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Abstract: For A ∈ Rn×n and q ∈ Rn, the linear complementarity problem
LCP (A, q) is to determine if there is x ∈ Rn such that x ≥ 0, y = Ax+ q ≥ 0 and
xT y = 0. Such an x is called a solution of LCP (A, q). A is called an R0-matrix if
LCP (A, 0) has zero as the only solution. In this article, the class of R0-matrices
is extended to include typically singular matrices, by requiring in addition that
the solution x above belongs to a subspace of Rn. This idea is then extended
to semidefinite linear complementarity problems, where a characterization is pre-
sented for the multplicative transformation.
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1. INTRODUCTION

Let A ∈ Rn×n and q ∈ Rn. The linear complementarity problem LCP (A, q)
is to determine if there exists x ∈ Rn such that x ≥ 0, y = Ax + q ≥ 0 and
〈x, y〉 = 0, where for u, v ∈ Rn, we have 〈u, v〉 = uT v. Throughout this section,
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for u ∈ Rn, the notation u ≥ 0 signifies that all the coordinates of u are nonnega-
tive. If B ∈ Rm×n, then B ≥ 0 denotes that all the entries of B are nonnegative.
Motivated by questions concerning the existence and uniqueness of LCP (A, q),
many matrix classes have been considered in the literature. Let us recall two such
classes. A matrix A ∈ Rn×n is called a Q-matrix if LCP (A, q) has a solution for
all q ∈ Rn. A ∈ Rn×n is called an R0-matrix if LCP (A, 0) has zero as the only
solution. Just to recall one of the well known results for an R0-matrix, we point
out that A is an R0-matrix if and only if for every q ∈ Rn, the problem LCP (A, q)
has a bounded solution set. For more details and relationships with other classes
of matrices, we refer the reader to [5].

In this article, we propose two generalizations of this class of matri-
ces in the classical linear complementarity theory and study extensions to the
semidefinite linear complementarity problem. Briefly, we restrict the solution x of
LCP (A, 0) to lie in a subspace. Specifically, we consider the subspaces R(A) (the
range space of A) and R(AT ), leading to what we refer to as R#-matrices and
R†-matrices, respectively. The main results in connection with the classical prob-
lem are presented in Theorem 3.7 and Theorem 3.8. Extensions of these notions
to semidefinite linear complementarity problems are referred to as R#-operators
and R†-operators, respectively. In Theorem 4.14, we present sufficient conditions
under which the Lyapunov operator is an R#-operator and in Theorem 4.15, we
prove a similar result for the Stein operator. The case of the multiplication oper-
ator is taken up next and we prove a characterization in Theorem 4.16. Necessary
conditions for the three operators mentioned above to be R#-operators are derived
in Theorem 4.17. The notion of R†-operator is presented briefly at the end.

2. PRELIMINARIES

Let Rn denote the n dimensional real Euclidean space and Rn
+ denote

the nonnegative orthant in Rn. For a matrix A ∈ Rm×n, the set of all m × n
matrices of reals, we denote the null space and the transpose of A by N(A) and
AT , respectively. Let K,L be complementary subspaces of Rn, i.e., K ⊕ L = Rn.
Then PK,L denotes the (not necessarily orthogonal) projection of Rn onto K along
L. So we have P 2

K,L = PK,L, R(PK,L) = K and N(PK,L) = L. If, in addition,
K ⊥ L, then PK,L will be denoted by PK . In such a case, we also have PT

K = PK .
The spectral radius of A ∈ Rn×n, denoted by ρ(A) is defined by ρ(A) = max

1≤i≤n
|λi|

where λ1, λ2, · · · , λn are the eigenvalues of A.
The Moore-Penrose inverse of matrix A ∈ Rm×n, denoted by A† is the

unique solution X ∈ Rn×m of the equations: A = AXA, X = XAX, (AX)T =
AX and (XA)T = XA. The group inverse of a matrix A ∈ Rn×n, denoted by A#

