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Abstract: In order to obtain regularized approximations for the solution q of the parameter identiőcation

problem −∇.(q∇u) = f in Ω along with the Neumann boundary condition q ∂u
∂ν
= g on ∂Ω, which is an

ill-posed problem, we consider its weak formulation as a linear operator equationwith operator as a function

of the data u ∈ W1,∞(Ω), and then apply the Tikhonov regularization and a őnite-dimensional approxima-

tion procedure when the data is noisy. Here, Ω is a bounded domain inℝd with Lipschitz boundary, f ∈ L2(Ω)
and g ∈ H−1/2(∂Ω). This approach is akin to the equation error method of Al-Jamal and Gockenback (2012)

wherein error estimates are obtained in terms of a quotient norm, whereas our procedure facilitates to obtain

error estimates in terms of the regularization parameters and data errors with respect to the norms of the

spaces under consideration. In order to obtain error estimates when the noisy data belongs to L2(Ω) instead
of W1,∞(Ω), we shall make use of a smoothing procedure using the Clement operator under additional

assumptions of Ω and u.
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1 Introduction

Let Ω be a boundeddomain inℝd with Lipschitz boundary.We consider the problemof identifying the param-

eter function q(x), x ∈ Ω, from the observations on another function u(x), x ∈ Ω, which satisőes the PDE
− ∇.(q∇u) = f in Ω, (1.1)

along with the boundary condition

q
∂u

∂ν
= g on ∂Ω, (1.2)

where f ∈ L2(Ω), g ∈ H−1/2(∂Ω) and ν is the unit outward normal to ∂Ω. It is known that the above problem

is ill-posed (cf. [7]).

In [1], Al-Jamal and Gockenback considered an equation error method to obtain regularized approxima-

tions for the weak formulation of the above problem. The existence and uniqueness of a solution using this

method is proved in [12], and stability results and error estimates are obtained in [1] (see also [10]). Here we

look into the same problem but with a different approach. We convert the nonlinear problem into a linear

operator equation with operator as a function of data and then use a Tikhonov-type regularization and its

őnite-dimensional realizations. By this procedure, the existence, the uniqueness and stability results follow

and error estimates are obtained by applying standard results in regularization theory (cf. [15]). The error

estimates are better compared to the results in [1], in the sense that in [1] the bound for the error is in terms of

some quotient norm, whereas our estimates for the actual error are in terms of the norms of the space under
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consideration. The abstract formulation of the method of this paper is somewhat similar to the procedure

adopted in Cao and Pereverzev [5] and Cao and Nair [4].

2 Operator theoretic formulation

We consider the problem of identifying the parameter function q(x), x ∈ Ω from the observations on another

function u(x), x ∈ Ω which satisőes the PDE (1.1) along with the boundary condition (1.2), where f ∈ L2(Ω)
and g ∈ H−1/2(∂Ω). We look for a q in an appropriate function space such as L2(Ω) or H1(Ω) which satisőes
the weak form of (1.1)ś(1.2), namely,

∫
Ω

q(x)∇u(x).∇v(x) dx = ∫
Ω

f(x)v(x) dx + ∫
∂Ω

g(x)v(x) dx for all v ∈ H1(Ω) (2.1)

for u ∈ W1,∞(Ω). Equation (2.1) can be written as
Tu(q)(v) = Φ(v), (2.2)

where

Tu(q)(v) := ∫
Ω

q(x)∇u(x).∇v(x) dx, v ∈ H1(Ω),

Φ(v) := ∫
Ω

f(x)v(x) dx + ∫
∂Ω

g(x)v(x) dx, v ∈ H1(Ω).

Thus, the inverse problem at hand is the following: given u ∈ W1,∞(Ω), őnd q in L2(Ω) or H1(Ω) such that

(2.2) is satisőed. Clearly, this is a nonlinear problem, and we shall show that it is also ill-posed (see Theo-

rem 2.3). However, the above operator formulation enables us to use linear regularization methods. We shall

use the well-known Tikhonov regularization for this purpose and derive error estimates. First, let us observe

some properties of the operator q Ü→ Tu(q). We may also observe that if |∇u| = 0 a.e., then Tu = 0. Thus, the
inverse problem is non-trivial only when |∇u| > 0 a.e. (See Theorem 2.4.)

In the following, we shall use the notations ‖ ⋅ ‖L2 and ‖ ⋅ ‖L∞ for the norms ‖ ⋅ ‖[L2(Ω)]d and ‖ ⋅ ‖[L∞(Ω)]d ,
respectively. Also, the dual of H1(Ω) is denoted by H1(Ω)∗.
Theorem 2.1. Let w ∈ W1,∞(Ω) and let

Tw(q)(v) := ∫
Ω

q(x)∇w(x).∇v(x) dx for q ∈ L2(Ω), v ∈ H1(Ω). (2.3)

Then we have the following:

(i) Tw(q) ∈ H1(Ω)∗ for every q ∈ L2(Ω), and Tw : L2(Ω) → H1(Ω)∗ is a bounded linear operator such that
‖Tw‖ ≤ ‖∇w‖L∞(Ω).

(ii) Tw : H1(Ω) → H1(Ω)∗ is a compact operator.
Proof. Let q ∈ L2(Ω). Then we observe that the map Tw(q) : H1(Ω) → ℝ is linear, and for every v ∈ H1(Ω)we
have

|Tw(q)(v)| ≤ ∫
Ω

|q(x)∇w(x).∇v(x)| dx

≤ ‖q∇w‖L2‖∇v‖L2
≤ ‖∇w‖L∞‖q‖L2(Ω)‖v‖H1(Ω).

Thus, Tw(q) ∈ H1(Ω)∗ and
‖Tw(q)‖ ≤ ‖∇w‖L∞‖q‖L2(Ω),

so that Tw : L2(Ω) → H1(Ω)∗ is a bounded linear operator and ‖Tw‖ ≤ ‖∇w‖L∞ .
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It is known, under the assumptions on Ω, that the embedding of H1(Ω) in L2(Ω) is compact (cf. [21]).

