

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 329 (2007) 1139-1144

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

www.elsevier.com/locate/jmaa

A characterization for *-isomorphisms in an indefinite inner product space

K.C. Sivakumar^{a,*}, K. Kamaraj^b

^a Department of Mathematics, Indian Institute of Technology, Madras, Chennai 600 036, India ^b Department of Mathematics, Tagore Engineering College, Rathinamangalam, Chennai 600 048, India

Received 24 March 2006

Available online 10 August 2006

Submitted by M. Milman

Abstract

Let H_1 and H_2 be indefinite inner product spaces. Let $L(H_1)$ and $L(H_2)$ be the sets of all linear operators on H_1 and H_2 , respectively. The following result is proved: If Φ is [*]-isomorphism from $L(H_1)$ onto $L(H_2)$ then there exists $U: H_1 \to H_2$ such that $\Phi(T) = cUTU^{[*]}$ for all $T \in L(H_1)$ with $UU^{[*]} = cI_2$, $U^{[*]}U = cI_1$ and $c = \pm 1$. Here I_1 and I_2 denote the identity maps on H_1 and H_2 , respectively. © 2006 Elsevier Inc. All rights reserved.

Keywords: Indefinite inner product; *-Isomorphism

1. Introduction

Recently, Kulkarni et al. [2] gave an elementary proof of characterizing onto *-isomorphisms of the algebra BL(H) of all bounded linear operators on a Hilbert space H using simple and well-known properties of operators in a Hilbert space. The classical proof of this result utilizes the theory of irreducible representations of C^* -algebras [1, Corollary 2, p. 20]. In this paper we prove a similar characterization theorem for *-isomorphisms in an indefinite inner product space. One of the main results (Corollary 3.5) also demonstrates that there is no qualitative difference in the behaviour of a *-isomorphism of the algebra BL(H), with H being a complex Hilbert space in one instance and an indefinite inner product space in the other. In other words, completeness

* Corresponding author.

E-mail address: kcskumar@iitm.ac.in (K.C. Sivakumar).

0022-247X/\$ – see front matter $\hfill \ensuremath{\mathbb{C}}$ 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2006.06.099

of the norm and positive definiteness of the inner product are not of concern, in the representation of *-isomorphisms. The main results are Theorem 3.4 and Corollary 3.5.

2. Preliminary results

In this section, we prove some preliminary results which will be used in the sequel. Let $\langle \cdot, \cdot \rangle$ denote the conventional Hilbert space inner product on a Hilbert space H and N be an invertible Hermitian operator on H. An indefinite inner product on H is defined by the equation $[x, y] = \langle x, Ny \rangle$, where $x, y \in H$. Such a matrix N is called a weight. A space with an indefinite inner product is called an indefinite inner product space (IIPS). A vector x is called normalized vector if $[x, x] = \pm 1$. If [x, y] = 0 then the vectors x and y are called orthogonal vectors. Let T be an operator from H_1 into H_2 . We define the adjoint $T^{[*]}$ (of the operator T) by $[T(x), y] = [x, T^{[*]}(y)]$ for all $x, y \in H_1$. T is called a projection iff $T = T^2$ and orthogonal projection iff T is a projection and $T = T^{[*]}$. Throughout this paper $\mathcal{R}(T)$ and $\mathcal{N}(T)$ denote the range space and the null space of T, respectively.

Lemma 2.1. If *P* is an orthogonal projection then $\mathcal{R}(P)$ and $\mathcal{N}(P)$ are orthogonal complementary subspaces. In this case $[x, x] \neq 0$ for all nonzero $x \in \mathcal{R}(P)$.

Lemma 2.2. If $P = P^2$ then $P = P^{[*]}$ iff $\mathcal{R}(P)$ and $\mathcal{N}(P)$ are orthogonal complementary subspaces of H.

Proof. Sufficiency follows from Lemma 2.1. We now prove the necessity part. Suppose $\mathcal{R}(P)$ and $\mathcal{N}(P)$ are orthogonal subspaces. If $z \in \mathcal{N}(P)$, then $[P^{[*]}x, z] = [x, Pz] = 0$ for all x. Thus $\mathcal{N}(P) \subseteq \mathcal{N}(P^{[*]})$. Similarly, $\mathcal{N}(P^{[*]}) \subseteq \mathcal{N}(P)$. Thus $\mathcal{N}(P^{[*]}) = \mathcal{N}(P)$. Since I - P is an orthogonal projection whenever P is so, it follows that $\mathcal{N}((I - P)^{[*]}) = \mathcal{N}(I - P)$. Equivalently, $\mathcal{R}(P^{[*]}) = \mathcal{R}(P)$. Thus $P = P^{[*]}$.