(if it exists), is the unique matrix X satisfying A = AXA, X = XAX and AX =
XA. Let us reiterate the interesting fact that while the Moore-Penrose inverse
exists for all matrices, the group inverse does not exist for some matrices. One of
the well known equivalent conditions for the existence of A# is that N(A2) = N(A)
(equivalently, R(A2) = R(A)). We also mention another equivalent condition: A#
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exists if and only if R(A) and N(A) are complementary subspaces of Rn. If A
is nonsingular, then of course, we have A−1 = A† = A#. Recall that A ∈ Rn×n

is called range-symmetric (or an EP matrix) if R(AT ) = R(A). For this class of
matrices, the group inverse coincides with the Moore-Penrose inverse. For details,
we refer to [1]. Next, we collect some well known properties of A† and A# ([1]) that
will be frequently used in this paper: R(AT ) = R(A†); N(AT ) = N(A†); AA† =
PR(A); A†A = PR(AT ); R(A) = R(A#); N(A) = N(A#); AA# = PR(A),N(A). In
particular, if x ∈ R(AT ) then x = A†Ax and if x ∈ R(A) then x = A#Ax. We
also use the fact that (AT )# = (A#)T .

Next, we list certain results to be used in the sequel. The first result is
well known, for instance one could refer to [1].

Lemma 2.1. Let A ∈ Rm×n and b ∈ Rm. The system Ax = b has a solution if
and only if AA†b = b. In this case, the general solution is given by x = A†b + z
for some z ∈ N(A).

Recall that, for A ∈ Rm×n a decomposition A = U − V of A is called a
proper splitting of A, if R(U) = R(A) and N(U) = N(A) [2].

The following properties of a proper splitting will be used in the sequel.

Theorem 2.2. (Theorem 1, [2])
Let A = U − V be a proper splitting. Then
(a) AA† = UU†; A†A = U†U ; V U†U = V
(b) A = U(I − U†V ).
(c) I − U†V is invertible.
(d) A† = (I − U†V )−1U†.

The case of group inverses has also been studied in the literature. The
next result is in this direction.

Theorem 2.3. (Theorem 3.1, [8])
Let A = U −V be a proper splitting. Suppose that A# exists. Then U# exists and
we have the following:
(a) AA# = UU#

(b) A = U(I − U#V ).
(c) I − U#V is invertible.
(d) A# = (I − U#V )−1U#.

3. A GENERALIZATION OF THE R0-PROPERTY

In this section, we propose an extension of the R0-property by requiring
the solution x of LCP (A, 0) to lie in certain subspaces related to the matrix A.
This leads to two generalizations, as we will discuss next.

Definition 3.4. Let A ∈ Rn×n and M be a subspace of Rn. Then A is called
an R0-matrix relative to M , if the only solution for LCP (A, 0) in M is the zero
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solution. In other words, A is an R0-matrix relative to M if x = 0 is the only
vector x ∈ M such that x ≥ 0, y = Ax ≥ 0 and 〈x, y〉 = 0.

Next, we assume that the subspace M has some relationship with the
matrix A. Specifically, we consider the following two particular cases.

Definition 3.5. A ∈ Rn is called an R†-matrix, if A is an R0-matrix relative to
R(AT ).

Definition 3.6. A ∈ Rn is called an R#-matrix, if A is an R0-matrix relative to
R(A).

First, we present a result which provides sufficient conditions under which
a matrix is an R†-matrix. Recall that A ∈ Rn×n is called a Z-matrix if the off-
diagonal entries of A are nonpositive. If A is a Z-matrix, then A = sI −B, where
B ≥ 0 and s ≥ 0. If s > ρ(B), then A is invertible and in this case A is well known
as an (invertible) M -matrix. It is also quite well known that if A is a Z-matrix,
then A is an M -matrix if and only if A is a Q-matrix. For details, we refer to
Chapter 6 in [3]. Observe that a Z-matrix A could be written as A = U−V , where
U = sI and V ≥ 0. Then, U−1 ≥ 0, U−1V ≥ 0 and U−1 is strictly copositive.
In the result under discussion for a typically singular matrix A, we assume that
A = U −V where U and V satisfy more general conditions than the above. Let us
point out that the proof is an adaptation of the first part of the proof of Theorem 9
in [6], where the authors study matrices of the form A = I−S, where S is a certain
nonnegative matrix satisfying ρ(S) < 1. Finally, let us recall that B ∈ Rn×n is
copositive if 〈x,Bx〉 ≥ 0 for all x ≥ 0 and strictly copositive if 〈x,Bx〉 > 0 for all
x ≥ 0.

Theorem 3.7. For A ∈ Rn×n, let A = U −V be a proper splitting where U† ≥ 0,
U†V ≥ 0 and U† is strictly copositive. If ρ(U†V ) < 1, then A is an R†-matrix.

