conditions. This also
ensures that in the elements at the crack front, a strong gradient is always
maintained. In other words, the crack-tracking equation can be stated as
follows:
Find θ such that:

q = K · ∇θ = 0 in Efront, (18)

∇ · q = 0 in Efront, (19)

and the boundary conditions:

θ = θn on ∂Eθ = Efront ∩ Ecut, (20)

q ·m = 0 on ∂Efront \ ∂Eθ, (21)

where K = (1 + ε)I − n ⊗ n is the anisotropic conductivity tensor, Efront
denotes the set of elements at the crack front, Ecut denotes the set of cut
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Figure 6: An illustration of the computational domain Efront used in the solution of the
thermal problem in the proposed approach. The top-view of the domain is shown on right
and a three-dimensional representation is shown on the left. In these figures the elements
of Efront are shown as wireframe illustrations, while the crack surface is shown in green.
Note that Efront contains all elements that have a face cut by the crack surface, but are
not already cut themselves.

elements and θn are the nodal solutions for the thermal field calculated at
the previous iteration. Figure 6 shows an illustration of the domain Efront
used for the local solution of the thermal problem.

The maximum principal stress direction, n, is calculated from a “non-
local stress tensor” that is a weighted average of the stress from the elements
in the neighborhood of the crack-tip. We follow the procedure discussed in
Wells and Sluys [41] to obtain the weighted stress σ, such that:

σ =

e=nele
∑

e=1

weσeVe. (22)

where we is an element weighting factor, Ve is the element volume, and nele

denotes the number of elements. The stress in each element σe is given by an
arithmetic mean of the stresses from every gauss point. The weight functions
are calculated as:

ŵ(r) =
1

2
√
π
exp

(−r2

2l2

)

, w(r) =
ŵ(r)

∑nele

e=1
ŵeVe

, (23)

where r is the distance of the element center to the center of the element
at the crack front and l is the decay length that determines the smoothing
radius for the non-local averaging.
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1 

2 3 

4 

(a) Predicted crack path if
only elements cut in the cur-
rent iteration are included in
the domain for the thermal
problem.

1 

2 3 

4 

(b) Predicted crack path if
all elements in the crack
front are included in the do-
main for the thermal prob-
lem.

Figure 7: An illustration of the pathology that results if the thermal problem is not solved
on a domain that includes all elements in the crack front. The red lines represent a top
view of the crack front. The solid lines represent the consolidated crack path and the
dashed lines represent the allowed crack path in adjacent elements. The solid squares
represent the nodal locations that have been solved for the scalar field θ.
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As a quick remark, we point out that solving the thermal equations in
all the elements ahead of the crack front regardless of whether they get split
in the current iteration ensures that the crack path remains smooth as it
propagates. If one chooses to solve the equations in only those elements that
are split in the current iteration, a case could arise where two completely
disconnected elements are split in such a way that they predetermine the
crack surface for the elements connecting them. In this scenario, while the
crack surface in each of these elements will independently conform to the di-
rection of the maximum principal stress in these elements, the global surface
would be erroneous (see Figure 7 for an explanation). Consider a top view
of the crack front as shown in Figure 7(a). The solid red lines represent the
top view of the crack in failed elements while the dashed lines represent the
potential path for a crack surface in the intact front elements. The green
lines represent the direction of the maximum principal stress. Now, consider
a scenario in which only elements 1 and 4 have failed in one step. If the
thermal solve is only conducted in these elements, it may result in a scenario
where the failure surface in elements 2 and 3 is predetermined in a manner
inconsistent with the intended direction of propagation. On the other hand,
if the solution is conducted for all four elements at the same time, the result-
ing solution tries to conform with the direction in all the elements as shown
in Figure 7(b)