Hence, being a composition of a compact operator with a bounded operator, Tw as an operator from H1(Ω)
into H1(Ω)∗ is a compact operator (cf. [14]).

Theorem 2.2. For f ∈ L2(Ω) and g ∈ H−1/2(∂Ω) let Φ be deőned by

Φ(v) := ∫
Ω

f(x)v(x) dx + ∫
∂Ω

g(x)v(x) dx, v ∈ H1(Ω).

Then Φ ∈ H1(Ω)∗ and
‖Φ‖ ≤ ‖f‖L2(Ω) + ‖g‖H−1/2(Ω).

Proof. For v ∈ H1(Ω) we have
|Φ(v)| ≤ ∫

Ω

|f(x)v(x)| dx + ∫
∂Ω

|g(x)v(x)| dx

≤ ‖f‖L2(Ω)‖v‖H1(Ω) + ‖g‖H−1/2(∂Ω)‖v‖H1(Ω)

= (‖f‖L2(Ω) + ‖g‖H−1/2(∂Ω))‖v‖H1(Ω).

Hence, Φ ∈ H1(Ω)∗ and ‖Φ‖ ≤ ‖f‖L2(Ω) + ‖g‖H−1/2(Ω).

Theorem 2.3. LetH be either L2(Ω) or H1(Ω). Then the map q Ü→ u fromH to W1,∞(Ω) satisfying (2.2) does
not have a continuous inverse.

Proof. Let f ∈ L2(Ω) and g ∈ H−1/2(Ω). Let q inH and u inW1,∞(Ω) be such that they satisfy equation (2.1).
For n ∈ ℕ let un := un and qn := nq. Then for each n ∈ ℕ we have un ∈ W1,∞(Ω) and qn ∈ H, and qn is the

solution of the inverse problem (2.2) with un as data, in place of u. Thus, we have

Tun (qn) = Φ.
Note that

‖un‖W1,∞(Ω) = 1
n
‖u‖W1,∞(Ω) → 0 as n →∞,

whereas

‖qn‖H = n‖q‖H →∞ as n →∞.
Thus, we have proved that the map q Ü→ u from H to W1,∞(Ω) satisfying (2.2) does not have a continuous
inverse.

In viewof the above theorem, the inverse problemof őnding q ∈ H from the data u ∈ W1,∞(Ω) satisfying (2.2)
is ill-posed.

The next observation is important in the context of applying the Tikhonov regularization and its őnite-

dimensional realizations.

Theorem 2.4. Let w ∈ W1,∞(Ω) be such that |∇w| > 0 a.e. Then the operator Tw : H→ H1(Ω)∗ deőned in (2.3)
is of inőnite rank. In particular, Tw as an operator from H

1(Ω) to H1(Ω)∗ is a compact operator of inőnite rank.
Proof. For n ∈ ℕ let Bn be a sequence of open balls in Ω such that Bn ∩ Bm = 0 form ̸= n. Also for each n ∈ ℕ
let B�n and B

��
n be open balls in Ω such that B��n ⊂ B�n ⊂ Bn, with the inclusions being proper. Let qn ∈ C∞c (Ω) be

such that 0 ≤ qn ≤ 1, qn = 1 on B��n and supp(qn) ⊆ B�n. We show that {Tw(qn) : n ∈ ℕ} is an inőnite linearly

independent set in H1(Ω)∗, which will prove that Tw is of inőnite rank. For this, let vn ∈ C∞c (Ω) be such that
vn = 1 on B�n and supp(vn) ⊆ Bn. Then vnw ∈ H1(Ω) and ∇(vnw) = ∇w on B�n for all n ∈ ℕ. Also,

Tw(qn)(vnw) = ∫
B�
n

qn|∇w|2 for all n ∈ ℕ (2.4)

and

Tw(qm)(vnw) = 0 for all n,m ∈ ℕ with n ̸= m. (2.5)
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Now, let k ∈ ℕ and c1, . . . , ck inℝ be such that∑kn=1 cnTw(qn) = 0. Then
k

∑
n=1

cnTw(qn)(vmw) = 0, m = 1, . . . , k.

Hence, using (2.4) and (2.5), we obtain

∫
B�
m

cmqm|∇w|2 = 0, m = 1, . . . , k.

Now,

∫
B�
m

qm|∇w|2 ≥ ∫
B��
m

|∇w|2 > 0.

Therefore, cm = 0 for m = 1, . . . , k. Thus, we have proved that {Tw(qn) : n ∈ ℕ} is an inőnite linearly

independent set in H1(Ω)∗. The particular case follows since the inclusion operator from H1(Ω) to L2(Ω) is
compact.

3 Regularization with noisy data

We use the notationH to denote either L2(Ω) or H1(Ω). The inner product and norm in a Hilbert space H are

denoted by ⟨ ⋅ , ⋅ ⟩H and ‖ ⋅ ‖H , respectively, and no subscripts will be used for the operator norms.

We assume that u ∈ W1,∞(Ω) is such that the operator equation (2.2) has a unique solution q ∈ H. Now,

instead of u ∈ W1,∞(Ω), let us suppose that the available data is z ∈ W1,∞(Ω) with
‖u − z‖W1,∞(Ω) ≤ δ

for some δ > 0.
Remark 3.1. In many of the practical situations, one may not be knowing that the noisy data belongs to

W1,∞(Ω); we may only have a noisy data in L2(Ω). In Section 5, we take care of this situation for the case

when Ω is a polygonal domain in ℝ2 and u is in H4(Ω) by considering a łsmoothing procedurež as in [11]

and [6], and make use of the analysis which is being carried out under the assumption of z ∈ W1,∞(Ω).
In the previous section, we saw that the problem of őnding q ∈ H1(Ω) from the data u ∈ W1,∞(Ω) satisfy-
ing (2.2) is an ill-posed problem. Thus, in order to őnd a stable approximation of q, we have to use some

regularization procedure. For this purpose, we consider a Tikhonov-type regularization of (2.2) with Tz in

place of Tu. So let qα,u, qα,z inH be such that

(T∗uTu + αI)qα,u = T∗uΦ (3.1)

and

(T∗z Tz + αI)qα,z = T∗zΦ, (3.2)

respectively. We remark that the above formulation is different from the standard Tikhonov method. In the

standard Tikhonov regularization, the right-hand side involves the noisy data, whereas above, the noise is

only in the operator. Note that the adjoint operators T∗u and T
∗
z are from H1(Ω)∗ into H and the operators

T∗uTu and T
∗
z Tz on H are self adjoint and positive deőnite so that (3.1) and (3.2) are well-posed equations.