Proof. Suppose that there exists x ∈ R(AT ) such that x ≥ 0, y = Ax ≥ 0 and
〈x, y〉 = 0. Then x = A†y + z, for some z ∈ N(A), by Lemma 2.1. Since
x ∈ R(AT ) and A†y ∈ R(A†) = R(AT ), it follows that z = 0. Hence, x = A†y =
(I − U†V )−1U†y, where we have utilized the expression for A† from Theorem
2.2. Since ρ(U†V ) < 1, it follows that (I − U†V )−1 =

∑∞
j=0(U

†V )j ≥ 0. So,
x =

∑∞
j=0(U

†V )jU†y = U†y +Wy, where W =
∑∞

j=1(U
†V )jU† ≥ 0. Since y ≥ 0,

it follows that Wy ≥ 0. Thus 0 = 〈x, y〉 = 〈U†y, y〉+〈Wy, y〉. Since both terms on
the right hand side are nonnegative, and since U† is strictly copositive, it follows
that y = 0. Hence, x = 0 and so A is an R†-matrix.

The version for R#-matrices follows. The proof is similar to the proof of
the theorem above and hence, it is omitted. Let us point out that an expression
for A# similar to the expression for A† in the above holds, by Theorem 2.3.

Theorem 3.8. For A ∈ Rn×n suppose that A# exists. Let A = U −V be a proper
splitting where U# ≥ 0, U#V ≥ 0 and U# is strictly copositive. If ρ(U#V ) < 1,
then A is an R#-matrix.
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Lemma 3.9. Let U ∈ Rn×n be strictly copositive, range symmetric and U† ≥ 0.
Suppose further that each column of U has at least one nonzero entry. Then, U†

is strictly copositive.

Proof. We must show that for all 0 6= y ≥ 0, it holds that 〈U†y, y〉 > 0. Let
x = U†y ∈ R(UT ). If possible, let x = 0. Set y = y1e

1 + y2e
2 + . . . + ynen,

where ei denotes the ith standard basis vector of Rn. Then yi ≥ 0 for all i. Also,
0 = U†y = y1U

†e1 + y2U
†e2 + . . . + ynU†en. Since each term is a nonnegative

vector, we conclude that yiU
†ei = 0 for all i. Since y 6= 0 there is some i for

which yi 6= 0. For such an i, we have U†ei = 0 so that ei ∈ N(UT ). Since U is
range symmetric, it then follows that ei ∈ N(UT ) = N(U), so that Uei = 0, a
contradiction, since this would mean that U has a zero column. Hence 0 6= x ≥ 0.
By Lemma 2.1, we have y = Ux + z, for some z ∈ N(UT ). Then 〈U†y, y〉 =
〈x,Ux + z〉 = 〈x,Ux〉+ 〈x, z〉 > 0, where we have used the strict copositivity of U
and the fact that R(U) = R(UT ) which guarantees that 〈x, z〉 = 0.

We close this section with the observation that if U is strictly copositive,
range symmetric and U# ≥ 0, then U# is strictly copositive, since in this case,
U† = U#.

4. EXTENSIONS TO THE SEMIDEFINITE LINEAR
COMPLEMENTARITY PROBLEM

In this section, we study generalizations of the matrix classes studied in the
previous section, specifically in the case of three rather well studied operators in the
theory of semidefinite linear complementarity problems. Let Sn denote the space
of all real symmetric n × n matrices. Recall that for T : Sn → Sn, and Q ∈ Sn,
the semidefinite linear complementarity problem denoted by SDLCP (T, Q) is to
determine if there exists X ∈ Sn such that X ≥ 0, Y = T (X) + Q ≥ 0 and
tr(XY ) = 0. Here, for W ∈ Sn, W ≥ 0 denotes that W is positive semidefinite
(meaning that 〈x,Wx〉 ≥ 0 for all x ∈ Rn) and for Z ∈ Sn, the notation tr(WZ)
refers to the trace inner product. It follows that for X, Y ∈ Sn and X,Y ≥ 0, if
tr(XY ) = 0 then XY = 0.

Next, let us consider the following notions, extending Definition 3.4 and
Definition 3.6.