Specified Failure Surface

(a) Gaussian Quadrature (b) Nodal Quadrature

Figure 8: A contour plot of the solution for the scalar field θ on a single quadrilateral
element with Gaussian Quadrature (on left) and Nodal Quadrature (on right). The failure
surface is tracked by the zero isoline in the above plot.
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Finally, we utilize a nodal integration procedure to evaluate the local
matrices for the thermal problem. The motivation for the use of nodal inte-
gration is to avoid non-unique failure surfaces that could arise in an element
with bilinear or trilinear shape functions [28]. A simple example of non-
unique failure surfaces may be displayed on a bilinear quadrilateral. Con-
sider a square quadrilateral element that ranges from (-1,1), and has Dirichlet
boundary conditions on three of the nodes ( θ = −1 at (-1,-1), θ = 0.1 at
(1,-1), and θ = 1 at (-1,1) ), leaving only one unspecified degree of free-
dom for θ at (1,1). Assuming that a failure surface is tracked by the zero
iso-surface of θ, these boundary conditions indicate that there is an exist-
ing failure surface that connects the left edge, and the bottom edge of the
element. While we could recognize that the failure surface in this element
is completely pre-determined and treat such elements distinctly, it results in
“special cases” and implementation challenges. Ideally the solution at the
unspecified degree of freedom should be consistent with the existing failure
surface in the element. However, we have observed that Gaussian quadrature
allows a non-unique result. For example, if we specify a principal stress di-
rection of (π/10) with respect to the horizontal axis and apply the proposed
method using Gaussian quadrature, the result is a non-unique pair of failure
surfaces as shown in Figure 8(a). However, if we apply nodal quadrature, the
result is a single unique failure surface as shown in Figure 8(b). While no
mathematical proof is offered here, it appears that the use of nodal integra-
tion reduces the cross-contributions from the diagonal nodes in the resulting
discrete system, preserving the local monotonicity of the field. Although
there may be cases where the nodal integration technique is insufficient, the
method proved sufficient for all the numerical tests we conducted. A more
sophisticated approach such as the marching cubes algorithm of Linder and
Zhang [28] can be adapted to address this issue in a more rigorous way.

Algorithm 2 summarizes the approach and provides the implementational
details. The example presented in Section 4.2.2 is solved again with the
proposed approach and the results are presented in Figure 9. Clearly, the
results do not exhibit any non-physical surface kinks regardless of the initial
crack position in the element. A more thorough validation of the algorithm
is conducted in the next section. To conclude this section, we remark that
the proposed local approach tries to combine the advantages of the explicit
crack-tracking method and Oliver’s global crack-tracking approach. While
the primary goal of the proposed approach is to address pathologies and
sensitivity of the original algorithm to the thermal boundary conditions, we
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Algorithm 2 Algorithm summarizing the steps involved in modeling crack
propagation with the local crack-tracking approach

Begin initialize

Modify mesh topology:

Generate overlapping elements for all elements intersected by

a pre-specified fracture

Generate a list of elements that lie at the crack front: Efront
Specify initial conditions for θ:

Nodes of cracked elements are specified

Get the iso-surface value to track the crack

End initialize

Set fracturesResolved = false
while fracturesResolved = false do

Mechanical solve

Check for failed elements in Efront:
Store all failed elements in a list of elements that have failed at ith

iteration E i
cut

If E i
cut is empty, set fracturesResolved = true

if fracturesResolved is false then

Thermal solve for θ for all elements e ∈ Efront:
Get the maximum principal stress direction from a weighted aver-

aging of stress

Get conductivity tensor: K = (1 + ε)I− n⊗ n

Fix all nodes N ∈ Ecut
Modify mesh topology:

Get intersection points for all elements in E i
cut based on the isosur-

face values for θ
Generate overlapping elements for all elements in E i

cut

Update the lists Ecut, Efront and clear the list E i
cut

end if

end while
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(a) Crack initialized at y∗ = 0.5 (b) Crack initialized at y∗ = 0.59

Figure 9: A pseudocolor plot of the thermal field θ in the element at the crack front and
the resulting crack path for the cases when crack is initialized at y∗ = 0.5 (on left) and
y∗ = 0.59 (on right).

also remark that a more local procedure provides an added computational
benefit.