Lemma 2.3. Let P, Q be orthogonal projections. Then

(i) $\mathcal{R}(P) \subseteq \mathcal{R}(Q) \Leftrightarrow PQ = P = QP$; (ii) $\mathcal{R}(P)[\bot]\mathcal{R}(Q) \Leftrightarrow PQ = \mathbf{0} = QP$.

Definition 2.4. Let *H* be a indefinite inner product space. For $x, y \in H$, define the operator $T_{x,y}$ on *H* by $T_{x,y}(u) = [u, y]x$, $u \in H$ and $P_x = \text{sgn}(x)T_{x,x}$, where

$$\operatorname{sgn}(x) = \begin{cases} 1, & \text{if } [x, x] \ge 0, \\ -1, & \text{otherwise.} \end{cases}$$

Next we list some properties of $T_{x,y}$. Let $x, y, z \in H$.

Lemma 2.5. $T_{x,y}$ is a linear and a rank one operator.

Lemma 2.6. $T_{\alpha x,\beta y} = \alpha \overline{\beta} T_{x,y}$, where α , β are scalars.

Lemma 2.7. $T_{x,y}^{[*]} = T_{y,x}$.

Lemma 2.8. If $[x, x] = \pm 1$, then P_x is an orthogonal projection.

Proof. We have for all $u \in H$,

$$P_x(u) = \operatorname{sgn}(x)[u, x]x = \operatorname{sgn}(x)[u, x]P_x(x) = P_x^2(u)$$

It is easy to verify that $\mathcal{R}(P_x)$ and $\mathcal{N}(P_x)$ are orthogonal. Thus by Lemma 2.2, $P_x = P_x^{[*]}$. \Box

Lemma 2.9. *If P* is an orthogonal projection of rank 1, then there exists $x \in H$ with $[x, x] = \pm 1$ such that $P = P_x$.

Proof. If *P* is an orthogonal projection of rank 1, then there exists nonzero $x \in H$ such that $\mathcal{R}(P) = \operatorname{span}(\{x\})$. By Lemma 2.1, $[x, x] \neq 0$. So *x* can be normalized. Let $u \in H$. Then $P(u) = \alpha x$ where $\alpha = \operatorname{sgn}(x)[P(u), x]$. Thus

$$P(u) = \operatorname{sgn}(x) [P(u), x] x = \operatorname{sgn}(x) [u, P(x)] x = \operatorname{sgn}(x) [u, x] x = P_x(u).$$

Thus $P = P_x$. This completes the proof. \Box

Lemma 2.10. Let $[x, x] = \pm 1$ and $[y, y] = \pm 1$. Then x and y are orthogonal $\Leftrightarrow P_x P_y = P_y P_x = \mathbf{0}$.

Proof. Follows from Lemmas 2.3 and 2.8. \Box

Lemma 2.11.

(i) If $[x, x] = \pm 1$ then $T_{x,z}T_{y,x} = \operatorname{sgn}(x)[y, z]P_x$.

(ii) If $[z, z] = \pm 1$ then $T_{x,z}T_{z,y} = \operatorname{sgn}(z)T_{x,y}$. If in addition $[x, x] = \pm 1$ then $T_{x,z}T_{z,x} = \operatorname{sgn}(x)\operatorname{sgn}(z)P_x$.

Proof. Let $u \in H$. Then

 $T_{x,z}T_{y,x}(u) = [u, x][y, z]x = [y, z]T_{x,x}(u) = \operatorname{sgn}(x)[y, z]P_x,$

proving (i). Next, we have

 $T_{x,z}T_{z,y}(u) = [u, y]T_{x,z}(z)$ = [u, y][z, z]x = sgn(z)[u, y]x = sgn(z)T_{x,y}(u).

If in addition, $[x, x] = \pm 1$ then substituting y = x in the above, we get $T_{x,z}T_{z,x} = \operatorname{sgn}(z)T_{x,x} = \operatorname{sgn}(x)\operatorname{sgn}(z)P_x$. \Box

Lemma 2.12. Let T be a linear operator of rank 1. Then there exist nonzero $x, y \in H$ such that $T = T_{x,y}$.

Proof. Since *T* is a linear operator of rank 1, then $\mathcal{R}(T) = \text{span}(\{x\})$ for some nonzero *x*. If $[x, x] = \pm 1$, choose $y = \text{sgn}(x)T^{[*]}(x)$. Then for any $u, T(u) = \text{sgn}(x)[T(u), x]x = [u, y]x = T_{x,y}(u)$. Suppose [x, x] = 0. For any $u, T(u) = \alpha x$ for some scalar α . Choose *y* such that $[u, y] = \alpha$. Then $T(u) = [u, y]x = T_{x,y}(u)$. \Box

3. Main results

In this section we define a [*]-isomorphism in an indefinite inner product space and prove the main result (Corollary 3.5) which characterizes all [*]-isomorphisms in an IIPS. Let L(H)denote the space of all linear operators on the indefinite inner product space H.