Definition 4.10. Let M be a subspace of Sn. A linear operator T : Sn → Sn is
called an R0-operator relative to M , if SDLCP (T, 0) has zero as the only solution
in M . Further, T is called an R#-operator, if X = 0 is the only matrix X ∈ R(T )
such that X ≥ 0, Y = T (X) ≥ 0 and XY = 0.

Next, we consider the three most widely studied maps on Sn.

Definition 4.11. For a fixed A ∈ Rn×n, let MA, LA, SA : Sn → Sn be defined
by MA(X) = AXAT , LA(X) = AX + XAT and SA(X) = X − AXAT , X ∈ Sn.
Then MA is called the multiplicative transformation, LA is called the Lyapunov
transformation, and SA is called the Stein transformation.
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Example 4.12. Let A =
(

1 1
0 0

)
. If X ∈ S2 is given by X =

(
α β
β γ

)
, then

MA(X) =
(

α + 2β + γ 0
0 0

)
, LA(X) =

(
2(α + β) β + γ

β + γ 0

)
and SA(X) =

( −(2β + γ) β
β γ

)
.

Let us consider MA first. If X ∈ R(MA), then β = γ = 0. Also 0 =

XMA(X) =
(

α2 0
0 0

)
implies that α = 0. Hence X = 0, showing that MA is

an R#-operator.
Next, we take LA. If X ∈ R(LA), then γ = 0. Also 0 = XLA(X) =(

2α(α + β) + β2 αβ
2β(α + β) β2

)
implies that β = 0 and hence α = 0. Hence X = 0,

showing that LA is an R#-operator.

Finally, 0 = XSA(X) =
( −α(2β + γ) + β2 β(α + γ)

−2β2 β2 + γ2

)
implies that

β = γ = 0. If, in addition, X ∈ R(SA), then it follows that α = 0. Hence X = 0,
and so SA is an R#-operator.

In what follows, first we present a class of matrices A for which LA is
an R#-operator, in Theorem 4.14 and a class of matrices A for which SA is an
R#-operator, in Theorem 4.15. The circumstance under which MA has the R#-
property is completely characterized in Theorem 4.16.

Let us recall that B ∈ Rk×k is called positive stable if all the eigenvalues
of B have positive real parts. It is known that (Theorem 5, [7]) if B is a positive
stable matrix, then the only symmetric matrix X that satisfies X ≥ 0, LB(X) ≥ 0
and XLB(X) = 0 is the zero matrix.

The following notation is used in the next Theorem: For B ∈ R(n−1)×(n−1)

define A ∈ Rn×n by A =
(

B 0
0 0

)
, where the zero in the top right corner is the

zero (column) vector in Rn−1, the zero in the bottom left is the transpose of the
top right zero vector, and the bottom right zero is scalar. We shall make use of
the following result:

Lemma 4.13. Let B ∈ Rm×m be (possibly non-symmetric and) positive definite
(meaning that for all 0 6= x ∈ Rm, we have xT Bx > 0). Then B is positive stable.

Proof. Let Bx = λx, where λ = α + iβ and 0 6= x = u + iv. Then Bu = αu− βv
and Bv = αv + βu. We then have 0 ≤ uT Bu = αuT u − βuT v and 0 ≤ vT Bv =
αvT v+βvT u. Since at least one of the vectors u, v is non-zero, it follows by adding
the last two inequalities that α(uT u + vT v) > 0. Thus α > 0.

Theorem 4.14. Let B ∈ R(n−1)×(n−1) be positive definite. Let A ∈ Rn×n be
defined as above. Then LA is an R#-operator.

Proof. It follows that if Y =
(

X x
xT α

)
∈ Sn, where X ∈ Sn−1, x ∈ Rn−1
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is a column vector and α ∈ R, then LA(Y ) =
(

BX + XBT Bx
(Bx)T 0

)
. Thus,

if Y ∈ R(LA), then α = 0. Also, Y ≥ 0, LA(Y ) ≥ 0 get transformed to X ≥
0, BX + XBT ≥ 0, respectively. Finally, if Y LA(Y ) = 0, then

(
X(BX + XBT ) + x(Bx)T XBx

xT (BX + XBT ) xT Bx

)
= 0.

Since B is positive definite, the equation xT Bx = 0 implies that x = 0. The
top left corner entry is X(BX + XBT ), and this is the zero matrix. However, as
mentioned earlier, since B is positive stable (by Lemma 4.13), and it is required
that X ≥ 0 (and X is symmetric), it follows that X = 0 and hence, Y = 0. This
proves that LA is an R#-operator.