5. Numerical examples

In this section, we perform several numerical experiments to validate our
approach. We compare our results with available literature. We also compare
the results obtained from the proposed algorithm with the global algorithm
of Oliver et al. [24], where necessary, to highlight its advantages. For all
our numerical studies, we consider a linear-elastic constitutive behavior for
the bulk material. The crack is propagated based on a maximum principal
stress based criteria. Unless otherwise specified, the smoothing radius for
the non-local stress averaging discussed in Section 4 is chosen as 2 elements.
When using the global approach, the perturbation value ε used to offset
the conductivity tensor is chosen as 1 × 10−4. For the local approach, we
use ε = 1 × 10−8. The algorithm has been implemented in GEOS: a flexi-
ble multi-scale, multi-physics simulation environment developed at Lawrence
Livermore National Laboratory [42, 43, 44].

5.1. Interacting cracks

The interacting cracks example is a standard benchmark used to inves-
tigate the performance of the method in simulating curved fractures. The
problem has been extensively studied both experimentally and numerically
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Figure 10: Illustration of the geometry and boundary conditions for the interacting cracks
example.

[45, 46, 47, 48, 49, 50]. The problem set-up is shown in Figure 10. The
geometric parameters used to describe the offset between the two prexisting
notched cracks determine the curvature of the crack path.

For our study, we consider the ratios a/b=0.2, e/b= 0.0595, with b=40
mm, E =200 GPa and ν = 0.3 and a failure stress σf = 15 MPa. We use
a structured mesh of trilinear hexahedral elements with 100 divisions along
the x and y directions and 4 divisions along the z direction. As discussed
in Section 4.2.2, the performance of the algorithm is of interest when the
cracks are close to an element boundary. Therefore, the initial notches are
intentionally positioned at y = 18.81 and y = 21.19 such that the cut lies
at 2.5% of the edge length. The out of plane thickness (i.e. along z-axis) is
considered as 4 mm. The problem is laterally constrained in the z-direction
to replicate plane strain conditions.

The loading is applied incrementally as a kinematic boundary condition
on the boundaries y = ymin and y = ymax such that the boundaries are
displaced by uy = −20 µm and uy = 20 µm respectively in each step. We
initialize the θ values for all the nodes of the element that are cut by a crack
such that all the nodes that lie below a crack surface are assigned a value of
θ = −1 while the ones above are assigned θ = 1. The cracks are then tracked
by the iso-surface values θ = 0.95 and θ = −0.95 respectively.
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(a) Predicted crack path from the pro-
posed local crack-tracking approach for
the interacting cracks example

(b) A zoomed in view of the failure sur-
face

Figure 11: A pseudocolor plot of the stress σyy and a zoomed in view of the resulting
failure surface in 3D
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The results obtained from our simulation at load step 50 are shown in
Figure 11. In Figure 11(a), a pseudocolor plot of the stress component σyy

and a planar view of the predicted crack path is plotted. In Figure 11(b),
we show the resulting failure surfaces in 3D. As they propagate, the cracks
initially tend to avoid each other and curve away from one another before
turning toward one another. Our results show a good qualitative match with
existing studies [46, 47].

Of particular interest here is the comparison of our results with the global
approach described in Oliver et al. [24]. For the global approach, we initialize
the signed-distance field θ using the procedure described in Section 4.2 (also
see Algorithm 1). During the initialization step, the Dirichlet boundary
conditions are specified on the following edges: S1,S2,S3,S4 such that:

S1 = {x : x = 0, y = 0, and0 ≤ z ≤ 4},
S2 = {x : x = 40, y = 0, and0 ≤ z ≤ 4},
S3 = {x : x = 0, y = 40, and0 ≤ z ≤ 4},
S4 = {x : x = 40, y = 40, and0 ≤ z ≤ 4},

On the edges S1 and S2 we specify θ = −1 while on S3 and S4 we specify θ =
1. We report results for the cases when only the cut element nodes serve as
the Dirichlet boundary conditions for the thermal problem (Figure 12(a)) as
well as for the case when the initially specified boundary conditions continue
to be enforced in addition to the cut element nodes (Figure 12(b)).