Now, the question is whether

‖qα,z − qα,u‖H → 0 as δ → 0.

To address this issue, we may recall from Theorem 2.1 that, if w1, w2 ∈ W1,∞(Ω), then
‖Tw1
− Tw2
‖ = ‖Tw1−w2

‖ ≤ ‖∇(w1 − w2)‖L∞ ≤ ‖w1 − w2‖W1,∞(Ω).
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In particular, we have

‖Tz − Tu‖ → 0 as δ → 0.

Therefore, modifying the proof of [15, Corollary 5.1] (see also [19, Lemma 2.1]) we derive the following sta-

bility and convergence results.

Theorem 3.2. Let qα,u and qα,z be as in (3.1) and (3.2), respectively. Then

‖qα,z − qα,u‖H ≤ 1

√α ‖q‖H‖Tz − Tu‖.

In particular,

‖q − qα,z‖H ≤ ‖q − qα,u‖H + δ

√α ‖q‖H
and

‖qα,z − qα,u‖H → 0 as δ → 0.

Proof. We have already assumed that q is a solution of (2.2). Hence, we have

qα,z − qα,u = (T∗z Tz + αI)−1T∗zΦ − (T∗uTu + αI)−1T∗uΦ
= (T∗z Tz + αI)−1T∗z Tuq − (T∗uTu + αI)−1T∗uTuq
= (T∗z Tz + αI)−1T∗z (Tu − Tz)T∗uTu(T∗uTu + αI)−1q + α(T∗z Tz + αI)−1(T∗z − T∗u )(TuT∗u + αI)−1Tuq.

We know that (see [15, Corollary 4.5, Lemma 4.1])

‖(T∗z Tz + αI)−1T∗z ‖ ≤ 1

2√α , ‖(TuT
∗
u + αI)−1Tu‖ ≤ 1

2√α ,

‖T∗uTu(T∗u + αI)−1‖ ≤ 1, ‖(T∗z Tz + αI)−1‖ ≤ 1α .
Thus, we obtain

‖qα,z − qα,u‖H ≤ 1

√α ‖q‖H‖Tz − Tu‖.
The particular cases follow since

‖q − qα,u‖H ≤ ‖q − qα,u‖H + ‖qα,u − qα,z‖H
and ‖Tz − Tu‖ ≤ ‖z − u‖H ≤ δ.
We may recall from the theory of Tikhonov regularization (cf. [7, 15]) that

‖q − qα,u‖H → 0 as α → 0.

Thus, for an appropriate choice of the regularization parameter α, say α := αδ, which satisőes αδ → 0 and

δ/√αδ → 0 as δ → 0, we have

‖q − qαδ ,z‖H → 0 as δ → 0.

4 Finite-dimensional realizations

4.1 Regularized projection method

In order to obtain numerical approximations for the solution of (3.1)ś(3.2), it is necessary to use some ap-

proximation method.

Observe that equation (3.2) is same as

⟨(T∗z Tz + αI)qα,z , φ⟩H = ⟨T∗zΦ, φ⟩H for all φ ∈ H. (4.1)
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In order to obtain a őnite-dimensional approximation for qα,z, we consider a őnite-dimensional subspace Xn
ofH and let φ in (4.1) vary over Xn. Thus, we look for q

(n)
α,z ∈ Xn such that

⟨(T∗z Tz + αI)q(n)α,z , φ⟩H = ⟨T∗zΦ, φ⟩H for all φ ∈ Xn ,
or, equivalently,

⟨(Tzq(n)α,z , Tzφ⟩H1(Ω)∗ + α⟨q(n)α,z , φ⟩H = ⟨Φ, Tzφ⟩H1(Ω)∗ for all φ ∈ Xn . (4.2)

We observe that (4.2) can be represented as

(PnT∗z TzPn + αIn)q(n)α,z = PnT∗zΦ, (4.3)

where Pn : H→ H is the orthogonal projection whose range is Xn. Since the operator PnT
∗
z TzPn on H is

self adjoint and positive deőnite, equation (4.3) has a unique solution q
(n)
α,z for each α > 0, z ∈ W1,∞(Ω)

and n ∈ ℕ.
We may observe that (4.3) is similar to (3.2) with Tz replaced by TzPn. Thus, the above formulation of

our approximation method is similar to the projection methods used in [13, 15, 20] for an ill-posed opera-

tor equation, where the right-hand side involves the noisy data. In fact, while discussing the computational

issues, we shall consider a more general situation with Tz replaced by QmTzPn, as has been done in [13, 20].

Let us assume that dim(Xn) = n and let {φ1, . . . , φn} be a basis of Xn. Expressing the solution q(n)α,z of (4.2)
as

q
(n)
α,z =

n

∑
j=1
qjφj , (4.4)

equation (4.2) takes the form

n

∑
j=1
qj⟨Tzφj , Tzφi⟩H1(Ω)∗ + α

n

∑
j=1
qj⟨φj , φi⟩H = ⟨Φ, Tzφi⟩H1(Ω)∗ , i = 1, . . . , n.