Definition 3.1. Let H_1, H_2 be indefinite inner product spaces over \mathbb{R} or \mathbb{C} . A linear map Φ between vector spaces $L(H_1)$ and $L(H_2)$ is called an isomorphism if it is one-one and $\Phi(TS) = \Phi(T)\Phi(S)$ for all $T, S \in L(H_1)$. An isomorphism Φ on $L(H_1)$ is called a [*]-isomorphism if $\Phi(T^{[*]}) = (\Phi(T))^{[*]}$ for all $T \in L(H_1)$.

Lemma 3.2. Let Φ be a [*]-isomorphism from $L(H_1)$ onto $L(H_2)$ and $x \in H_1$. If $[x, x] = \pm 1$ then $\Phi(P_x)$ is an orthogonal projection of rank 1.

Proof. Since $[x, x] = \pm 1$, P_x is an orthogonal projection, by Lemma 2.8. It is easy to prove that $\Phi(P_x)$ is an orthogonal projection. By Lemma 2.1, $[x, x] \neq 0$ for all nonzero $x \in \mathcal{R}(\Phi(P_x))$. The rest of the proof is similar to the Euclidean case [2, Step 1]. \Box

Lemma 3.3. For each $x \in H_1$ with $[x, x] = \pm 1$, there exists $\tilde{x} \in H_2$ with $[\tilde{x}, \tilde{x}] = \pm 1$ such that $\Phi(P_x) = P_{\tilde{x}}$.

Proof. By Lemma 3.2, $\Phi(P_x)$ is an orthogonal projection of rank 1. By Lemma 2.9, there exists $\tilde{x} \in H_2$ with $[\tilde{x}, \tilde{x}] = \pm 1$ such that $\Phi(P_x) = P_{\tilde{x}}$. \Box

Theorem 3.4. Let H_1 and H_2 be indefinite inner product spaces. If Φ is a [*]-isomorphism from $L(H_1)$ onto $L(H_2)$ then there exists a linear operator $U : H_1 \to H_2$ such that $\Phi(T) = cUTU^{[*]}$ for all rank 1 operators $T \in L(H_1)$, with $UU^{[*]} = cI_2$ and $U^{[*]}U = cI_1$, where $c = \pm 1$. Here I_1 , I_2 denote the identity maps on H_1 , H_2 , respectively.

Proof. Fix $x_0 \in H_1$ with $[x_0, x_0] = \pm 1$. Then by Lemma 3.3, there exists $\tilde{x}_0 \in H_2$ such that $\Phi(P_{x_0}) = P_{\tilde{x}_0}$ and $[\tilde{x}_0, \tilde{x}_0] = \pm 1$. Define $U: H_1 \to H_2$ by

(3.1)

$$U(y) = \Phi(T_{y,x_0})(\tilde{x}_0).$$

It is easy to check that U is linear and

$$U(\alpha x_0) = \alpha \operatorname{sgn}(x_0) \tilde{x}_0,$$

for every scalar α . Also,

$$\begin{bmatrix} U(y), U(z) \end{bmatrix} = \begin{bmatrix} \Phi(T_{y,x_0})\tilde{x}_0, \Phi(T_{z,x_0})\tilde{x}_0 \end{bmatrix}$$
$$= \begin{bmatrix} (\Phi(T_{z,x_0}))^{[*]} \Phi(T_{y,x_0})\tilde{x}_0, \tilde{x}_0 \end{bmatrix}$$
$$= \begin{bmatrix} \Phi(T_{z,x_0}) \Phi(T_{y,x_0})\tilde{x}_0, \tilde{x}_0 \end{bmatrix}$$
$$= \begin{bmatrix} \Phi(T_{x_0,z}T_{y,x_0})\tilde{x}_0, \tilde{x}_0 \end{bmatrix}$$
$$= \operatorname{sgn}(x_0)[y, z] \begin{bmatrix} \Phi(P_{x_0})\tilde{x}_0, \tilde{x}_0 \end{bmatrix}$$
$$= \operatorname{sgn}(x_0)[y, z][\tilde{x}_0, \tilde{x}_0]$$
$$= \operatorname{sgn}(x_0)\operatorname{sgn}(\tilde{x}_0)[y, z].$$

1142

Thus $U^{[*]}U = cI_1$ and $UU^{[*]} = cI_2$, where $c = \operatorname{sgn}(x_0)\operatorname{sgn}(\tilde{x}_0)$. It follows that

$$U^{[*]}U(\alpha \operatorname{sgn}(x_0)x_0) = c\alpha \operatorname{sgn}(x_0)x_0.$$