Next, we consider the Stein transformation. Here, we recall that (Theorem
11, [6]) if B is a matrix with ρ(B) < 1, (i.e., all the eigenvalues of B lie in the open
unit disk), then the only symmetric matrix X that satisfies X ≥ 0, SB(X) ≥ 0
and XSB(X) = 0 is the zero matrix.

Theorem 4.15. Let B ∈ R(n−1)×(n−1) be such that ρ(B) < 1. Let A ∈ Rn×n be
defined as above. Then SA is an R#-operator.

Proof. It follows that if Y =
(

X x
xT α

)
∈ Sn, where X ∈ Sn−1, x ∈ Rn−1 is a

column vector and α ∈ R, then SA(Y ) = Y − AY AT =
(

X −BXBT x
xT α

)
.

Thus, Y ≥ 0, SA(Y ) ≥ 0 imply X ≥ 0, X − BXBT ≥ 0, respectively. If

Y SA(Y ) = 0, then
(

X(X −BXBT ) + xxT Xx + αx
xT (X −BXBT ) + αxT α2 + xT x

)
equals the zero ma-

trix. The bottom right entry being equal to zero implys that x = 0 and α = 0. We
then have X(X−BXBT ) = 0. However, as mentioned just before the theorem, it
follows that X = 0 and hence, Y = 0. This proves that SA is an R#-operator.

Now, we turn our attention to the multiplicative transformation. We
observe that the matrix A in Example 4.12 is positive definite on R(A). That this
is not a coincidence is proved in the next result, where, we provide two necessary
and sufficient conditions for MA to be an R#-operator. This theorem generalizes
a part of Theorem 17 of [4].

Theorem 4.16. Let A ∈ Rn×n be given. Then following statements are equiva-
lent:
(a) MA is an R#-operator.
(b) X is symmetric, XAX = 0, R(X) ⊆ R(A) ⇒ X = 0.
(c) A is either positive definite or negative definite on R(A).

Proof. (a) ⇒ (b): Suppose that X is symmetric, R(X) ⊆ R(A) and XAX = 0.
For u ∈ Rn, set v = Xu and V = vvT ≥ 0. Further, since R(X) ⊆ R(A), we
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have v = Xu = Ap, p ∈ Rn. So, V = vvT = Ap(Ap)T = APAT , where P = ppT

is symmetric. Thus V = MA(P ) so that V ∈ R(MA). Also, MA(V ) = AV AT =
AvvT AT = Av(Av)T ≥ 0. We also have vT Av = uT XT AXu = uT XAXu = 0.
Thus V AV AT = vvT Av(Av)T = 0. Since MA is an R#-operator, it follows that
V = 0 and so X = 0.

(b) ⇒ (c): Suppose that A is not negative definite on R(A). We show
that A is positive definite on R(A). Let us suppose that this is not the case. Then
there exist x, y ∈ R(A) such that xT Ax < 0 and yT Ay > 0. It then follows that
for a specific value of λ ∈ (0, 1), the vector z = λx + (1− λ)y ∈ R(A) satisfies the
equation zT Az = 0. Suppose that z = 0. Then x = αy for some 0 6= α ∈ R. Then
0 > xT Ax = α2yT Ay, contradicting yT Ay > 0. Hence z 6= 0. Define Z = zzT .
Then R(Z) ⊆ R(A). Also, ZAZ = zzT AzzT = 0. This means that Z = 0 and so
z = 0, which is a contradiction.

(c) ⇒ (b): Let X be symmetric, satisfying XAX = 0 and R(X) ⊆ R(A).
Then for all y ∈ Rn, 0 = yT XAXy = (Xy)T A(Xy) = zT Az, z = Xy ∈ R(X) ⊆
R(A). Since (c) holds, we have Xy = 0 for all y ∈ Rn, showing that X = 0.

(b) ⇒ (a): Suppose that X ∈ R(MA), X ≥ 0, MA(X) ≥ 0 and XMA(X) =
0. Then X = AY AT for some Y , and so R(X) ⊆ R(A). Also, XAXAT = 0 so that
yT XAXAT y for all y ∈ Rn. By setting z = XAT y ∈ R(X) ⊆ R(A), we then have
zT Az = 0. By (c) (which is now equivalent to (b)), it follows that 0 = z = XAT y
for all y ∈ Rn. Hence XAT = 0, so that AX = 0 and so XAX = 0. It now follows
that X = 0.