Thus, the approximate problem (4.2) is equivalent to the matrix equation

Aq + αDq = b, (4.5)

where

A = [aij], D = [dij], b = [bj]
with

aij = ⟨Tzφj , Tzφi⟩H1(Ω)∗ , dij = ⟨φj , φi⟩H , bi = ⟨Φ, Tzφi⟩H1(Ω)∗

for i, j = 1, . . . , n. This procedure can be reversed as well. Thus, to obtain the solution q(n)α,z of (4.2), we may

solve (4.5) for q := [q1, . . . , qm]T and then take q(n)α,z as in (4.4).
At this point we may recall that for ξ, η ∈ H1(Ω)∗ we have

⟨ξ, η⟩H1(Ω)∗ = ⟨Rη, Rξ⟩H1(Ω),

where R : H1(Ω)∗ → H1(Ω) is the Riesz representation map, that is,

ξ(φ) = ⟨φ, Rξ⟩H1(Ω), ξ ∈ H1(Ω)∗, φ ∈ H1(Ω). (4.6)

In other words, ψξ := Rξ is the unique solution of the equation ⟨φ, ψξ ⟩ = ξ(φ) for all φ ∈ H1(Ω), i.e.,

∫
Ω

φψξ + ∫
Ω

∇φ.∇ψξ = ξ(φ) for all φ ∈ H1(Ω).

Thus,

aij = ⟨Tzφj , Tzφi⟩H1(Ω)∗ = ⟨ψi , ψj⟩H1(Ω) := ∫
Ω

ψiψj + ∫
Ω

∇ψi .∇ψj (4.7)
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and

bi = ⟨Φ, Tzφi⟩H1(Ω)∗ = ⟨ψi , Ψ⟩H1(Ω) := ∫
Ω

ψiΨ + ∫
Ω

∇ψi .∇Ψ,

where ψk := R(Tzφk) ∈ H1(Ω) is the unique solution of
∫
Ω

φψk + ∫
Ω

∇φ.∇ψk = (Tzψk)(φ) := ∫
Ω

φk∇z.∇φ, (4.8)

and Ψ := RΦ ∈ H1(Ω) is the unique solution of
∫
Ω

φΨ + ∫
Ω

∇φ.∇Ψ = Φ(φ) := ∫
Ω

f(x)φ(x) dx + ∫
∂Ω

g(x)φ(x) dx (4.9)

for all φ ∈ H1(Ω).
Algorithm 4.1. The procedure for obtaining q

(n)
α,z can be described as follows:

(i) Solve (4.8) and (4.9) to obtain ψ1, . . . , ψn and Ψ.

(ii) Compute

aij = ∫
Ω

ψiψj + ∫
Ω

∇ψi .∇ψj ,

bi = ∫
Ω

φjΨ + ∫
Ω

∇φj .∇Ψ.

(iii) Solve (4.5) to obtain q := [q1, . . . , qm]T .
(iv) Construct q

(n)
α,z := ∑ni=1 qiφi.

Note that in equations (4.8) and (4.9), φ varies over the whole of H1(Ω). In the next subsection, we shall

consider the situation in which φ varies over a őnite-dimensional subspace of H1(Ω).
Next, wemust obtain a meaningful estimate for the error ‖q − q(n)α,z‖H. In order to do this, we assume that

H = H1(Ω) and for every φ ∈ H1(Ω) we assume that

‖φ − Pnφ‖H1(Ω) → 0 as n →∞. (4.10)

By Theorem2.1, for everyw ∈ W1,∞(Ω)wehave that Tw : H1(Ω) → H1(Ω)∗ is a compact operator. There-

fore, T∗w : H1(Ω)∗ → H1(Ω) is also a compact operator, and hence (see [14])

‖TwPn − Tw‖ = ‖(I − Pn)T∗w‖ → 0 as n →∞. (4.11)

It can be shown easily that the requirement (4.10) on (Pn) will be satisőed if Xn ⊆ Xn+1 for all n ∈ ℕ and the

closure of⋃∞n=1 Xn is the whole ofH.

Now, we have the theorem giving the error estimate.

Theorem 4.2. Let qα,u and q
(n)
α,z in H

1(Ω) be as in (3.1) and (4.2), respectively. If εn > 0 is such that
‖Tz(I − Pn)‖ ≤ εn ,

then

‖q − q(n)α,z‖H1(Ω) ≤ ‖q − qα,u‖H1(Ω) + (δ + εn)‖q‖H1(Ω)
√α .

Proof. As in Theorem 3.2 with TzPn in place of Tz, we have

‖qα,u − q(n)α,z‖H1(Ω) ≤ ‖q‖H1(Ω)‖Tu − TzPn‖
√α .

Then

‖Tu − TzPn‖ ≤ ‖Tu − Tz‖ + ‖Tz − TzPn‖ ≤ δ + εn .
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8 | M.T. Nair and S. Das Roy, Nonlinear parameter identiőcation problem

Thus,

‖qα,u − q(n)α,z‖H1(Ω) ≤ ‖q‖H1(Ω)(δ + εn)
√α .

From this, the required estimate follows.

Remark 4.3. By (4.11), ‖Tz(I − Pn)‖ → 0 as n →∞. Hence, the estimate εn of ‖Tz(I − Pn)‖ can be such that

εn → 0 as n →∞.