The algorithm seems particularly sensitive to the relative position of the
crack surface to the finite element mesh. For the case when the two cracks
are located at y = 18.81 and y = 21.19 respectively, the cracks turn back
on themselves as shown in Figures 12(a) and 12(b). When the cracks are
moved to the middle of the element such that the two cracks are located at
y = 19 and y = 21, the performance of the algorithm is slightly better. For
this case, the cracks initially follow the expected path although the failure
surface seems a little jagged as opposed to that in Figure 11(b). We notice
spurious behavior from the algorithm as the fracture tips get close to one
another. In particular, zooming in on the elements at the crack front (see
Figure 13), as discussed in Section 4 we observe again that the performance of
the algorithm is strongly dependent on ∇θ in the elements at the crack front.
Notice that the proposed approach ensures that the elements immediately
ahead of the crack front have a strong gradient while in the global approach
the field approaches a constant value that results in the spurious behavior.
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(a) Predicted crack path from the global algorithm with cracks initiated at y = 18.81 and
y = 21.19 and thermal boundary conditions applied only on the nodes of cut elements

(b) Predicted crack path from the global algorithm with cracks initiated at y = 18.81 and
y = 21.19. Thermal boundary conditions are applied on the nodes of cut elements and on
the edges: S1,S2,S3, and S4

(c) Predicted crack path from the global algorithm with cracks initiated at y = 19 and
y = 21. Thermal boundary conditions are applied only on the nodes of the cut elements

Figure 12: Predicted crack path from the global algorithm for three different cases: (a)
Cracks initialized at y = 18.81, y = 21.19 and boundary conditions applied only on the
nodes of cut elements, (b) Cracks initialized at y = 18.81, y = 21.19 and boundary
conditions applied on the nodes of cut elements as well as at initially specified locations,
and (c) Cracks initialized at y = 19, y = 21 and boundary conditions applied only on the
nodes of cut elements

25



(a) Gradient in the thermal field us-
ing the global approach of Oliver et

al. [24]

(b) Gradient in the thermal field us-
ing the proposed local approach

Figure 13: Comparison of the gradient in the thermal field in the elements ahead of the
crack front using the global and proposed approaches

5.2. Notched beam with holes

We now consider a notched three-point bending specimen with holes as
shown in Figure 14. This example was first investigated experimentally by
Ingraffea and Grigoriu [51]. They reported a high sensitivity in the crack
path to small changes in the initial notch position. Given this sensitivity,
this example has been extensively used as a benchmark for numerical models
to test the predictive capabilities of the method [52, 53, 54, 55]. Consistent
with the experiments, we assign a Young’s modulus of E = 3.102 GPa and
a Poisson’s ratio of ν = 0.35. The failure stress of the material is assigned
as σf = 7 MPa. The thickness in the z-direction is considered as 2 mm. The
mesh used for the computations is generated using CUBIT [56] and consists
of 13000 unstructured hexahedral elements ( see Figure 14(b)).

We constrain the model laterally in the z-direction and vary the notch
position for the three cases studied in the experiment by Ingraffea and Grig-
oriu [51] viz. (a) case 1: a = 6.0 mm, and b = 1.0 mm, (b) case 2: a = 5.0
mm, and b = 1.5 mm, and finally (c) case 3: a = 6.0 mm, and b = 2.5 mm.
We report our results in the Figure 15. The results from the experiment
are also plotted as a means to compare. Clearly, a good qualitative match
is obtained between the numerical results from the proposed local approach
and the experimental results with the crack approaching the right hole each
time.
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(a) Geometry and loading conditions

(b) Finite element mesh used in computations

Figure 14: Illustration of geometry, boundary conditions and the finite element mesh used
in computations for the example problem of notched beam with holes.