Let us recall that T : Sn → Sn is called an R0-operator if SDLCP (T, 0)
has zero as the only solution. In this connection, it is known that (Theorem 3,
[7]), if LA is an R0-operator, then A is nonsingular. It can be shown that if MA is
an R0-operator, then A is nonsingular. In the next result we prove analogues for
R#-operators, including a result for the Stein transformation.

Theorem 4.17. Let A ∈ Rn×n. We have the following:
(a) If MA or LA is an R#-operator, then A# exists.
(b) If SA is an R#-operator, then (I −A)# exists.

Proof. (a): Let y ∈ R(A)∩N(A). Then Ay = 0 and y = Ax for some x ∈ Rn. We
must show that y = 0. Set Y = yyT . Then Y ≥ 0 and MA(Y ) = AyyT AT = 0.
Set U = xxT . Then U ∈ Sn. Also, MA(U) = AxxT AT = yyT = Y . Thus,
Y ∈ R(MA). Since MA is an R#-operator, it now follows that Y = 0 so that
y = 0. Hence N(A2) = N(A), proving that A# exists. This proves the first part.

Next, let y ∈ R(A) ∩N(A). Then Ay = 0 and y = Ax for some x ∈ Rn.
Set Y = yyT ∈ Sn. Then Y ≥ 0, AY = AyyT = 0 and Y AT = yyT AT =
y(Ay)T = 0, so that LA(Y ) = 0. Set U = 1

2 (xyT + yxT ). Then U ∈ Sn. Also,
AU = 1

2 (AxyT + AyxT ) = 1
2yyT = 1

2Y . Further, UAT = 1
2 (xyT AT + y(Ax)T ) =

1
2 (x(Ay)T + yyT ) = 1

2Y . Thus Y = LA(U) so that Y ∈ R(LA). It now follows
that Y = 0 so that y = 0, proving the second part.

(b): We prove the existence of (I − A)#. Let y ∈ R(I − A) ∩ N(I − A).
Then (I − A)y = 0 and y = (I − A)x for some x ∈ Rn. We must show that
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y = 0. Set Y = yyT ≥ 0. Then SA(Y ) = yyT − AyyT AT = yyT − Ay(Ay)T =
0, since Ay = y. Set U = 1

2 (xyT + yxT ). Then U ∈ Sn. Also, SA(U) =
1
2 (xyT + yxT − A(xyT + yxT )AT ) = 1

2 (xyT + yxT − (Ax)(Ay)T − (Ay)(Ax)T ) =
1
2 (xyT + yxT − (Ax)yT − y(Ax)T ) = 1

2 (y(xT − (Ax)T ) + (x − (Ax))yT ) = yyT ,
where the last equation holds due to the fact that (I−A)x = y. Thus Y = SA(U)
so that Y ∈ R(SA). It now follows that Y = 0, so that y = 0.

Finally, let us turn our attention to a notion, extending Definition 3.5.

Definition 4.18. A linear operator T : Sn → Sn is called an R†-operator, if
SDLCP (T, 0) has zero as the only solution in R(TT ).

When one attempts to derive necessary conditions for the three operators
to be R†-operators, a la Theorem 4.17, rather interestingly, again one is led to the
existence of the corresponding group inverses, as we show next.

Theorem 4.19. Let A ∈ Rn×n. We have the following:
(a) If MA or LA is an R†-operator, then A# exists.
(b) If SA is an R†-operator, then (I −A)# exists.

Proof. The proof follows by starting with y ∈ R(AT )∩N(AT ) and proceeding in an
entirely similar manner to the proof of Theorem 4.17. The other facts that we may
make use of are: MT

A = MAT , LT
A = LAT , ST

A = SAT and (AT )# = (A#)T .

We close this paper with a version of Theorem 4.16 for R†-operators. The
proof is entirely similar and hence, omitted.

Theorem 4.20. Let A ∈ Rn×n be given. The following statements are equivalent:
(a) MA is an R†-operator.
(b) X is symmetric, XAX = 0, R(X) ⊆ R(AT ) ⇒ X = 0.
(c) A is either positive definite or negative definite on R(AT ).
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