4.2 Computational issues

We note that for solving the linear system (4.5) we need to compute the inner products

aij = ⟨Tzφj , Tzφi⟩H1(Ω)∗ = ⟨ψi , ψj⟩H1(Ω),

bi = ⟨Φ, Tzφi⟩H1(Ω)∗ = ⟨ψi , Ψ⟩H1(Ω)

given in (4.7), where ψk and Ψ are the solutions of (4.8) and (4.9), respectively. Observe that φ in these

equations varies over the inőnite-dimensional space H1(Ω). Therefore, to obtain numerical approximations

of ψk and Ψ, we may vary φ over a őnite-dimensional subspace X̃m of H1(Ω), say of dimension m. Thus, we

look for ψ
(m)
k and Ψ(m) in X̃m such that

∫
Ω

φ̃ψ
(m)
k + ∫

Ω

∇φ̃.∇ψ(m)k = (Tzφk)(φ̃) := ∫
Ω

φk∇z.∇φ̃ (4.12)

for k = 1, . . . , n and
∫
Ω

φ̃Ψ(m) + ∫
Ω

∇φ̃.∇Ψ(m) = Φ(φ̃) := ∫
Ω

f(x)φ̃(x) dx + ∫
∂Ω

g(x)φ̃(x) dx (4.13)

for all φ̃ ∈ X̃m. In order to solve the equations in (4.12) and (4.13), we may write

ψ
(m)
k =

m

∑
j=1
βk,jφ̃j and Ψ(m) =

m

∑
j=1
γjφ̃j ,

where {φ̃1, . . . , φ̃m} is a basis of X̃m, and substitute these expressions in (4.12) and (4.13). Thus, βk,j and γj
for j = 1, . . . ,m are obtained by solving the equations

m

∑
j=1
(∫
Ω

φ̃iφ̃j + ∫
Ω

∇φ̃i .∇φ̃j)βk,j = ∫
Ω

φk∇z.∇φ̃i

and
m

∑
j=1
(∫
Ω

φ̃iφ̃j + ∫
Ω

∇φ̃i .∇φ̃j)γj = ∫
Ω

f(x)φ̃i(x) dx + ∫
∂Ω

g(x)φ̃i(x) dx,

respectively, for i = 1, . . . ,m. Thus, an approximation

q̃
(n,m)
α,z :=

n

∑
i=1
qiφi (4.14)

of q
(n)
α,z in (4.4) is obtained by taking q := [q1, . . . , qn]T which is the solution of the matrix equation

Ãq + αDq = b̃, (4.15)

where

Ã = [ãij], D = [dij], b̃ = [b̃j]
with

ãij = ⟨ψ(m)i , ψ
(m)
j ⟩H1(Ω), dij = ⟨φj , φi⟩H1(Ω), b̃i = ⟨ψ(m)i , Ψ(m)⟩H1(Ω)

for i, j = 1, . . . , n.
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Algorithm 4.4. The procedure for obtaining q̃
(n,m)
α,z can be described as follows:

(i) Solve (4.12) and (4.13) to obtain ψ
(m)
1 , . . . , ψ

(m)
n and Ψ(m).

(ii) Compute

ãij = ∫
Ω

ψ
(m)
i ψ
(m)
j + ∫

Ω

∇ψ(m)i .∇ψ(m)j ,

b̃i = ∫
Ω

φjΨ
(m) + ∫

Ω

∇φj .∇Ψ(m).

(iii) Solve (4.15) to obtain q := [q1, . . . , qm]T .
(iv) Construct q̃

(n,m)
α,z := ∑ni=1 qiφi.

In order to realize the above procedure in the operator theoretic setting, we assume that the orthogonal pro-

jection Πm : H1(Ω) → H1(Ω) onto X̃m satisőes

‖φ − Πmφ‖H1(Ω) → 0 as m →∞ (4.16)

for every φ ∈ H1(Ω). Now, let Qm : H1(Ω)∗ → H1(Ω)∗ be the dual of Πm, that is,
(Qmξ)(φ) = ξ(Πmφ) for all ξ ∈ H1(Ω)∗, φ ∈ H1(Ω). (4.17)

We shall show that q̃
(n,m)
α,z constructed in Algorithm 4.4 satisőes the operator equation

(PnT∗z QmTzPn + αI)q̃(n,m)α,z = PnT∗z QmΦ. (4.18)

Since the operator PnT
∗
z QmTzPn on H

1(Ω) is self adjoint and positive deőnite, equation (4.18) has a unique
solution q̃

(n,m)
α,z for each α > 0, z ∈ W1,∞(Ω) and n,m ∈ ℕ.

Remark 4.5. If X̃m = Xm, then Πm = Pm so that

(Qmξ)(φ) = ξ(Pmφ) for all ξ ∈ H1(Ω)∗, φ ∈ H1(Ω).
Let us observe some properties of Qm.

Lemma 4.6. Let Qm : H1(Ω)∗ → H1(Ω)∗ be as in (4.17). Then Qm is an orthogonal projection satisfying

RQm = ΠmR, where R : H1(Ω)∗ → H1(Ω) is the Riesz representation map deőned as in (4.6) and
‖Qmξ − ξ‖H1(Ω)∗ → 0 as m →∞.

Further, for every w ∈ W1,∞(Ω) we have
‖QmTw − Tw‖ → 0 as m →∞.

Proof. We note that

(Qm(Qmξ))(φ) = (Qmξ)(Πmφ) = ξ[Πm(Πmφ)] = ξ(Πmφ) = (Qmξ)(φ)
for ξ ∈ H1(Ω)∗ and φ ∈ H1(Ω). Thus, Qm is a projection operator.

For ξ ∈ H1(Ω)∗ and φ ∈ H1(Ω) we have
(Qmξ)(φ) = ξ(Πmφ) = ⟨Πmφ, Rξ⟩H1(Ω) = ⟨φ, ΠmRξ⟩H1(Ω),

so that RQmξ = ΠmRξ for all ξ ∈ H1(Ω)∗, and hence RQm = ΠmR.
Also, for ξ, η ∈ H1(Ω)∗ we have

⟨ξ, η⟩H1(Ω)∗ = ⟨Rη, Rξ⟩H1(Ω).

Hence, for ξ, η ∈ H1(Ω)∗, using the fact that Pn is orthogonal, we have
⟨Qmξ, η⟩H1(Ω)∗ = ⟨Rη, RQmξ⟩H1(Ω) = ⟨Rη, ΠmRξ⟩H1(Ω)

= ⟨ΠmRη, Rξ⟩H1(Ω) = ⟨RQmη, Rξ⟩H1(Ω)

= ⟨ξ, Qmη⟩H1(Ω)∗ .