27



(a) Predicted
crack path: case
1

O ¢3 

_I 

P 
/ 

,t 

O 

328 T.N. B1TTENCOURT et al. 

(a) (b) 

Fig. 8. Digitized photographs of observed crack trajectory: (a) Example 1, (b) Example 2. 

Results for Example I 

A comparison between the observed and predicted crack trajectories for Example 1 is first 

presented. As mentioned earlier, the crack increment is the only arbitrary parameter in the 

simulation. The convergence of the procedure with respect to the crack increment is illustrated 

in Fig. 9(a). Improvement in matching experimental results is achieved when the step size is 

reduced from 1.0 in. to 0.5 in. and 0.3 in. Further improvement is achieved when the increment 

is reduced in the regions where the ratio of K./K~ is relatively high, where "high" here means 

absolute value greater than zero and less than about one-tenth. These regions are near both holes. 

Using a variable increment from 0.3 in. to 0.05 in., it was possible to match very accurately the 

crack path in the region where the experimental results show the crack intersecting the hole 

[Fig. 9(b)]. 

Results for Example 2 

The crack trajectory was also predicted for Example 2 with a different initial notch 

configuration. A comparison between observed and predicted crack trajectories is presented in 

Fig. 10. In this case the influence of the upper hole and the direction of approach of the crack 

are such that a relatively large increment still yields very good results. 

Effects of method for computing stress intensities and trajectory 

The quasi-automatic procedure can be used to compute stress intensity factor histories. In 

addition, the effects on crack trajectory of the different stress intensity factor calculation methods 

and the different mixed-mode theories can be assessed. Such assessments were performed for 

Example 1. 

Use of the three mixed-mode interaction theories, with a consistent use of the modified crack 

closure integral technique, resulted in crack paths with no significant differences, as shown in 

Fig. 11. 
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absolute value greater than zero and less than about one-tenth. These regions are near both holes. 
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configuration. A comparison between observed and predicted crack trajectories is presented in 

Fig. 10. In this case the influence of the upper hole and the direction of approach of the crack 

are such that a relatively large increment still yields very good results. 

Effects of method for computing stress intensities and trajectory 

The quasi-automatic procedure can be used to compute stress intensity factor histories. In 

addition, the effects on crack trajectory of the different stress intensity factor calculation methods 

and the different mixed-mode theories can be assessed. Such assessments were performed for 

Example 1. 

Use of the three mixed-mode interaction theories, with a consistent use of the modified crack 

closure integral technique, resulted in crack paths with no significant differences, as shown in 

Fig. 11. 
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Figure 15: A comparison of predicted and observed crack trajectories for the notched beam
with holes problem. On left, we plot the predicted crack trajectories from the proposed
local crack-tracking approach for the three cases investigated experimentally by Ingraffea
and Grigoriu [51]. On right, we plot the digitized photographs of the experimentally
observed crack path. 28
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(a) Problem geometry and boundary
conditions

(b) Predicted crack path from the pro-
posed local crack-tracking approach

Figure 16: Figure illustrating the geometry and loading conditions for the L-shaped panel
(on left) and the crack path predicted by the proposed local crack-tracking approach at
an applied displacement of u = 0.2 mm (on right)
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(a) Finite element mesh used for the
L-shaped panel benchmark

(b) A zoom of the mesh at the re-
entrant corner. The orange planar
surface is the initial flaw introduced
in the elements at the re-entrant cor-
ner

Figure 17: Figure illustrating the finite element mesh used for the L-shaped panel test (on
left) and the extent and orientation of the intially introduced flaw (on right)
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5.3. L-shaped panel

We now model an L-shaped panel previously investigated experimentally
in Winkler et al. [57] and reproduced numerically in several two and three-
dimensional studies since [28, 58, 30, 33]. The geometry and the loading
conditions are shown in Figure 16(a). We use a structured mesh of 13086
trilinear hexahedral elements (Figure 17). Consistent with earlier studies, we
use a Young’s modulus of E = 25.84 GPa and a Poisson’s ratio of ν = 0.18.
We use a failure stress value of σf = 3 MPa. As we do not allow for crack
initiation, a flaw (the size of one finite element) is introduced in the elements
at the re-entrant corner as shown in Figure 17.