Substituting the expression for $U(\alpha x_0)$ from Eq. (3.1), we obtain

$$U^{[*]}(\alpha x_0) = c\alpha \operatorname{sgn}(x_0) x_0.$$
(3.2)

Next we prove $\Phi(T) = cUTU^{[*]}$ for all rank 1 linear operators T on H_1 . First we prove this for $T = T_{x_0,y}$ for $y \in H_1$. Let $u, y \in H_1$. Then

$$\begin{split} \Phi(T_{x_0,y})U(u) &= \Phi(T_{x_0,y})\Phi(T_{u,x_0})\tilde{x}_0 \\ &= \Phi(T_{x_0,y}T_{u,x_0})\tilde{x}_0 \\ &= \text{sgn}(x_0)[u, y]\Phi(P_{x_0})(\tilde{x}_0) \\ &= \text{sgn}(x_0)[u, y]\tilde{x}_0. \end{split}$$

Now, $T_{x_0,y}(u) = [u, y]x_0$ implies

$$U(T_{x_0,y})(u) = \Phi([u, y]T_{x_0,x_0})\tilde{x}_0$$

= [u, y]sgn(x_0) $\Phi(P_{x_0})(\tilde{x}_0)$
= sgn(x_0)[u, y] \tilde{x}_0 .

Thus $\Phi(T_{x_0,y})U = UT_{x_0,y}$. So we have

$$\Phi(T_{x_0,y}) = cUT_{x_0,y}U^{[*]}.$$

If *T* is a rank one linear operator, then by Lemma 2.12, there exist *x* and *y* such that $T = T_{x,y}$. Then

$$\begin{split} \varPhi(T) &= \varPhi(T_{x,y}) \\ &= \varPhi(\operatorname{sgn}(x_0)T_{x,x_0}T_{x_0,y}) \\ &= \operatorname{sgn}(x_0)\varPhi(T_{x_0,x}^{[*]})\varPhi(T_{x_0,y}) \\ &= \operatorname{sgn}(x_0)\{\varPhi(T_{x_0,x})\}^{[*]}\varPhi(T_{x_0,y}) \\ &= c\operatorname{sgn}(x_0)\{UT_{x_0,x}U^{[*]}\}^{[*]}\{UcT_{x_0,y}U^{[*]}\} \\ &= c\operatorname{sgn}(x_0)UT_{x_0,x}^{[*]}T_{x_0,y}U^{[*]} \\ &= c\operatorname{sgn}(x_0)UT_{x,x_0}^{[*]}T_{x_0,y}U^{[*]} \\ &= cUT_{x,y}U^{[*]} \\ &= cUTU^{[*]}. \end{split}$$

In the above, the second equation follows from Lemma 2.11. Thus

$$\Phi(T) = cUTU^{[*]}$$

for all rank one operators T. This completes the proof. \Box

Corollary 3.5. Let H_1 and H_2 be indefinite inner product spaces. If Φ is a [*]-isomorphism from $L(H_1)$ onto $L(H_2)$ then there exists a linear operator $U: H_1 \rightarrow H_2$ such that $\Phi(T) = cUTU^{[*]}$ for all $T \in L(H_1)$ with $UU^{[*]} = cI_2$ and $U^{[*]}U = cI_1$, where $c = \pm 1$. Moreover, U is unique up to a scalar multiple of absolute value 1.

Proof. Let $x_0 \in H_1$ such that $[x_0, x_0] = \pm 1$. It is clear that TT_{v,x_0} is a rank 1 operator for any $v \in H_1$. Then by Theorem 3.4, there exists U such that $UU^{[*]} = cI_2$, $U^{[*]}U = cI_1$ and

$$\Phi(TT_{v,x_0}) = cUTT_{v,x_0}U^{[*]}.$$

Then

$$\begin{split} \Phi(T)U(v) &= \Phi(T)\Phi(T_{v,x_0})\tilde{x}_0 \\ &= \Phi(TT_{v,x_0})(\tilde{x}_0) \\ &= cUTT_{v,x_0}U^{[*]}(\tilde{x}_0) \\ &= cUTT_{v,x_0} \big(c \operatorname{sgn}(x_0) x_0 \big) \\ &= UT(v), \end{split}$$

where the fourth equation follows from Eq. (3.2). Thus $\Phi(T) = cUTU^{[*]}$ (for all $T \in L(H_1)$). Uniqueness is similar to the Euclidean case. \Box

Acknowledgment

The authors thank a referee for suggestions that helped to improve the readability of the article.

References

- [1] W. Arveson, An Invitation to C*-Algebra, Springer, 1976.
- [2] S.H. Kulkarni, M.T. Nair, M.N.N. Namboodiri, An elementary proof for a characterization of *-isomorphisms, Proc. Amer. Math. Soc. 134 (2006) 229–234.