Thus, Qm is an orthogonal projection.
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Since RQm = ΠmR, for each ξ ∈ H1(Ω)∗, we have
‖Qmξ − ξ‖H1(Ω)∗ = ‖R(Qmξ − ξ)‖H1(Ω) = ‖ΠmRξ − Rξ‖H1(Ω) → 0 as m →∞.

Let w ∈ W1,∞(Ω). Then the compactness of the operator Tw implies (cf. [14])

‖QmTw − Tw‖ = ‖(Qm − I)Tw‖ → 0 as m →∞.
Theorem 4.7. Let Qm : H1(Ω)∗ → H1(Ω)∗ be the orthogonal projection from Lemma 4.6. Then we have

⟨QmTzφj , QmTzφi⟩H1(Ω)∗ = ⟨ψ(m)i , ψ
(m)
j ⟩H1(Ω),

⟨Φ, QmTzφi⟩H1(Ω)∗ = ⟨ψ(m)i , Ψ(m)⟩H1(Ω)

for i, j = 1, . . . , n, where ψ(m)k , for k = 1, . . . , n, and Ψ(m) are in Xn satisfying (4.12) and (4.13), respectively.
Proof. By Lemma 4.6, RQm = ΠmR. Hence,

⟨QmTzφj , QmTzφi⟩H1(Ω)∗ = ⟨R[QmTzφi], R[QmTzφj]⟩H1(Ω)

= ⟨ΠmR(Tzφi), ΠmR(Tzφj)⟩H1(Ω)

= ⟨ψ(m)i , ψ
(m)
j ⟩H1(Ω),

where ψ
(m)
k := ΠmR(T ̃zφk) ∈ X̃m. Note that for every φ ∈ X̃m we have

⟨ψ(m)k , φ⟩H1(Ω) = ⟨ΠmR(Tzφk), φ⟩H1(Ω) = ⟨R(Tzφk), φ⟩H1(Ω).

Thus, ψ
(m)
k is the unique element in X̃m satisfying (4.12). Also, note that

⟨Φ, QmTzφi⟩H1(Ω)∗ = ⟨RQmTzφi , RΦ⟩H1(Ω)

= ⟨ΠmR(Tzφi), RΦ⟩H1(Ω)

= ⟨ΠmR(Tzφi), ΠmRΦ⟩H1(Ω)

= ⟨ψ(m)i , Ψ(m)⟩H1(Ω),

where Ψ(m) := ΠmRΦ ∈ X̃m. Then for every φ ∈ X̃m we have

⟨Ψ(m), φ⟩H1(Ω) = ⟨ΠmRΦ, φ⟩H1(Ω) = ⟨RΦ, φ⟩H1(Ω).

Thus, Ψ(m) is the unique element in X̃m satisfying (4.13).

Let Qm : H1(Ω)∗ → H1(Ω)∗ be the orthogonal projection as in Lemma 4.6. Then for every φ ∈ H1(Ω)we have
⟨PnT∗z QmTzPnφ, φ⟩H1(Ω) = ⟨T∗z QmTzPnφ, Pnφ⟩H1(Ω)

= ⟨QmTzPnφ, TzPnφ⟩H1(Ω)∗

= ⟨QmTzPnφ, QmTzPnφ⟩H1(Ω)∗ .

Thus, PnT
∗
z QmTzPn : H

1(Ω) → H1(Ω) is a positive self adjoint operator so that equation (4.10) has a unique
solution in Xn.

Now, we deduce the result that we promised.

Theorem 4.8. Let q := [q1, . . . , qn]T be the solution of the matrix equation (4.15) and let q̃(n,m)α,z := ∑ni=1 qiφi.
Then q̃

(n,m)
α,z satisőes equation (4.18).

Proof. Observe őrst that equation (4.18) with q̃
(n,m)
α,z ∈ Xn is the same as

⟨(PnT∗z QmTzPn + αIn)q̃(n,m)α,z , φi⟩H1(Ω) = ⟨PnT∗z QmΦ, φi⟩H1(Ω), i = 1, . . . , n.
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But,

⟨(PnT∗z QmTzPn + αI)q̃(n,m)α,z , φi⟩H1(Ω) = ⟨PnT∗z QmTz q̃(n,m)α,z , φi⟩H1(Ω) + α⟨q̃(n,m)α,z , φi⟩H1(Ω)

= ⟨QmTz q̃(n,m)α,z , QmTzPnφi⟩H1(Ω)∗ + α⟨q̃(n,m)α,z , φi⟩H1(Ω)

and

⟨PnT∗z QmΦ, φi⟩H1(Ω) = ⟨Φ, QmTzφi⟩H1(Ω)∗ .

Writing q̃
(n,m)
α,z := ∑nj=1 qjφj, we have

⟨QmTz q̃(n,m)α,z , QmTzPnφi⟩H1(Ω)∗ =
n

∑
j=1
qj⟨QmTzφj , QmTzφi⟩H1(Ω)∗ ,

⟨q̃(n,m)α,z , φi⟩H1(Ω) =
n

∑
j=1
qj⟨φj , φi⟩H1(Ω).

Thus, in view of Theorem 4.7,

⟨(PnT∗z QmTzPn + αI)q̃(n,m)α,z , φi⟩H1(Ω) =
n

∑
j=1
qj⟨ψ(m)i , ψ

(m)
j ⟩H1(Ω) + α

n

∑
j=1
qj⟨φj , φi⟩H1(Ω)

and

⟨PnT∗z QmΦ, φi⟩H1(Ω) = ⟨ψ(m)i , Ψ(m)⟩H1(Ω),

where ψ
(m)
k , for k = 1, . . . , n, and Ψ(m) are in X̃m satisfying (4.12) and (4.13), respectively. Therefore, the

operator equation (4.18) is equivalent to the matrix equation (4.15).