We apply the boundary conditions incrementally via displacement con-
trol, with the nodes at the indicated boundary displaced by u = 0.02 mm in
each load step. The resulting crack-path is shown in Figure 16(b) at an ap-
plied displacement of u = 0.2 mm. The crack initially curves upward before
subsequently straightening as it approaches the right edge. The predicted
crack path seems to be in good agreement with earlier studies [28, 30, 58].

5.4. Three-point bending test with an initially skewed notch
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(a) Geometry and loading conditions
for the three point bending problem
with an initially skewed notch
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(b) Top view of the notch

Figure 18: Problem set-up and boundary conditions for the three point bending problem
with an initially skewed notch

As a final example, we consider a three-point bending specimen with an
initial notch at a 45 degree inclination to the plane of the cross section of the
beam (see Figure 18). This problem has been investigated experimentally
as well as in several computational studies before [59, 17, 58]. This example
serves as a good benchmark to investigate non-planar crack growth as the
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Figure 19: Finite element mesh used in computations for the crack twisting benchmark.

crack is expected to gradually twist around the direction of propagation and
align itself with a direction consistent with the mode I loading conditions.

Consistent with earlier studies, we choose a Young’s modulus of E = 2.8
GPa, and Poisson’s ratio of ν = 0.38. A failure stress value of σf = 7 MPa
is used. The geometry and boundary conditions are described in Figure 18.
We use a structured mesh of 8624 trilinear hexahedral elements as shown
in Figure 19. The value of the thermal field θ in the nodes of the elements
cut by the pre-specified notch is initialized as a signed-distance to the crack
such that the iso-surface θ = 0 tracks the crack. In order to compare, the
predicted crack trajectory and the experimentally observed crack trajectory
are plotted side-by-side in Figure 20. As seen from Figure 20, the predicted
and observed crack trajectories are in good agreement. We also plot the
top-view of the crack surface at different load steps in Figure 21 to better
highlight the twisting behavior exhibited by the crack as it propagates.

6. Conclusion

We presented a local, implicit crack-tracking strategy to model embedded
failure surfaces in three-dimensions. The presented approach relies on the so-
lution of a Laplace equation with anisotropic conductivity. The equation is
solved only in the elements just ahead of the crack front to yield a nodal value
of a sign-distance field that is used to track the crack. The results demon-
strate that unlike the global crack-tracking approach described in Oliver et
al. (Int. J. Numer. Anal. Meth. Geomech., 2004; 28: 609–632), the proposed
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(a) Predicted failure surface from the pro-
posed local crack-tracking approach

(b) Experimentally observed failure sur-
face from Citarella and Buchholz [59]

Figure 20: A comparison between the predicted crack trajectories from the proposed local
crack-tracking method and experimentally observed failure surfaces for the three point
bending specimen with an initially skewed notch.

approach does not suffer from numerical sensitivity to the Dirichlet bound-
ary conditions for the crack-tracking equation. In particular, in presence of
closely interacting fractures, the performance of the proposed approach is
found to be more robust. In addition, due to its local nature, the algorithm
also provides an added benefit in terms of computational efficiency and a
potential means to treat fracture intersections. We demonstrated through
several numerical examples that the proposed algorithm can be reliably used
to simulate crack propagation in 3D. Going forward, extending the proposed
method to handle fracture intersections is of interest.
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(a) Top view of the failure sur-
face at a pseudo-time step t = 3

(b) Top view of the failure sur-
face at pseudo-time step t = 9

(c) Top view of the failure sur-
face at pseudo-time step t = 13

(d) Top view of the failure sur-
face at pseudo-time step t = 20

Figure 21: Top view of the failure surfaces observed at different load steps. It can be
clearly observed that the crack twists to align itself with mode I loading conditions.
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