4.3 Error estimate for the modiőed approximation

Theorem 4.9. Let Qm : H1(Ω)∗ → H1(Ω)∗ be the orthogonal projection from Lemma 4.6 and let q̃
(n,m)
α,z be as

in (4.14) or, equivalently, the solution of equation (4.18). If εn > 0 and ε̃m > 0 are such that
‖Tz(I − Pn)‖ ≤ εn , ‖(I − Qm)Tz‖ ≤ ε̃m ,

then

‖q − q̃(n,m)α,z ‖H1(Ω) ≤ ‖q − qα,u‖H1(Ω) + (δ + εn + ε̃m)√α ‖q‖H1(Ω). (4.19)

Proof. As in Theorem 3.2 with QmTzPn in place of Tz, we obtain

‖qα,u − q̃(n,m)α,z ‖H1(Ω) ≤ ‖q‖H1(Ω)‖Tu − QmTzPn‖
√α .

Since

‖Tu − QmTzPn‖ ≤ ‖Tu − Tz‖ + ‖Tz − QmTzPn‖ ≤ δ + ‖Tz − QmTzPn‖
and

‖Tz − QmTzPn‖ = ‖Tz − TzPn + TzPn − QmTzPn‖
≤ ‖Tz − TzPn‖ + ‖Tz − QmTz‖
≤ εn + ε̃m ,

we have

‖Tu − QmTzPn‖ ≤ δ + εn + ε̃m .
Thus,

‖qα,u − q̃(n,m)α,z ‖H1(Ω) ≤ ‖q‖H1(Ω)(δ + εn + ε̃m)
√α .

From this we obtain (4.19).
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Remark 4.10. By the assumptions (4.10) and (4.16) (see also Lemma 4.6) on (Pn) and (Πm), respectively, we
know that ‖Tz − TzPn‖ → 0 and ‖Tz − QmTz‖ → 0 as n,m →∞. Therefore, (εn) and (ε̃m) in Theorem 4.9 can

be assumed to be such that εn → 0 and ε̃m → 0 asm, n →∞. Under this assumption, for δ > 0 let nδ ,mδ ∈ ℕ
be such that

εn + ε̃m ≤ δ for all n ≥ nδ , m ≥ mδ .

Thus, by Theorem 4.9 we have

‖q − q̃(nδ ,mδ)
α,z ‖H1(Ω) ≤ ‖q − qu,α‖H1(Ω) + 2δ√α ‖q‖H1(Ω).

As mentioned in Section 3, we may recall from the theory of Tikhonov regularization (cf. [7, 15]) that

‖q − qα,u‖H1(Ω) → 0 as α → 0.

Thus, for an appropriate choice of the regularization parameter α, say α := αδ, which satisőes δ/√αδ → 0 as

δ → 0, we have

‖q − q̃(nδ ,mδ)
αδ ,z ‖H1(Ω) → 0 as δ → 0.

From the theory of Tikhonov regularization (cf.[7, 15]), it follows that further regularity assumptions on the

solution q lead to order optimal error estimateswith respect to certain source sets. For example, if q belongs to

the range of ϕ(T∗uTu) for some continuous function ϕ : (0,∞) → (0,∞) with limλ→0 ϕ(λ) = 0, and if αδ > 0
is chosen a priori by the requirement δ = c0√αδϕ(αδ) for some c0 > 0, then

‖q − q̃(nδ ,mδ)
α,z ‖H1(Ω) = O(ϕ(αδ)).

Some of the standard forms of ϕ that occur in the literature on ill-posed operator equations are

ϕ(λ) := λν , 0 < ν ≤ 1
and

ϕ(λ) := [log(1/λ)]−p , p > 0.
(See [17, 18, 23].) There are many a posteriori choices of the regularization parameter which exist in the

literature (see [7, 8, 15, 18]), including the recently introduced balancing principle (cf. [9, 16]) which can be

applied to obtain the above order optimal rate.

Remark 4.11. Let us note that our problem involves perturbation of the operator Tu and that we have found

an estimate for the error in the solution which occurs due to this perturbation. This is in contrast with reg-

ularized projection methods applied to ill-posed operator equations in the general setting such as those

considered in Plato and Vainikko [20], George and Nair [8] and Mathe and Pereverzev [13], where noisy data

corresponds to perturbations in the right-hand side of the operator equation. Thus, though the formulation

of the regularized equation in the őnite-dimensional setting is similar to that of [8, 13, 20], the respective

results cannot be compared.

5 Smoothing

Our hitherto analysis involves the perturbed data z to be in W1.∞(Ω) and the error in the data is measured

with the norm inW1,∞(Ω). However, in practical situations, it is too much to demand that the noisy data z is

inW1.∞(Ω); onemay only have z ∈ L2(Ω). To take care of such cases, wemay follow a łsmoothing procedurež

described as in [11] by using a Clement operator (see [6]), with some additional assumptions on Ω and the

data u.

Let u be deőned as in Section 3, that is, u ∈ W1,∞(Ω) is such that the operator equation (2.2) has a unique
solution q ∈ H. Along with this, we shall also assume that u ∈ H4(Ω). Let z ∈ L2(Ω) be the perturbed data

such that

‖z − u‖L2(Ω) ≤ δ. (5.1)
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We intend to őnd an element z̃ ∈ W1,∞(Ω)which is a łsmoothed versionž of z so that we can use the analysis

thatwe carried out so far. For this, we assume that Ω is a polygonal domain inℝ2 andwehave a quasi-uniform
triangulation of Ω (cf. [22]), that is,

min
G∈τ

d(G)
h
= γG ≥ γ0 > 0, (5.2)

where h is the mesh size, τ is the set of all triangles G in the triangulation of Ω, d(G) is the diameter of

the largest disc contained in G, and γ0 is a constant. Let Π be a Clement operator (see [6]), which takes the

elements of L2(Ω) to the space of all polynomials of degree less than or equal to 3 on this triangulation. Then

we claim that Πz is our desired z̃. First we observe the following result (see [6, 11] for its proof).

Lemma 5.1. For any v ∈ L2(Ω) we have Πv ∈ W1,∞(Ω) and
‖v − Πv‖L2(Ω) ≤ C1‖v‖L2(Ω) (5.3)

for some constant C1 > 0. Further, if v ∈ H4(Ω), then
‖v − Πv‖H3(Ω) ≤ C2h‖v‖H4(Ω) (5.4)

for some constant C2 > 0.
The following result is crucial.

Theorem 5.2. For every v ∈ H4(Ω) we have
‖v − Πv‖W1,∞(Ω) ≤ C0h‖v‖H4(Ω),

where C0 > 0 is a constant.
Proof. Let v ∈ H4(Ω). Since H4(Ω) ⊆ H3(Ω) by a Sobolev imbedding theorem (cf. [21, Corollary 7.19]),

‖v − Πv‖W1,∞(Ω) ≤ C3‖v − Πv‖H3(Ω),

where C3 is a positive constant. Thus, using (5.4), we obtain the required estimate with C0 = C3C2, with C2

as in (5.4).

The following lemma, which will be used to prove our next theorem, is a consequence of one of the inverse

inequalities in [2] (see also [3]), namely,

‖w‖Wm,q(G) ≤ (diam(G))n−m+2min {0,(1/q−1/p)}‖w‖Wn,p(G) (5.5)

for any w ∈ Pk(G)with k ∈ ℕ,m, n ∈ ℕ ∪ {0},m, n ≤ k, and 1 ≤ p, q ≤ ∞, where G is a triangle in τ, diam(G)
is the diameter of the triangle G and Pk(G) is the space of all polynomials up to degree k restricted to G, with

the convention that 1/∞ = 0.
Lemma 5.3. For any G ∈ τ and v ∈ L2(G) we have

‖Πv‖W1,∞(G) ≤ 1

(diam(G))2 ‖Πv‖L2(G),

where diam(G) is the diameter of the triangle G.
Proof. The result follows from (5.5) since Πv ∈ P3(G) by taking m = 1, q = ∞, n = 0, and p = 2.
Theorem 5.4. Let v ∈ L2(Ω). Then

‖Πv‖W1,∞(Ω) ≤ C4
h2
‖v‖L2(Ω),

where C4 := (C1 + 1)/γ20 with γ0 and C1 are as in (5.2) and (5.3), respectively.
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Proof. Let G be a triangle in the quasi-uniform triangulation τ of Ω. Then, by Lemma 5.3 and the fact that

diam(G) ≥ d(G) ≥ hγ0, we have
‖Πv‖W1,∞(G) ≤ 1

(diam(G))2 ‖Πv‖L2(G) ≤
1

h2γ20
‖Πv‖L2(G).

Also, by (5.3),

‖Πv‖L2(Ω) ≤ ‖(I − Π)v‖L2(Ω) + ‖v‖L2(Ω) ≤ (C1 + 1)‖v‖L2(Ω).
From the two inequalities above we obtain

‖Πv‖W1,∞(Ω) ≤ max
G∈τ
‖Πv‖W1,∞(G) ≤ 1

h2γ20
max
G∈τ
‖Πv‖L2(G) ≤ 1

h2γ20
‖Πv‖L2(Ω) ≤ (C1 + 1)

h2γ20
‖v‖L2(Ω).

Thus, we obtain the required estimate with C4 = (C1 + 1)/γ20.
Now, we derive an estimate for ‖u − Πz‖W1,∞(Ω) under the assumption (5.1).

Theorem 5.5. Let u ∈ H4(Ω) and z ∈ L2(Ω) be the exact and noisy data, respectively, such that ‖u − z‖L2(Ω) ≤ δ.
Then

‖u − Πz‖W1,∞(Ω) ≤ C(h‖u‖H4(Ω) + δ

h2
),

where C := max{C0, C4} with C0 and C4 as in Theorem 5.2 and Theorem 5.4, respectively.

Proof. Using the estimates in Theorem 5.2 and Theorem 5.4, we have

‖u − Πz‖W1,∞(Ω) ≤ ‖u − Πu‖W1,∞(Ω) + ‖Π(u − z)‖W1,∞(Ω)

≤ C0h‖u‖H4(Ω) + C4
h2
‖u − z‖L2(Ω)

≤ C(h‖u‖H4(Ω) + δ

h2
),

where C := max{C0, C4}.
Now, taking z̃ := Πz instead of z, we carry on with the analysis as in Sections 3 and 4 with

δ̃h := C(h‖u‖H4(Ω) + δ

h2
) (5.6)

in place of δ there. Thus, from Theorem 4.9, we obtain the following theorem.

Theorem 5.6. Let Qm and Pn be the orthogonal projections as deőned in Section 4. Let q̃
(n,m)
α, ̃z be as in (4.14). If

εn > 0 and ε̃m > 0 are such that
‖T ̃z(I − Pn)‖ ≤ εn , ‖(I − Qm)T ̃z‖ ≤ ε̃m ,

then

‖q − q̃(n,m)α, ̃z ‖H1(Ω) ≤ ‖q − qα,u‖H1(Ω) + ‖q‖ (δ̃h + εn + ε̃m)√α ,

where δ̃h is as in (5.6). In particular, the following hold:

(i) If h ≥ δ1/3, then
‖q − q̃(n,m)α, ̃z ‖H1(Ω) ≤ ‖q − qα,u‖H1(Ω) + C�q,u (h + εn + ε̃m)√α .

(ii) If h ∼ δ1/3, then
‖q − q̃(n,m)α, ̃z ‖H1(Ω) ≤ ‖q − qα,u‖H1(Ω) + C��q,u (δ

1/3 + εn + ε̃m)
√α .

Here, C�q,u and C
��
q,u are positive constants independent of h, n, m, α, δ.

Remark 5.7. It is apparent that the error estimate in Theorem 5.6 for the noisy data z ∈ L2(Ω) is not as sharp
as that in Theorem 4.9 under the stronger assumption z ∈ W1,∞(Ω), although the smoothing process of z

requires additional requirements on u and Ω. This observation calls for further investigation of the problem

while dealing with the noisy data.
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